中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 84-92 DOI: 10.7536/PC190621 Previous Articles   Next Articles

Special Issue: 电化学有机合成

Silicon-Containing Functionalized Polyolefin: Synthesis and Application

Yongjie Zhang1,**(), Mingshuai Fan1, Xiaopei Li2, Huayi Li3, Shuwei Wang1, Wenqin Zhu4   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
    2. Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
    3. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    4. Petrochemical Research Institute, PetroChina, Beijing 102206, China
  • Received: Online: Published:
  • Contact: Yongjie Zhang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21704009); Department of Education of Liaoning Province(J2017041); Department of Education of Liaoning Province(J2019046)
Richhtml ( 21 ) PDF ( 917 ) Cited
Export

EndNote

Ris

BibTeX

Functionalization of polyolefin is an efficient route to new polymer materials with high performance/price ratio. Silicon-containing functional polyolefin (SFPO) is a kind of functional polyolefin that incorporate functional silicone groups or polysiloxane segments in the structure of polyolefin. Due to special physiochemical properties of silicone groups or polysiloxane, SFPO often possesses reactivity or advanced properties and forms a new group of functional polyolefin. SFPO can function as reactive intermediates in synthesizing functional polyolefins with complex topologies (star polymer, brush polymer and graft copolymer) or preparing polyolefin covalently grafted nanomaterials. SFPO can also serve as functional additives (compatibilizer, polymer process aid and surface modifier) in developing new polyolefin materials. In recent years, researchers have obtained a series of fruitful results on the syntheses and applications of SFPO. This review aims to cover the recent progress on SFPO, which we hope may arouse the attention of related researchers and promote further achievements in related research areas.

Fig. 1 Synthetic routes and applications of TMS-PE and DMS-PE[24,25]
Fig. 2 Synthesis of low dispersity star PE with a Si-O-Si crosslinking core via a hydrolytic condensation process of TMS-PE[31]
Fig. 3 Polymer intrinsic viscosity as a function of molecular weight from tri-detector GPC analysis in trichlorobenzene at 150 ℃ (where α is the exponent in Mark-Houwink equation [η]=KM α,M LS refers to absolute M W determined by light scattering detectors)[31]
Fig. 4 Preparation of PE covalently grafted CNT via a combination of thiol-ene addition and hydrolytic co-condensation reactions (Inset: TEM graph of PE covalently grafted CNT; Scale bar: 50 nm)[32]
Fig. 5 Chain transfer agent (a) and co-monomers (b~f) used to synthesize polyolefins containing organosilicon functional groups[35,38,40,42~44]
Fig. 6 Synthesis of PP-g-PDMS via the coupling reaction between maleic anhydride grafted PP and monoaminopropyl terminated PDMS[49]
Fig. 7 The complex viscosity curves of pure PP, PP/MA-PP blend and PP/PP-g-PDMS blend
Fig. 8 Syntheses of well-defined PDMS-g-PE via a hetero-condensation reaction between DMS-PE and PDMS-diol[25]
Fig. 9 GPC curves of v-PE, DMS-PE, P(DMS-PE) and PDMS-g-PE[25]
Fig. 10 SEM micrographs of fracture faces of PE/silicone oil blends: LDPE/silicone oil blend (100/5, ×8000, a), LDPE/silicone oil/PDMS-g-PE (100/5/1, ×8000, b), HDPE/silicone oil blend (100/10, ×1000, c) and HDPE/silicone oil/LCAS blend (100/10/1,×1000, d)[25, 54,55]
Fig. 11 Synthetic route to long alkyl chain silicone (LCAS) via a siloxane equilibration process between commercially available AMS-C30 and silanol terminated siloxane oligomer[54,55]
[1]
Peacock A J . Handbook of Polyethylene: Structures, Properties And Applications, Marcel Dekker: New York, 2000.
[2]
Kaminsky W . Macromolecular Chemistry and Physics, 2008,209:459.
[3]
胡友良(Hu Y L), 乔金梁(Qiao J L), 吕立新(Lv L X). 聚烯烃功能化及改性:科学与技术(Functionalization and Modification of Polyolefins: Science and Technology). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2006.
[4]
Chung T C . Functionalization of Polyolefins. London: Academic Press, 2002.
[5]
Boaen N K , Hillmyer M A . Chemical Society Reviews, 2005,34(3):267. https://www.ncbi.nlm.nih.gov/pubmed/15726162

