中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (12): 1681-1695 DOI: 10.7536/PC190330 Previous Articles   Next Articles

Enhancement Luminescence and Applications of Rare Earth Fluoride

Qian Cheng, Jiaming Yu, Xinzhu Huo, Yumeng Shen, Shouxin Liu**()   

  1. College of Materails Science and Engineering, Northeast Forest University, Harbin 150040, China
  • Received: Online: Published:
  • Contact: Shouxin Liu
  • About author:
  • Supported by:
    Fundamental Research Funds for the Central Universities(2572017EB05); Heilongjiang Province Postdoctoral Science Foundation(LBH-Z14004); Natural Science Foundation of Heilongjiang Province(LH2019E002)
Richhtml ( 31 ) PDF ( 1557 ) Cited
Export

EndNote

Ris

BibTeX

Rare earth fluoride upconversion nanomaterials have immense potential applications for biological imaging and photothermal therapy, biosensing, solar cell and anti-counterfeiting technology, due to its high chemical stability, large anti-stokes shifts, no photobleaching, long fluorescence life, narrow emission band and deep penetration, which is a promising fluorescent material. However,such materials are limited in practical application due to their low upconversion luminescence efficiency and small absorption cross-section of activator. Based on the above problems, upconversion luminescence enhancement of rare earth doped fluoride materials such as ion co-doping, core shell structure, surface plasmon coupling, photonic crystal, broadband sensitization and thermal effect are expounded herein, and the mechanisms of enhancement of upconversion luminescence are analyzed. In addition, the research status in the fields of biological imaging and photothermal therapy, biosensing, solar cell and anti-counterfeiting technology is elaborated. Moreover, the limitations and development directions for future are also prospected.

