中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 219-229 DOI: 10.7536/PC190824 Previous Articles   Next Articles

Separation of Actinides: Extraction Chemistry and Application of Unsymmetric Diglycolamides

Yaoyang Liu1, Zhibin Liu1, Chuang Zhao1, Yu Zhou1, Yang Gao1,**(), Hui He1,2   

  1. 1. College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
    2. China Institute of Atomic Energy, Beijing 102413, China
  • Received: Online: Published:
  • Contact: Yang Gao
  • About author:
  • Supported by:
    Special Fund of Central University Basic Scientific Research Fee(GK2150260176)
Richhtml ( 18 ) PDF ( 979 ) Cited
Export

EndNote

Ris

BibTeX

The high level liquid waste(HLLW) generated from PUREX reprocessing process contains more than 95% radioactivity of the spent fuel. Among HLLW, minor actinides with long half-life and high toxicity are one of the main factors that need to isolate HLLW from the biosphere for more than 100 000 years in the deep geological repositories. In order to solve the problem of HLLW more safely and reliably, “separation-transmutation” technology has been put forward, that is, the minor actinides and long-lived fission product elements are separated from HLLW by chemical methods, and then the separated elements are utilized or transmuted according to their properties. The effective separation of different kinds of elements from HLLW is the key step in the separation-transmutation technology. The diglycolamide extractants exhibit excellent extractability towards trivalent actinides and lanthanides in HLLW. In particular, the unsymmetric diglycolamides have greater advantage than the corresponding symmetric diglycolamides in relieving or avoiding the formation of the third phase in the extraction process, and at the same time maintain the good extraction performances. In this paper, the development history, synthesis method, extraction performance, coordination mechanism, flow process, and the third phase formation of unsymmetric diglycolamides are reviewed. The extraction ratio, the separation factor and the critical parameters of the third phase formation of lanthanides, actinides and other major fission elements are compared. Some suggestions are provided for the structural design, coordination mechanism research and process application of the unsymmetric diglycolamides.

Fig.1 Symmetric diglycolamides structure
Fig.2 Unsymmetric diglycolamides structure
Scheme 1 (1) Synthesis of unsymmetric diglycolamides by secondary amines and acid esters;(2) Synthesis of unsymmetric diglycolamides by secondary amines and anhydrides;(3) Synthesis of unsymmetric diglycolamides by secondary amines and acyl chlorides
Fig.3 Unsymmetric diglycolamides structure
Table 1 Relationship between separation coefficient of Sr(Ⅱ)/Am(Ⅲ) and concentration of HNO3 in aqueous phase[29]
Table 2 CAC and LOC of Nd(Ⅲ) and HNO3 in various unsymmetric diglycolamides extraction systems
[1]
姜圣阶(Jiang S J), 任凤仪(Ren F Y), 马瑞华(Ma R H) . 核燃料后处理工学 (Engineering of Nuclear Fuel Reprocess). 北京: 原子能出版社 (Beijing: Atomic Energy Press), 1995. 162.
[2]
何涌(He Y) . 辐射防护 (Radioprotection), 2001,21(1):43.
[3]
甘学英(Gan X Y), 张振涛(Zhang Z T), 苑文仪(Yuan W Y) . 辐射防护 (Radioprotection), 2011,31(2):76.
[4]
韦悦周(Wei Y Z) . 化学进展 (Progress in Chemistry), 2011,23(7):1272.
[5]
田国新(Tian G X) . 核化学与放射化学 (Journal of Nuclear and Radiochemistry), 2015,37(5):276.
[6]
Mincher B J, Modolo G, Mezyk S P . Solvent Extr. Ion Exch., 2009,27:579. http://www.tandfonline.com/doi/abs/10.1080/07366290903114098

doi: 10.1080/07366290903114098
[7]
Nilsson M, Nash K L . Solvent Extr. Ion Exch., 2007,25:665. http://www.tandfonline.com/doi/abs/10.1080/07366290701634636