doi: 10.1039/b311405h pmid: 15726162
[6]
Pleşa I , Noţingher P , Stancu C , Wiesbrock F , Schlögl S . Polymers, 2019,11(1), 24.
[7]
Zou H , Wu S , Shen J . Chemical Reviews, 2008,108(9):3893. https://www.ncbi.nlm.nih.gov/pubmed/18720998

doi: 10.1021/cr068035q pmid: 18720998
[8]
Ciriminna R , Fidalgo A , Pandarus V , Béland F , Ilharco L M , Pagliaro M . Chemical Reviews, 2013,113(8):6592. https://www.ncbi.nlm.nih.gov/pubmed/23782155

doi: 10.1021/cr300399c pmid: 23782155
[9]
Ciriminna R , Sciortino M , Alonzo G , Schrijver Ad , Pagliaro M . Chemical Reviews, 2011,111(2):765. https://www.ncbi.nlm.nih.gov/pubmed/20726523

doi: 10.1021/cr100161x pmid: 20726523
[10]
Pagliaro M , Ciriminna R , Michel W C M , Campestrini S . The Journal of Physical Chemistry B, 2006,110(5):1976. https://www.ncbi.nlm.nih.gov/pubmed/16471772

doi: 10.1021/jp055697v pmid: 16471772
[11]
Hwang H S , Bae J H , Kim H G , Lim K T . European Polymer Journal, 2010,46(8):1654.
[12]
Walcarius A , Etienne M , Jacques B . Chemistry of Materials, 2002,14(6):2757.
[13]
Kango S , Kalia S , Celli A , Njuguna J , Habibi Y , Kumar R . Progress in Polymer Science, 2013,38(8):1232.
[14]
Rahman I A , Jafarzadeh M , Sipaut C S . Ceramics International, 2009,35(5):1883.
[15]
Brinker C . Journal of Non-Crystalline Solids, 1988,100(1):31.
[16]
Hench L L , West J K . Chemical Reviews, 1990,90(1):33.
[17]
Schmidt H J . Journal of Non-Crystalline Solids, 1988,100(1):51.
[18]
Munteanu D . Moisture Cross-Linkable Silane-Modified Polyolefins. In: Al-Malaika S, Ed. Reactive Modifiers for Polymers: Springer Netherlands, 1997. 196.
[19]
谭魁龙(Tan K L), 李振昊(Li Z H), 李志飞(Li Z F), 王永刚(Wang Y G), 义建军(Yi J J). 高分子通报(Chinese Polymer Bulletin), 2013,6:12.
[20]
Guillaume S M . Polymer Chemistry, 2018,9(15):1911.
[21]
张勇杰(Zhang Y J), 李化毅(Li H Y), 董金勇(Dong J Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2014,26(01):110.
[22]
Dix A , Ptacek S , Poser S , Arnold M . Macromolecular Symposia, 2006,236(1):186.
[23]
Janiak C . Coordination Chemistry Reviews, 2006,250(1/2):66.
[24]
Zhang Y J , Li H Y , Dong J Y , Hu Y L . Polymer Chemistry, 2014,5(1):105.
[25]
Zhang Y J , Li X Y , Wang W , Wang S , Xu J , Xu L , Li H Y . Reactive and Functional Polymers, 2018,122:68.
[26]
Xia X , Ye Z , Morgan S , Lu J . Macromolecules, 2010,43(11):4889.
[27]
Zhang K , Ye Z , Subramanian R . Macromolecules, 2009,42(7):2313.
[28]
Xu L , Ye Z . Chemical Communications, 2013,49(78):8800. https://www.ncbi.nlm.nih.gov/pubmed/23959393