Fig. 1 Schematic diagram of rare earth doped upconversion nanomaterials
Fig. 2 The changes of the doping of a host atom with a dopant of varied size:crystal lattice contraction(left) and expansion(right)[1]
Table 1 Ion-induced upconversion enhancement
Fig. 3 Red emission upnconversion fluorescence spectra of Mn2+ doped NaYF4:Yb3+,Er3+[35]
Fig. 4 Basic functions of a shell around Ln3+ doped nanoparticles[36]
Fig. 5 The mechanism and spectrogram of the upconversion nanocrystals enhanced by activated shell.(a) Schematic diagram. (b)Upconversion luminescence spectra(The insert illustrated the comparison of the luminescence intensity of nanoparticles coated with inert and activated shells under the same excitation density).(c) Mechanism of enhanced luminescence[45].(d) The upconversion emission spectra and phtographs of nanoparticles coated with active shell and uncoated: BaGdF5:Yb3+, Er3+@BaGdF5:x%Yb3+(left), core、core@active shell、core@active shell@active shell(right)[46]
Fig. 6 (a) The upconversion luminscence and quantum yield of NaYF4:Yb3+,Er3+ nanoparticles coated with heterogeneous shell[47].(b)Emission spectra of NaYF4:Yb3+,Er3+@mNaYF4(m=0,1,2,3,4,5)nanoparticles by 980 nm excitation[49]
Fig. 7 Schematic illustration showing the plausible mechamism of enhancement of upconversion luminescence by plasmon resonance[1]
Fig. 8 (a) Upconversion luminescence spectra of Ag NP-Al2O3-NaYF4:Yb3+,Er3+ UCNPs,the inset is its schematic structure[58].(b)Luminscence enhancement through use of a disk-coupled dot-on-pillar antenna array(D2PA)[59].(c) PL enhancement factor as a function of SiO2 spacer layer thickness[60].(d) The center field intensity [E/Eo] [2]z=d/2. The inset table is the numerical Efupc of the NaGdF4: Yb3+,Er3+ under 980 nm excitation[61]
Table 2 Core-shell system for plasmonic enhancement luminscence of rare earth fluoride
Fig. 9 (a)The schematic of the formation of PMMA OPCs/NaYF4:Yb3+,Tm3+ UCNP composites.(b)A comparision of UCL spectra of NaYF4:Yb3+,Tm3+ UCNP and PMMA OPCs/NaYF4:Yb3+,Tm3+ composites. Inset:UC population and emission process of NaYF4:Yb3+,Tm3+.(c) Dependence of the UC enhancement factor as a funciton of PSB of PMMA OPCs[81]
Fig. 10 Schematic illustrations of dye sensitized upconversion in(a) Core(S: sensitizer, A: activator).(b)The core-shell structure(S1: type 1 sensitizer, S2:type 2 sensitizer, A: activator). The red solid line, red dashed line, blue solid line, blue dashed line and green arrows represent the excitation, energy transfer, upconversion pathway and fluorescence process[93]
Fig. 11 (a) A schematic illustrations of IR-806 sensitized β-NaYF4: Yb3+/Er3+nanoparticles.(b) Luminescence spectra of β-NaYF4: Yb3+/Er3+nanoparticles(cyan line),IR-806(green line), IR-780/β-NaYF4: Yb3+/Er3+ nanoparticles(red line), IR-806/β-NaYF4: Yb3+/Er3+nanoparticles(blue line)[94]
Fig. 12 Schematic illustration of dye-sensitized nanoparticles with tunable excitation wavelength(a) β-NaYF4: Yb3+/Er3+[96].(b) β-NaYF4:Yb3+/Tm3+[97].(c)Energy diagram of three sensiticers.(d)Excitation power dependence of upconverted emission from NaY0.48Gd0.3Yb0.2Er0.02F4 IR806-UCNP under excitation of the dye(808 nm excitation) or UCNP(980 nm excitation). Error bars represent one standard deviation from the mean. Inset, emission spectra for dye or direct excitation[98]
Fig. 13 Schematic illustration of the surface-photon-enhanced upconversion process[102]
Fig. 14 (a)Schematic illustration of DNA-based NR dimer and UCNP core-satellite assembly for multimodal imaging guided combination phototherapy.(b) Photothermal effect of assemblies of PBS、NR-UCNP-Ce6 and NR-dimer-UCNP-Ce6.(c)Thermal images of HeLa tumor-bearing mice with PBS、UCNP-Ce6、NR、NR dimer、NR-UCNP-Ce6 and NR-dimer-UCNP-Ce6[109]
Fig. 15 (a) Schematic illustration of the sandwich structured UCNPs and the principle of FRET based UC probe for Cu2+ detection[111].(b) FRET detection of avidin by employing biotinylated NCs as the donor and FITC as an acceptor[83].(c)Broadband near-infrared sunlight harvesting and then spectral conversion into visible range to activate N719 dye for the improvement of DSSC device.(d) The current density-voltage(J-V) characteristics of DSSC, DSSC-UCNPs and DSSC-DSUCNPs under AM 1.5 G simulated sunlight irradiation(100 mW·cm-2)[115]
[1]
Han S Y, Deng R R, Xie X J, Liu X G . Angew. Chem. Int. Ed., 2014,53:11702. https://www.ncbi.nlm.nih.gov/pubmed/25204638

doi: 10.1002/anie.201403408 pmid: 25204638
[2]
Kumar D, Verma K, Verma S, Chaudhary B, Som S, Sharma V, Kumar V, Swart H C . Physica B, 2018,535:278.
[3]
Zhou J, Liu Q, Feng W, Sun Y, Li F Y . Chem. Rev., 2015,115:395. https://www.ncbi.nlm.nih.gov/pubmed/25492128

doi: 10.1021/cr400478f pmid: 25492128
[4]
Chen G Y, Qiu H L, Prasad P N, Chen X Y . Chem. Rev., 2014,114:5161. https://www.ncbi.nlm.nih.gov/pubmed/24605868

doi: 10.1021/cr400425h pmid: 24605868
[5]
Gai S L, Li C X, Yang P P, Lin J . Chem. Rev., 2014,114:2343. https://www.ncbi.nlm.nih.gov/pubmed/24344724

doi: 10.1021/cr4001594 pmid: 24344724
[6]
Wen S H, Zhou J J, Zheng K Z, Bednarkiewicz A, Liu X G, Jin D Y . Nat. Commum., 2018,9.
[7]
Zou K S, Dong G Z, Sun M, Liu J C . J. Phys. D. Appl. Phys., 2018,51.
[8]
Shao Q Y, Zhang G T, Ouyang L L, Hu Y Q, Dong Y, Jiang J Q . Nanoscale, 2017,9:12132. https://www.ncbi.nlm.nih.gov/pubmed/28805873