doi: 10.1080/07366290701634636
[8]
Schulz W W, Horwitz E P . Sep. Sci. Technol., 1988,23:1191.
[9]
Liljenzin J, Persson G, Svantesson I . Radiochim. Acta, 1984,35:163.
[10]
Huang P W, Wang C Z, Wu Q Y, Lan J H, Song G, Chai Z F, Shi W Q . Dalton Trans., 2018,47:5474. https://www.ncbi.nlm.nih.gov/pubmed/29611580

doi: 10.1039/c8dt00134k pmid: 29611580
[11]
Wang C Z, Shi W Q, Lan J H, Zhao Y L, Wei Y Z, Chai Z F . Inorg. Chem., 2013,52:10904. https://www.ncbi.nlm.nih.gov/pubmed/24047245

doi: 10.1021/ic400895d pmid: 24047245
[12]
Logunov V, Voroshilov A, Starovoitov P, Shadrin A, Smirnov I V, Kvasnitskii I B, Tananaev I G, Myasoedov B F, Morgalyuk V P, Kamiya M, Koma I, Koyama T . Radiochem., 2006,48:55.
[13]
Madic C, Blanc P, Condamines N . International Conference on Nuclear Fuel Reprocessing and Waste Management. London: RECOD, 1994. 20. https://www.ncbi.nlm.nih.gov/pubmed/9915640

doi: 10.1088/0952-4746/18/4/004 pmid: 9915640
[14]
Ansari S A, Pathak P, Mohapatra P K, Manchanda V K . Chem. Rev., 2012,112:1751. https://www.ncbi.nlm.nih.gov/pubmed/22053797

doi: 10.1021/cr200002f pmid: 22053797
[15]
Yuan H, Hong W, Zhou Y, Pu B, Gong A J, Xu T, Yang Q S, Li F K, Qiu L N, Zhang W W, Liu Y N . J. of Rare Earth, 2018,36:642.
[16]
Xu D, Shah Z, Cui Y, Jin L M, Zhang H, Sun G X . Hydrometallurgy, 2018,180:132.
[17]
Gergoric M, Ekberg C, Foreman J, Steenari B M, Retegan T . J. of Sustain. Metal., 2017,3:638.
[18]
Sasaki Y, Sugo Y, Suzuki S, Shoichi T . Solvent Extr. Ion Exch., 2001,19:91.
[19]
Modolo G, Asp H, Schreinemachers C, Vijgen H . Solvent Extr. Ion Exch., 2007,25:703.
[20]
Magnusson D, Christiansen B, Glatz J P, Malmbeck R, Modold G . Solvent Extr. Ion Exch., 2009,27:26.
[21]
Peng X J, Cui Y, Ma J F, Li Y L, Sun G X . Nucl. Sci. Tech., 2017,28:87.
[22]
Gujar R B, Ansari S A, Prabhu D R, Raut D R, Pathak P N, Sengupta A, Thulasidas S K, Mohapatra P K, Manchanda V K . Solvent Extr. Ion Exch., 2010,28:764.
[23]
Gujar R B, Ansari S A, Murali M S, Mohapatra P K, Manchanda V K . J. Radioanal. Nucl. Chem., 2010,284:377.
[24]
Gujar R B, Ansari S A, Mohapatra P K, Manchanda V K . Solvent Extr. Ion Exch., 2010,28:350.
[25]
Ganguly R, Sharma J N, Choudhury N . J. Colloid Interface Sci., 2011,355:458. https://www.ncbi.nlm.nih.gov/pubmed/21216411