doi: 10.1039/c3cc45101a pmid: 23959393
[29]
Ye Z , Xu L , Dong Z , Xiang P . Chemical Communications, 2013,49(56):6235. https://www.ncbi.nlm.nih.gov/pubmed/23752687

doi: 10.1039/c3cc42517g pmid: 23752687
[30]
Huang H , Niu H , Dong J . Macromolecules, 2010,43(20):8331.
[31]
Zhang Y J , Li H Y , Xu Z , Bu W , Liu C , Dong J Y , Hu Y . Polymer Chemistry, 2014,5(13):3963. https://www.ncbi.nlm.nih.gov/pubmed/22660893

doi: 10.1039/c2nr30436h pmid: 22660893
[32]
Zhang Y J , Li Q , Wang W , Guo A , Li J , Li H Y . Macromolecular Chemistry and Physics, 2016,218(4):1600449.
[33]
Peng Z , Li Q , Li H , Hu Y . Industrial & Engineering Chemistry Research, 2017,56(20):5892.
[34]
Peng Z , Yi D , Xue Z , Li H , Li Q , Hu Y . Macromolecular Chemistry and Physics, 2017,218(16):1700143. http://doi.wiley.com/10.1002/macp.v218.16

doi: 10.1002/macp.v218.16
[35]
Liu X , Niu H , Li Y , Dong J Y . Polymer Chemistry, 2018,9(24):3347.
[36]
Norsic S , Thomas C , D’Agosto F , Boisson C . Angewandte Chemie International Edition, 2015,54(15):4631. https://www.ncbi.nlm.nih.gov/pubmed/25688747

doi: 10.1002/anie.201411223 pmid: 25688747
[37]
Surivet F , Thanh My L , Pascault JP , Mai C . Macromolecules, 1992,25(21):5742.
[38]
Li H , Zhao H , Zhang X , Lu Y , Hu Y . European Polymer Journal, 2007,43(1):109.
[39]
Ma P C , Siddiqui N A , Marom G , Kim J K . Composites Part A: Applied Science and Manufacturing, 2010,41(10):1345.
[40]
Kurahashi E , Wada T , Nagai T , Chammingkwan P , Terano M , Taniike T . Polymer, 2018,158:46.
[41]
Kuan C F , Kuan H C , Ma C C M , Chen C H , Wu H L . Materials Letters, 2007,61(13):2744.
[42]
Jin Z , Fan H , Li B G , Zhu S . Polymer, 2016,83:20.
[43]
Jin Z , Fan H , Li B G , Zhu S . Macromolecular Materials and Engineering, 2016,301(12):1494.
[44]
Yang T , Qin Y , Dong J Y . Macromolecules, 2018,51(22):9234.
[45]
Zhou H , Li K , Qin Y , Dong J . Acta Polymerica Sinica. DOI: 10.11777/j.issn1000-3304.2019.19078
[46]
Li H , Chen S , Zhang X , Cui N , Zhang Z , Lu Y , Hu Y . Reactive and Functional Polymers, 2005,65(3):285.
[47]
金震(Jin Z), 范宏(Fan H). 化工学报(CIESC Journal), 2016,67(2):672.
[48]
Ciolino A E , Pieroni O I , Vuano B M , Villar M A , Vallés E M . Journal of Polymer Science Part A: Polymer Chemistry, 2004,42(12):2920.
[49]
Fan M , Zhang Y , Li X , Zeng B , Chen S , Zhu W , Wang S , Xu J , Feng N . Polymers for Advanced Technologies, 2019,30(5):1226.
[50]
Jalali-Arani A , Katbab A A , Nazockdast H . Journal of Applied Polymer Science, 2005,96(1):155.
[51]
Jalali-Arani A , Katbab A A , Nazockdast H . Journal of Applied Polymer Science, 2003,90(12):3402.
[52]
Li W , Huang B . Die Makromolekulare Chemie, 1989,190(10):2373. http://doi.wiley.com/10.1002/macp.1989.021901003