doi: 10.1039/c7nr03682e pmid: 28805873
[9]
Zeng J H, Su J, Li Z H, Yan R X, Li Y D . Adv. Mater., 2005,17:2119.
[10]
Sun Y J, Chen Y, Tian L J, Yu Y, Kong X G, Zhao J W, Zhang H . Nanotechnol., 2007,18.
[11]
Wang F, Liu X G . Chem. Soc. Rev., 2009,38:976. https://www.ncbi.nlm.nih.gov/pubmed/19421576

doi: 10.1039/b809132n pmid: 19421576
[12]
Liu G Chem. Soc. Rev., 2015,44:1635. https://www.ncbi.nlm.nih.gov/pubmed/25286989

doi: 10.1039/c4cs00187g pmid: 25286989
[13]
You W W, Tu D, Zheng W, Huang P, Chen X Y . J. Lumin., 2018,201:255.
[14]
Gu F, Wang S F, Lu M K, Zhou G J, Xu D, Yuan D R . Langmuir, 2004,20:3528. https://www.ncbi.nlm.nih.gov/pubmed/15875379

doi: 10.1021/la049874f pmid: 15875379
[15]
Chen G Y, Liu H C, Liang H J, Somesfalean G, Zhang Z G . J. Phys. Chem. C, 2008,112:12030.
[16]
Wang H Q, Nann T . ACS Nano, 2009,3:3804. https://www.ncbi.nlm.nih.gov/pubmed/19873986

doi: 10.1021/nn9012093 pmid: 19873986
[17]
Zhao C Z, Kong X G, Liu X M, Tu L P, Wu F, Zhang Y L, Liu K, Zeng Q H, Zhang H . Nanoscale, 2013,5:8084. https://www.ncbi.nlm.nih.gov/pubmed/23877262

doi: 10.1039/c3nr01916k pmid: 23877262
[18]
Cheng Q, Sui J H, Cai W . Nanoscale, 2012,4:779. https://www.ncbi.nlm.nih.gov/pubmed/22159174

doi: 10.1039/c1nr11365h pmid: 22159174
[19]
Yadav R S, Dhoble S J, Rai S B . Sensor Actuat B-Chem, 2018,273:1425.
[20]
Lei L, Chen D Q, Xu J, Zhang R, Wang Y S . Chem. Asian J., 2014,9:728. https://www.ncbi.nlm.nih.gov/pubmed/24403275

doi: 10.1002/asia.201301514 pmid: 24403275
[21]
Huang Q M, Yu J C, Ma E, Lin K M . J. Phys. Chem. C, 2010,114:4719. https://www.ncbi.nlm.nih.gov/pubmed/20136115

doi: 10.1021/jp908242y pmid: 20136115
[22]
Yu H, Huang Q M, Ma E, Zhang X Q, Yu J C . J. Alloy Compd., 2014,613:253. https://linkinghub.elsevier.com/retrieve/pii/S092583881401281X

doi: 10.1016/j.jallcom.2014.05.174
[23]
Wang C Y, Cheng X H . J. Alloy Compd., 2015,649:196.
[24]
Zhou B, Xu B, He H M, Gu Z J, Tang B, Ma Y, Zhai T Y . Nanoscale, 2018,10:2834. https://www.ncbi.nlm.nih.gov/pubmed/29362768

doi: 10.1039/c7nr07709b pmid: 29362768
[25]
Ramasamy P, Chandra P, Rhee S W, Kim J . Nanoscale, 2013,5:8711. https://www.ncbi.nlm.nih.gov/pubmed/23900204