doi: 10.1016/j.jcis.2010.12.039 pmid: 21216411
[26]
Whittaker D, Geist A, Modolo G, Taylor R, Sarsfield M, Wilden A . Solvent Extr. Ion Exch., 2018,36:223.
[27]
Panja S, Ruhela R, Misra S K, Sharma J N, Tripathi S C, Dakshinamoorthy A . J. Membr. Sci., 2008,325:158.
[28]
Deepika P, Sabharwal K N, Srinivasan T G, Vasudeva Rao P R . Solvent Extr. Ion Exch., 2010,28:184.
[29]
Ansari S A, Prabhu D R, Gujar R B, Kanekar A S, Rajeswari B, Kulkarni M J, Murali M S, Babu Y, Natarajan V, Rajeswar S, Suresh A, Manivannan R, Antony M P, Srinivasan T G, Manchanda V K . Sep. Purif. Technol., 2009,66:118.
[30]
Deepika P, Sabharwal K N, Srinivasan T G, Vasudeva Rao P R . Solvent Extr. Ion Exch., 2011,29:230.
[31]
丁颂东(Ding S D), 陈文浚(Chen W J), 肖成建(Xiao C J) . 核化学与放射化学 (Journal of Nuclear and Radiochemistry), 2003,25(3):188.
[32]
Sun G X, Liu M, Cui Y, Yuan M L, Yin S D . Solvent Extr. Ion Exch., 2010,28:482.
[33]
Ravi J, Suneesh A S, Prathibha T, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R . Solvent Extr. Ion Exch., 2011,29:86.
[34]
Ravi J, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R, J Radioanal . Nucl. Chem., 2012,295:1283.
[35]
Kirsch N, Funck R, Simon W . Quantitative Interpretation, 1978,61:2019.
[36]
Ammann D, Pretsch E, Simon W . Helv. Chim. Acta, 1973,56:1780.
[37]
Stephan H, Gloe K, Beger J, Mühl Pr . Solvent Extr. Ion Exch., 1991,9:435. http://www.tandfonline.com/doi/abs/10.1080/07366299108918063

doi: 10.1080/07366299108918063
[38]
Yao J, Wharf R M, Choppin G R . Separations of f Elements. Boston: Springer, 1995. 31.
[39]
Sasaki Y, Choppin G R . Anal. Sci., 1996,12:225.
[40]
Narita H, Yaita T, Tamara K, Tachimori S . Radiochim. Acta, 1998,8:223.
[41]
柳召刚(Liu S G) . 冶金译丛 (Metallurgical Translation), 1999(1):91.
[42]
Chan G Y, Drew M G, Hudson M J . J. Chem. Soc., 1997,4:649.
[43]
Tyumentsev M S, Foreman M R, Ekberg C . Hydrometallurgy, 2016,164:24.
[44]
Sasaki Y, Choppin G R . J. Radioanal. Nucl. Chem., 1996,2:383.
[45]
Sasaki Y, Choppin G R . Anal. Sci., 1996,2:225.
[46]
Mowafy E A, Aly H F . Solvent Extr. Ion Exch., 2007,25:205.
[47]
Ding S D, Wu Y X, Wang P F . Abstract of the Ninth National Symposium on Nuclear Chemistry and Radiochemistry(Ed. Ding Y Q). Beijing: China Nuclear Society, 2010. 9.
[48]
吴宇轩(Wu Y X), 丁颂东(Ding S D), 刘宁(Liu N), 黄松(Huang S), 黄璜(Huang H), 苏冬萍(Su D P), . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2014,35(2):257.
[49]
杨玉兰(Yang Y L) , 济南大学硕士学位论文 (Master Dissertation of Jinan University), 2012.
[50]
刘敏(Liu M) . 济南大学硕士学位论文 (Master Dissertation of Jinan University), 2007.
[51]
Horwitz E P, Barrans R E, Bond A H . U.S. Patent 7157022, 2007.
[52]
陈文浚(Cheng W J), 祝霖(Zhu L) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 1998,19(11):1724.
[53]
Thiollet G, Musikas C . Solvent Extr. Ion Exch., 1989,7:813.
[54]
Pretsch E, Ammann D, Osswald H F . Helv. Chim. Acta, 1980,63:191.
[55]
金永东(Jin Y D), 叶国安(Ye G A) . 化学研究与应用 (Chemical Research and Application), 2002,14(2):174.
[56]
胡玉芬(Hu Y F) . 济南大学硕士学位论文 (Master Dissertation of Jinan University), 2006.
[57]
Ravi J, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R . J. Environ. Chem. Eng., 2013,1:690.
[58]
Ravi J, Prathibha T, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R . Sep. Purif. Technol., 2012,85:96.
[59]
Ravi J, Venkatesan K, Antony M, Srinivasan T G, Vasudeva Rao P R . Radiochim. Acta, 2014,102:599.
[60]
Mowafy E A, Mohamed D . Sep. Sci. Technol., 2017,52:1006.
[61]
Tokheim B G . Doctoral Dissertation of Washington State University, 2016.
[62]
Sasaki Y, Tachimori S . Solvent Extr. Ion Exch., 2002,20:21.
[63]
吴广谱(Wu G P), 杨金红(Yang J H), 夏光明(Xia G M), 崔玉(Cui Y),孙国新(Sun G X) . 无机化学学报 (Journal of Inorganic Chemistry), 2011,27:315.
[64]
Xu Y, Gao Y, Zhou Y, Fan C C, Hou H G, Zhang M . Solvent Extr. Ion Exch., 2017,35:5078.
[65]
Arisaka M, Kimura T . Solvent Extr. Ion Exch., 2011,29:72.
[66]
Kou F, Yang S L, Zhang L, Teat S J, Tian G X . Inorg. Chem. Commun., 2016,71:41.
[67]
Kou F, Yang S L, Qian H, Zhang L, Beavers C M, Teat S J, Tian G X . Dalton Trans., 2016,45:18484. https://www.ncbi.nlm.nih.gov/pubmed/27603554