doi: 10.1002/macp.1989.021901003
[53]
Ciolino A E , Barrera Galland G , Luján Ferreira M , Villar M A . Journal of Polymer Science Part A: Polymer Chemistry, 2004,42(10):2462.
[54]
Zhang Y J , Fan M S , Li X P . Polymer Bulletin, 2019, Doi: 10.1007/s00289-019-02883-z.
[55]
Zhang Y J , Li X P , Zhu W Q , Fan M S , Wang S W , Qu M J , Zhang Y , Wang S . Polymers for Advanced Technologies, 2020, DOI: 10.1002/pat.4889.
[56]
Xu Z , Jie S , Li B G . Journal of Polymer Science Part A: Polymer Chemistry, 2014,52(22):3205.
[57]
Ciolino A , Sakellariou G , Pantazis D , Villar M A , Vallés E , Hadjichristidis N . Journal of Polymer Science Part A: Polymer Chemistry, 2006,44(5):1579.
[58]
Petzetakis N , Stone G M , Balsara N P . Macromolecules, 2014,47(13):4151. https://www.ncbi.nlm.nih.gov/pubmed/18324781

doi: 10.1021/bi702528r pmid: 18324781
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[3] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[4] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[5] Yang Bai, Xiaochen Yan, Caiping Liu, Hao Yao. Synthesis and Properties of H-Shaped Polymers [J]. Progress in Chemistry, 2020, 32(12): 1879-1884.
[6] Kerui Chen, Xin Hu, Jiangkai Qiu, Ning Zhu, Kai Guo. Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization [J]. Progress in Chemistry, 2020, 32(1): 93-102.
[7] Shuzhang Qu, Taoyi Zhang, Wei Wang. Olefin Polymerization with Nitrogen-Coordinated Half-Metallocene Catalyst Systems [J]. Progress in Chemistry, 2019, 31(7): 929-938.
[8] Chuncai Zhou, Chuncai Zhou*. Design, Synthesis and Applications of Antimicrobial Peptides and Antimicrobial Peptide-Mimetic Copolymers [J]. Progress in Chemistry, 2018, 30(7): 913-920.
[9] Hao Zhang, Fang Xu, Heying Wang, Tao Jiang, Zhi Ma. Controlled Synthesis of New Polymethylene-Based Copolymers [J]. Progress in Chemistry, 2018, 30(2/3): 179-189.
[10] Yan Zhang, Xuejie Liu, Nan Yan, Yuexin Hu, Haiying Li, Yutian Zhu. Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space [J]. Progress in Chemistry, 2018, 30(2/3): 166-178.
[11] Qing Xiang, Yingwu Luo*. RAFT Emulsion Polymerization [J]. Progress in Chemistry, 2018, 30(1): 101-111.
[12] Qianqian Wang, Liping Wu, Jing Wang, Liyuan Wang*. Directed Self-Assembly of Block Copolymers [J]. Progress in Chemistry, 2017, 29(4): 435-442.
[13] Yuan Shifang, Niu Chunxia, Wei Xuehong, Sun Wenhua. ⅣB-Metal Complex Catalysts toward Olefin Polymerization and Copolymerization [J]. Progress in Chemistry, 2016, 28(7): 1070-1075.
[14] Wang Xinbo, Zhang Shuhong, He Xiaodong. Network Mesostructures in Self-Assembly of Diblock Copolymers and the Application [J]. Progress in Chemistry, 2016, 28(6): 860-871.
[15] Zhang Yongjie, Li Huayi, Qu Minjie, Feng Na, Yang Wei, Zhang Chong. Well-Defined Polyolefin Graft Copolymers: Syntheses, Structures, and Properties [J]. Progress in Chemistry, 2016, 28(11): 1634-1647.