doi: 10.1039/c3nr01608k pmid: 23900204
[26]
Cheng Q, Li Y, Liu S X, Sui J H, Cai W . RCS Adv., 2015,5:93547.
[27]
Zhu Y R, Zhao S W, Zhou B, Zhu H, Wang Y F . J. Phys. Chem. C, 2017,121:18909.
[28]
Yi M Y, Liu Y F, Gao H P, Huang Z Y, Liang J W, Mao Y L . J Mater. Sci., 2018,53:1395.
[29]
Zhao S W, Liu W, Xue X Y, Yang Y S, Zhao Z Y, Wang Y F, Zhou B . RCS Adv., 2016,6:81542.
[30]
Huang Z Y, Yi M J, Gao H P, Zhang Z L, Mao Y L . J. Alloy Compd., 2017,694:241.
[31]
Du K M, Xu X, Yao S, Lei P P, Dong L L, Zhang M L, Feng J, Zhang H J . Cryst. Eng. Comm., 2018,20:1945.
[32]
Cong T, Ding Y D, Liu J P, Zhao H Y, Hong X . Mater. Lett., 2016,165:59.
[33]
Zhou H F, Wang X C, Lai Y F, Cheng S Y, Zheng Q, Yu J L . Appl. Phys. Mater., 2017,123.
[34]
Lei P P, Zhang P, Yao S, Song S Y, Dong L L, Xu X, Liu X L, Du K M, Feng J, Zhang H J . ACS Appl. Mater. Inter., 2016,8:27490. https://www.ncbi.nlm.nih.gov/pubmed/27696854

doi: 10.1021/acsami.6b08335 pmid: 27696854
[35]
Tian G, Gu Z J, Zhou L J, Yin W Y, Liu X X, Yan L, Jin S, Ren W L, Xing G M, Li S J, Zhao Y L . Adv. Mater., 2012,24:1226. https://www.ncbi.nlm.nih.gov/pubmed/22282270

doi: 10.1002/adma.201104741 pmid: 22282270
[36]
Zheng H R, Gao D L, Fu Z X, Wang E K, Lei Y, Tuan Y, Cui M . J. Lumin., 2011,131:423.
[37]
Lue Q, Guo F Y, Sun L, Li A H, Zhao L C . J. Appl. Phys., 2008,103.
[38]
Zhang J, An L Q, Wang S W . J. Alloy Compd., 2009,471:201.
[39]
Qian L P, Yuan D, Yi G S, Chow G M . J. Mater. Res., 2009,24:3559.
[40]
Shi F, Zhai X, Zheng K, Zhao D, Qin W . J. Nanosci. Nanotech., 2011,11:9912. https://www.ncbi.nlm.nih.gov/pubmed/22413320

doi: 10.1166/jnn.2011.5248 pmid: 22413320
[41]
Liu P, Zhou G, Chen S, Wang S . Opt. Mater., 2014,36:1443. https://linkinghub.elsevier.com/retrieve/pii/S0925346713005788

doi: 10.1016/j.optmat.2013.11.002
[42]
Yi G S, Chow G M . Chem. Mater., 2007,19:341.
[43]
Huang P, Zheng W, Zhou S, Tu D, Chen Z, Zhu H, Li R, Ma E, Huang M, Chen X Y . Angew. Chem. Int. Ed., 2014,53(5):1252. https://www.ncbi.nlm.nih.gov/pubmed/24436151

doi: 10.1002/anie.201309503 pmid: 24436151
[44]
Xiang G, Zhang J H, Hao Z, Zhang X, Pan G H, Luo Y, Lü W, Zhao H . Inorg. Chem., 2015,54(8):3921. https://www.ncbi.nlm.nih.gov/pubmed/25848860

doi: 10.1021/acs.inorgchem.5b00109 pmid: 25848860
[45]
Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A . Adv. Funct. Mater., 2009,19:2924.
[46]
Yang D M, Li C X, Li G G, Shang M M, Kang X J, Lin J . J. Mater. Chem., 2011,21:5923.
[47]
Lay A, Siefe C, Fischer S, Mehlenbacher R D, Ke F, Mao W L, Aliyisatos A P, Goodman M B, Dionne J A . Nano Lett., 2018,18:4454. https://www.ncbi.nlm.nih.gov/pubmed/29927609

doi: 10.1021/acs.nanolett.8b01535 pmid: 29927609
[48]
Xia M, Zhou D C, Yang Y, Yang Z W, Qiu J B . ECS J. Solid State Sci. Tec., 2017,6:R41.
[49]
Huang Q Y, Ye W H, Jiao X F, Yu L L, Liu Y L, Liu X T . J. Alloy Compd., 2018,763:216.
[50]
赵兵(Zhao B), 祁宁(Qi N), 张克勤(Zhang K Q) . 化学进展 (Prog. Chem.), 2016,28:1615.
[51]
Feng W, Sun L D, Yan C H . Chem. Commun., 2009,4393.
[52]
Xu W, Xu S, Zhu Y S, Liu T, Bai X, Dong B A, Xu L, Song H W . Nanoscale, 2012,4:6971. https://www.ncbi.nlm.nih.gov/pubmed/23076825