doi: 10.1039/c6dt02930b pmid: 27603554
[68]
Vasudeva Rao P R, Kolarik Z . Solvent Extr. Ion Exch., 1996,14:955.
[69]
Tachimori S, Sasaki Y, Suzuki S I . Solvent Extr. Ion Exch., 2007,20:687.
[70]
Sasaki Y, Zhu Z X, Sugo Y, Kimura T . J. Nucl. Sci. Technol., 2007,44:405. http://www.tandfonline.com/doi/abs/10.1080/18811248.2007.9711301

doi: 10.1080/18811248.2007.9711301
[71]
Liu Y Y, Gao Y, Wei Z, Zhou Y, Zhang M, Hou H G, Tian G X, He H . J. Radioanal. Nucl. Chem., 2018,318:2087.
[72]
Young C, Alfantazi A, Anderson C . Proceedings of the International Symposium on the Minerals, Metals and Materials,(Eds. Hager J P, Mishra B, Davidson C F, Litz J L). Warrendale: TMS(The Minerals, Metals and Materials Society). 2003. 56.
[73]
Chiarizia R, Jensen M P, Borkowski M, Ferraro J R, Thiyagarajan P, Littrell K C . Solvent Extr. Ion Exch., 2003,21:1.
[74]
Nave S, Modolo G, Madic C, Testard F . Solvent Extr. Ion Exch., 2004,22:527.
[75]
Jensen M P, Yaita T, Chiarizia R J L . Langmuir, 2007,23:4765. https://www.ncbi.nlm.nih.gov/pubmed/17391052

doi: 10.1021/la0631926 pmid: 17391052
[76]
Carrott M, Maher C, Mason C, Sarsfield M, Taylor R . Sep. Sci. Technol., 2016,51:2198.
[77]
Ban Y, Suzuki H, Hotoku S, Kawasaki T, Sagawa H, Tsutsui N, Matsumura T . Solvent Extr. Ion Exch., 2019,37:27. https://www.tandfonline.com/doi/full/10.1080/07366299.2019.1586347

doi: 10.1080/07366299.2019.1586347
[78]
Xiao C L, Wang C Z, Yuan L Y, Li B, He H, Wang S A, Zhao Y L, Chai Z F, Shi W Q . Inorg. Chem., 2014,53:1712. https://www.ncbi.nlm.nih.gov/pubmed/24410744

doi: 10.1021/ic402784c pmid: 24410744
[79]
Xiao C L, Wu Q Y, Wang C Z, Zhao Y L, Chai Z F, Shi W Q . Inorg. Chem., 2014,53, 10846. https://www.ncbi.nlm.nih.gov/pubmed/25268674