doi: 10.1039/c2nr32377j pmid: 23076825
[53]
Yin Z, Zhang X R, Zhou D L, Wang H, Xu W, Chen X, Zhang T X, Song H W . RSC Adv., 2016,6:86297.
[54]
Yin Z, Zhou D L, Xu W, Cui S B, Chen X, Wang H, Xu S H, Song H W . ACS Appl. Mater. Inter., 2016,8:11667. https://www.ncbi.nlm.nih.gov/pubmed/27111717

doi: 10.1021/acsami.5b12075 pmid: 27111717
[55]
Xu W, Zhu Y S, Chen X, Wang J, Tao L, Xu S, Liu T, Song H W . Nano Res., 2013,6:795.
[56]
Chen X, Xu W, Zhang L H, Bai X, Cui S B, Zhou D L, Yin Z, Song H W, Kim D H . Adv. Funct. Mater., 2015,25:5462.
[57]
Kwon S J, Lee G Y, Jung K, Jang H S, Park J S, Ju H, Han I K, Ko H . Adv. Mater., 2016,28:7899. https://www.ncbi.nlm.nih.gov/pubmed/27376395

doi: 10.1002/adma.201601680 pmid: 27376395
[58]
Saboktakin M, Ye X C, Oh S J, Hong S H, Fafarman A T, Chettiar U K, Engheta N, Murray C B, Kagan C R . ACS Nano, 2012,6:8758. https://www.ncbi.nlm.nih.gov/pubmed/22967489

doi: 10.1021/nn302466r pmid: 22967489
[59]
Zhang W, Ding F, Chou S Y . Adv. Mater., 2012, 24: OP236.
[60]
Shen J, Li Z Q, Chen Y R, Chen X H, Chen Y W, Sun Z, Huang S M . Appl. Surf. Sci., 2013,270:712.
[61]
Zhan S P, Wu X F, Tan C, Xiong J, Hu S J, Hu J S, Wu S B, Gao Y Y, Liu Y X . J. Alloy Compd., 2018,735:372. https://linkinghub.elsevier.com/retrieve/pii/S092583881733904X

doi: 10.1016/j.jallcom.2017.11.147
[62]
Chen G Y, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z P, Song J, Pandey R K, Agren H, Prasad P N, Han G . ACS Nano, 2012,6:8280. https://www.ncbi.nlm.nih.gov/pubmed/22928629

doi: 10.1021/nn302972r pmid: 22928629
[63]
Park W, Lu D W, Ahn S M . Chem. Soc. Rev., 2015,44:2940. https://www.ncbi.nlm.nih.gov/pubmed/25853439

doi: 10.1039/c5cs00050e pmid: 25853439
[64]
Dong B A, Xu S, Sun J A, Bi S, Li D, Bai X, Wang Y, Wang L P, Song H W . J. Mater. Chem., 2011,21:6193. http://xlink.rsc.org/?DOI=c0jm04498a

doi: 10.1039/c0jm04498a
[65]
Liu N, Qin W P, Qin G S, Jiang T, Zhao D . Chem. Commun., 2011,47:7671. https://www.ncbi.nlm.nih.gov/pubmed/21655626

doi: 10.1039/c1cc11179e pmid: 21655626
[66]
Li Z Q, Chen S, Li J J, Liu Q Q, Sun Z, Wang Z B, Huang S M . J. Appl. Phys., 2012,111.
[67]
Sudheendra L, Ortalan V, Dey S, Browning N D, Kennedy I M . Chem. Mater., 2011,23:2987. https://www.ncbi.nlm.nih.gov/pubmed/21709812

doi: 10.1021/cm2006814 pmid: 21709812
[68]
Zhang H, Li Y J, Ivanov I A, Qu Y Q, Huang Y, Duan X F . Angew. Chem. Int. Ed., 2010,49:2865. https://www.ncbi.nlm.nih.gov/pubmed/20235253

doi: 10.1002/anie.200905805 pmid: 20235253
[69]
Kannan P, Rahim F A, Teng X, Chen R, Sun H, Huang L, Kim D H . RSC Adv., 2013,3:7718.
[70]
Kannan P, Rahim F A, Chen R, Teng X, Huang L, Sun H, Kim D H . ACS Appl. Mater. Inter., 2013,5:3508.
[71]
Yuan P, Lee Y H, Gnanasammandhan M K, Guan Z, Zhang Y, Xu Q H . Nanoscale, 2012,4:5132. https://www.ncbi.nlm.nih.gov/pubmed/22790174

doi: 10.1039/c2nr31241g pmid: 22790174
[72]
Rohani S, Quintanilla M, Tuccio S, de Angelis F, Cantelar E, Govorov A O, Razzari L, Vetrone F . Adv. Opt. Mater., 2015,3:1606.
[73]
Qin Y, Dong Z L, Zhou D C, Yang Y, Xu X H, Qiu J B . Opt. Mater. Express, 2016,6:1942.
[74]
Zhang X D, Li B, Jiang M M, Zhang L M, Ma H P . RSC Adv., 2016,6:36528.
[75]
Yin D G, Cao X Z, Zhang L, Tang J X, Huang W F, Han Y L, Wu M H . Dalton Trans., 2015,44:11147. https://www.ncbi.nlm.nih.gov/pubmed/25999289

doi: 10.1039/c5dt01059d pmid: 25999289
[76]
He J J, Zheng W, Ligmajer F, Chan C F, Bao Z Y, Wong K L, Chen X Y, Hao J H, Dai J Y, Yu S F, Lei D Y . Light-Sci. Appl., 2017,6:16217.
[77]
Kang F W, He J J, Sun T Y, Bao Z Y, Wang F, Lei D Y . Adv. Funct. Mater., 2017,27.
[78]
Chen X, Zhou D L, Xu W, Zhu J Y, Pan G C, Yin Z, Wang H, Zhu Y S, Cui S B, Song H W . Sci. Rep., 2017,7.
[79]
Herter B, Wolf S, Fischer S, Gutmann J, Blaesi B, Goldschmidt J C . Opt. Express, 2013,21:A883. https://www.ncbi.nlm.nih.gov/pubmed/24104583

doi: 10.1364/OE.21.00A883 pmid: 24104583
[80]
Liao J Y, Yang Z W, Wu H J, Yan D, Qiu J B, Song Z G, Yang Y, Zhou D C, Yin Z Y . J. Mater. Chem. C, 2013,1:6541.
[81]
Yin Z, Zhu Y S, Xu W, Wang J, Xu S, Dong B, Xu L, Zhang S, Song H W . Chem. Commun., 2013,49:3781. https://www.ncbi.nlm.nih.gov/pubmed/23539518

doi: 10.1039/c3cc40829a pmid: 23539518
[82]
Yang Y D, Zhou P W, Xu W, Xu S, Jiang Y D, Chen X, Song H W . J. Mater. Chem. C, 2016,4:659.
[83]
Xu S, Xu W, Wang Y F, Zhang S, Zhu Y S, Tao L, Xia L, Zhou P W, Song H W . Nanoscale, 2014,6:5859. https://www.ncbi.nlm.nih.gov/pubmed/24752220

doi: 10.1039/c4nr00224e pmid: 24752220
[84]
Liao J Y, Yang Z W, Lai S F, Shao B, Li J, Qiu J B, Song Z G, Yang Y . J. Phys. Chem. C, 2014,118:17992.
[85]
Niu W B, Su L T, Chen R, Chen H, Wang Y, Palaniappan A, Sun H D, Tok A L Y . Nanoscale, 2014,6:817. https://www.ncbi.nlm.nih.gov/pubmed/24257963

doi: 10.1039/c3nr04884e pmid: 24257963
[86]
Wang H, Yin Z, Xu W, Zhou D L, Cui S B, Chen X, Cui H N, Song H W . Nanoscale, 2016,8:10004. https://www.ncbi.nlm.nih.gov/pubmed/27139324

doi: 10.1039/c6nr00180g pmid: 27139324
[87]
Hofmann C L M, Eriksen E H, Fischer S, Richards B S, Balling P, Goldschmidt J C . Opt Exp., 2018,26:7537.
[88]
Su X, Sun X Q, Wu S L, Zhang S F . Nanoscale, 2017,9:7666. https://www.ncbi.nlm.nih.gov/pubmed/28541358