doi: 10.1021/ic500816z pmid: 25268674
[80]
Zhang X R, Kong X K, Yuan L Y, Chai Z F, Shi W Q . Inorg. Chem., 2019,58:10239. https://www.ncbi.nlm.nih.gov/pubmed/31318539

doi: 10.1021/acs.inorgchem.9b01400 pmid: 31318539
[81]
Zhang X R, Yuan L Y, Chai Z F, Shi W Q . Sci. China Chem., 2018,61:1285.
[82]
Ravi J, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R . Solvent Extr. Ion Exch., 2014,32:424. http://www.tandfonline.com/doi/abs/10.1080/07366299.2013.866857

doi: 10.1080/07366299.2013.866857
[83]
Ravi J, Venkatesan K A, Antony M P, Srinivasan T G, Vasudeva Rao P R . Radiochim. Acta, 2014,102:599. f18f1db8-3f5a-402e-9c7d-65180d8bc153 http://dx.doi.org/10.1515/ract-2014-2183

doi: 10.1515/ract-2014-2183
[84]
Nayak P K, Kumaresan R, Chaurasia S . Radiochim. Acta, 2015,103:1.
[1] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.
[2] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[3] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[4] Liangrong Yang, Huifang Xing, Hongnan Qu, Jiemiao Yu, Huizhou Liu. External Field Enhanced Environmental Responsive Solid Extraction Technology [J]. Progress in Chemistry, 2019, 31(11): 1615-1622.
[5] Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Juan Zheng, Gangfeng Ouyang*. Solid-Phase Microextraction Fibers Based on Novel Materials:Preparation and Application [J]. Progress in Chemistry, 2017, 29(9): 1127-1141.
[6] Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Siming Huang, Gangfeng Ouyang*. Application of in vivo Solid-Phase Microextraction on Pollutants Analysis in Living Animals and Plants [J]. Progress in Chemistry, 2017, 29(9): 1000-1007.
[7] Xu Zhao*, Qi Zhang, Haihong Wu, Xiaocui Hao, Liang Wang, Xiping Huang. Extraction of Lithium from Salt Lake Brine [J]. Progress in Chemistry, 2017, 29(7): 796-808.
[8] Wen Zhang, Yingxin Mou, Song Zhao, Lixin Xie, Yuxin Wang, Jing Chen. Adsorption Materials for Lithium Ion from Brine Resources and Their Performances [J]. Progress in Chemistry, 2017, 29(2/3): 231-240.
[9] Yang Yukun, Wang Xiaomin, Fang Guozhen, Yun Yaguang, Guo Ting, Wang Shuo. Electrochemiluminescence Analysis Based on Molecular Imprinting Technique [J]. Progress in Chemistry, 2016, 28(9): 1351-1362.
[10] Chen Feng, Wan Decheng. Multisite Statistical Interactions in Supramolecular Chemistry: Design and Application [J]. Progress in Chemistry, 2015, 27(7): 841-847.
[11] Lou Shuaifeng, Cheng Xinqun, Ma Yulin, Du Chunyu, Gao Yunzhi, Yin Geping. Nb-Based Oxides as Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(2/3): 297-309.
[12] Han Qiang, Wang Zonghua, Zhang Xiaoqiong, Ding Mingyu. Graphene and Its Composites in Sample Preparation [J]. Progress in Chemistry, 2014, 26(05): 820-833.
[13] Chen Xuwei, Mao Quanxing, Wang Jianhua*. Ionic Liquids in Extraction/Separation of Proteins [J]. Progress in Chemistry, 2013, 25(05): 661-668.
[14] L? Jitao, Zhang Shuzhen* . Methods for Separation and Analysis of Nanomaterials in the Environment [J]. Progress in Chemistry, 2012, 24(12): 2374-2383.
[15] Pan Dengfang, Ye Gang, Wang Fang, Chen Jing. Trivalent Actinides/Lanthanides Separation by Nitrogen Heterocyclic Ligands [J]. Progress in Chemistry, 2012, 24(11): 2167-2176.