doi: 10.1039/c7nr01172e pmid: 28541358
[89]
Zhu C, Zhou W Y, Fang J J, Ni Y R, Fang L, Lu C H, Xu Z Z, Kang Z T . J. Alloy Compd., 2018,741:337.
[90]
Yin Z, Li H, Xu W, Cui S B, Zhou D L, Chen X, Zhu Y S, Qin G S, Song H W . Adv. Mater., 2016,28:2518. https://www.ncbi.nlm.nih.gov/pubmed/26833556

doi: 10.1002/adma.201502943 pmid: 26833556
[91]
Wang H, Li M C, Yin Z, Zhang T X, Chen X, Zhou D L, Zhu J Y, Xu W, Cui H N, Song H W . ACS Appl. Mater. Inter., 2017,9:37128. https://www.ncbi.nlm.nih.gov/pubmed/28967250

doi: 10.1021/acsami.7b10015 pmid: 28967250
[92]
Chen G Y, Damasco J, Qiu H, Shao W, Ohulchanskyy T Y, Valiev R R, Wu X, Han G, Wang Y, Yang C, Agren H, Prasad P N . Nano Lett., 2015,15:7400. https://www.ncbi.nlm.nih.gov/pubmed/26487489

doi: 10.1021/acs.nanolett.5b02830 pmid: 26487489
[93]
Wang X, Valiev R R, Ohulchanskyy T Y, Agren H, Yang C, Chen G . Chem. Soc. Rev., 2017,46:4150. https://www.ncbi.nlm.nih.gov/pubmed/28621356

doi: 10.1039/c7cs00053g pmid: 28621356
[94]
Zou W Q, Visser C, Maduro J A, Pshenichnikov M S, Hummelen J C . Nat. Photon., 2012,6:560.
[95]
Hong R, Fernandez J M, Nakade H, Arvizo R, Emrick T, Rotello V M . Chem. Commun., 2006,22:2347. https://www.ncbi.nlm.nih.gov/pubmed/16733575

doi: 10.1039/b603988j pmid: 16733575
[96]
Wu X, Lee H, Bilsel O, Zhang Y W, Li Z J, Chen T, Liu Y, Duan C Y, Shen J, Punjabi A, Han G . Nanoscale, 2015,7:18424. https://www.ncbi.nlm.nih.gov/pubmed/26499208

doi: 10.1039/c5nr05437k pmid: 26499208
[97]
Lee J, Yoo B, Lee H, Cha G D, Lee H S, Cho Y, Kim S Y, Seo H, Lee W, Son D, Kang M, Kim H M, Park Y I, Hyeon T, Kim D H . Adv. Mater., 2017,29.
[98]
Garfield D J, Borys N J, Hamed S M, Torquato N A, Tajon C A, Tian B, Shevitski B, Barnard E S, Suh Y D, Aloni S, Neaton J B, Chan E M, Cohen B E, Schuck P J . Nat. Photon., 2018,12:402.
[99]
Chen G Y, Shao W, Valiev R R, Ohulchanskyy T Y, He G S, Agren H, Prasad P N . Adv. Opt. Mater., 2016,4:1760.
[100]
Hazra C, Ullah S, Correales Y E S, Caetano L G, Ribeiro S J L . J. Mater. Chem. C, 2018,6:4777.
[101]
Alyatkin S, Urena-Horno E, Chen B G, Muskens O L, Kanaras A G, Lagoudakis P G . J. Phys. Chem. C, 2018,122:18177.
[102]
Zhou J J, Wen S H, Liao J Y, Clarke C, Tawfik S A, Ren W, Mi C, Wang F, Jin D Y . Nat. Photon., 2018,12:154.
[103]
Zeng S J, Yi Z G, Lu W, Qian C, Wang H B, Rao L, Zeng T M, Liu H R, Liu H J, Fei B, Hao J H . Adv. Funct. Mater., 2014,24:4051.
[104]
Xia A, Zhang X F, Zhang J, Deng Y Y, Chen Q, Wu S S, Huang X H, Shen J . Biomaterials, 2014,35:9167. https://www.ncbi.nlm.nih.gov/pubmed/25108318

doi: 10.1016/j.biomaterials.2014.07.031 pmid: 25108318
[105]
Chen X Q, Tang Y J, Liu A M, Zhu Y D, Gao D, Yang Y, Sun J, Fan H S, Zhang X D . ACS Appl. Mater. Inter., 2018,10:14378. https://www.ncbi.nlm.nih.gov/pubmed/29648442

doi: 10.1021/acsami.8b00409 pmid: 29648442
[106]
Wang C, Xu C L, Xu L G, Sun C Q, Yang D, Xu J T, He F, Gai S L, Yang P P . J. Mater. Chem. B, 2018,6:2597. https://www.ncbi.nlm.nih.gov/pubmed/32254478

doi: 10.1039/c7tb02842c pmid: 32254478
[107]
Hong A R, Kim Y, Lee T S, Kim S, Lee K, Kim G, Jang H S . ACS Appl. Mater. Inter., 2018,10:12331.
[108]
Xu J T, Yang P P, Sun M D, Bi H T, Liu B, Yang D, Gai S L, He F, Lin J . ACS Nano, 2017,11:4133. https://www.ncbi.nlm.nih.gov/pubmed/28320205

doi: 10.1021/acsnano.7b00944 pmid: 28320205
[109]
Sun M Z, Xu L G, Ma W, Wu X L, Kuang H, Wang L B, Xu C L . Adv. Mater., 2016,28:898. https://www.ncbi.nlm.nih.gov/pubmed/26635317

doi: 10.1002/adma.201505023 pmid: 26635317
[110]
Liang Z Q, Wang X C, Zhu W, Zhang P P, Yang Y X, Sun C Y, Zhang J J, Wang X R, Xu Z, Zhao Y, Yang R F, Zhao S L, Zhou L . ACS Appl. Mater. Inter., 2017,9:3497. https://www.ncbi.nlm.nih.gov/pubmed/28067495

doi: 10.1021/acsami.6b14906 pmid: 28067495
[111]
Zhang Y Q, Xu S, Li X P, Zhang J S, Sun J, Tong L L, Zhong H, Xia H P, Hua R N, Chen B J . Sensor. Actuat. B-Chem., 2018,257:829.
[112]
Ding Y L, Qiao H Z, Yang T H, Yin N Q, Li P, Zhao Y, Zhang X D . Opt. Mater., 2017,73:617.
[113]
Khan A F, Yadav R, Mukhopadhya P K, Singh S, Dwivedi C, Dutta V, Chawla S . J. Nanopart. Res., 2011,13:6837. http://link.springer.com/10.1007/s11051-011-0591-9

doi: 10.1007/s11051-011-0591-9
[114]
Ramasamy P, Kim J . Chem. Commun., 2014,50:879.
[115]
Li D Y, Agren H, Chen G Y . Dalton Trans., 2018,47:8526. https://www.ncbi.nlm.nih.gov/pubmed/29388652

doi: 10.1039/c7dt04461e pmid: 29388652
[116]
Xu W, Lee T K, Moon B S, Song H W, Chen X, Chun B, Kim Y J, Kwak S K, Chen P, Kim D H . Adv. Opt. Mater., 2018,6. https://www.ncbi.nlm.nih.gov/pubmed/30800617

doi: 10.1002/adom.201800633 pmid: 30800617
[117]
Park K, Jung K, Kwon S J, Jang H S, Byun D, Han I K, Ko H . Adv. Funct. Mater., 2016,26:7836.
[1] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[2] Jinjun Wu, Zhen Yang, Jianmei Jiao, Pengfei Sun, Quli Fan, Wei Huang. The Synthesis and Biological Applications of Water-Soluble Perylene Diimides [J]. Progress in Chemistry, 2017, 29(2/3): 216-230.
[3] Sun Mengmeng, He Yong, Yang Wantai, Yin Meizhen. Synthesis and Bio-Application of Poly(Ethylene Phosphate) [J]. Progress in Chemistry, 2013, 25(12): 2093-2102.
[4] Chen Mengjun, Yang Wantai, Yin Meizhen* . Synthesis and Applications of Nanoparticles in Biology [J]. Progress in Chemistry, 2012, 24(12): 2403-2414.
[5] Liu Tao, Sun Lining, Liu Zheng, Qiu Yannan, Shi Liyi. Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2012, 24(0203): 304-317.