中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (4): 392-405 DOI: 10.7536/PC190426 Previous Articles   Next Articles

Special Issue: 酶化学

Immobilized Multi-Enzyme Cascade Reactor

Hua Guo1, Lei Zhang1, Xu Dong1, Gangyi Shen1,**(), Junfa Yin2,**()   

  1. 1. Key Laboratory of Ethnomedicine(Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China
    2. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
  • Received: Revised: Online: Published:
  • Contact: Gangyi Shen, Junfa Yin
  • Supported by:
    the National Natural Science Foundation of China(81573834, 21375142); the Fundamental Research Funds for Minzu University of China(2019QNYL26); the Ministry of Science and Technology of China(2016YFA0203102)
Richhtml ( 53 ) PDF ( 1484 ) Cited
Export

EndNote

Ris

BibTeX

Both physiological behaviors and pathological processes of living organisms are related to the synergistic co-action of various enzymes. Inspired by this, a new bionic catalytic technology, immobilized multi-enzyme cascade reactor has been proposed for accelerating the bio-reactions including synthesis, substrate degradation, transformation and recombination. By taking advantages of the good stability, reusability and remarkable high efficiency, the immobilized multi-enzyme cascade reactor has attracted more and more attention in many fields including biological sensing, simulation biology and biological transformation and so on. This review focuses on the art-of-state and progress of immobilized multi-enzyme cascade reactor in recent years. The fundamentals, preparation approaches, advantages, factors affecting the efficiency, and applications of the technology are involved. Its trends in future study are also prospected.

Contents

1 Introduction

2 Basic principles of immobilized multi-enzyme cascade reaction

3 Preparation of immobilized multi-enzyme cascade reactor

3.1 Co-immobilization

3.2 Sequential immobilization

3.3 Spatially partition immobilization

3.4 Spatially addressable immobilization

4 Factors affecting the efficiency of immobilized multi-enzyme cascade

5 Applications of immobilized multi-enzyme cascade reactor

6 Conclusion and outlook

Fig. 1 Schematic illustration of immobilized multi-enzyme cascade reactor
Fig. 2 Schematic illustration of multi-enzyme cascade reaction systems based on the DNA hydrogel[24]:(A) preparation of the DNA hydrogel by TdT-generated X-shaped polymers(X-DNA-An and X-DNA-Tn),(B) illustration of X-shaped polymers incorporated with DNAzyme sequences forming peroxidase-mimicking DNAzyme hydrogel, the bienzyme cascade, and the trienzyme cascade,(C) activation of the β-gal/GOx/DNAzyme cascade. Copyright 2016, ACS
Fig. 3 Schematic illustration of LbL assembled bioanode in a biofuel cell(A) and activation of the INV-GDH cascade reaction for catalyzing oxidation of sucrose(B)[29]. Copyright 2016, ECS
Fig. 4 Three-enzyme cascade bioreactor for rapid digestion of genomic DNA into single nucleosides[30]. Copyright 2018, ACS
Fig. 5 Proposed conversion process of CO2 to CH3OH catalyzed by the GelCSi-based three-enzyme cascade system(A) and preparation of a three-enzyme system based on GelCSi microcapsules(B)[35]. Copyright 2014, ACS
Fig. 6 Schematic illustration of DNA origami unit(A) and a modular DNA origami-based HRP-GOx bienzyme cascade nanoreactor(B)[45]. Copyright 2015, RSC
Fig. 7 Schematic illustration of molecule-level enzyme cascade on 2D surface[47]. Copyright 2017, ACS
Fig. 8 Distance-dependent effect of assembled ZS-XR/G-XDH pairs[66].(A) Time-course profiles of the amount of NADH regenerated by G-XDH when the enzymes were coassembled with interenzyme distances of 10, 54, and 98 nm, and for the free diffusion system with that of 298 nm;(B) Plots of the normalized V ini, the normalized amount of regenerated NADH, and the normalized amount of xylulose produced after 16 h against the interenzyme distances. Copyright 2016, ACS
Fig. 9 Biomimetic βGL-GOx-HRP triple enzymes cascade reaction of subcompartments inside aqueous microconfinements(A), and a simplified cell with a cascade reaction between compartmentalized organelles(B) [77]. Copyright 2018, ACS
Fig. 10 Schematic illustration of an artificial metabolon confined inside PAA nanochannels to mimic the natural enzyme complex systems[82]:(A) the immobilization of bi-enzymes inside the PAA nanochannels,(B) flow system of the artificial metabolon,(C) the cascade enzymatic reaction cycles catalyzed by G6PD and CYP1A1. Copyright 2017, RSC
Fig. 11 Construction of RGO-enzyme-coated tissue-engineered blood vessels for suppressing platelet aggregation and multi-enzymes cascade reaction[83]. Copyright 2015, ACS
[1]
Chen K , Huang X , Kan S , Zhang R K , Arnold F H . Science, 2018,360(6384):71. https://www.sciencemag.org/lookup/doi/10.1126/science.aar4239

doi: 10.1126/science.aar4239
[2]
Nestl B M , Hammer S C , Nebel B A , Hauer B. Angew. Chem. Int. Ed., 2014,53(12):3070. http://doi.wiley.com/10.1002/anie.201302195

doi: 10.1002/anie.201302195
[3]
戈钧(Ge J) . 科学通报(Chin. Sci. Bull.), 2016,(36):3924.
[4]
申刚义(Shen G T), 于婉婷(Yu W T), 刘美蓉(Liu M R), 崔勋(Cui X) . 化学进展(Prog. Chem.), 2013,25(7):1198. 424c96e4-d991-4f35-8ad1-1f66639446ba http://www.progchem.ac.cn//CN/abstract/abstract11144.shtml

doi: 10.7536/PC121161
[5]
许可(Xu K), 吕波(Lu B), 李春(Li C) . 中国科学: 化学(Sci. Chin. Chem.), 2015,(5):429.
[6]
Küchler A , Yoshimoto M , Luginbühl S , Mavelli F , Walde P . Nat. Nanotechnol, 2016,11(5):409. https://doi.org/10.1038/nnano.2016.54

doi: 10.1038/nnano.2016.54
[7]
Kazenwadel F , Franzreb M , Rapp B E . Anal. Methods, 2015,7(10):4030. http://xlink.rsc.org/?DOI=C5AY00453E

doi: 10.1039/C5AY00453E
[8]
Patterson D P , Schwarz B , Waters R S , Gedeon T , Douglas T . ACS Chem. Biol., 2014,9(2):359. 5df4317e-5d32-4ccb-a406-18935c2d8617 http://dx.doi.org/10.1021/cb4006529

doi: 10.1021/cb4006529
[9]
Ji Q , Wang B , Tan J , Zhu L , Li L . Process Biochem., 2016,51(9):1193. http://linkinghub.elsevier.com/retrieve/pii/S1359511316301829

doi: 10.1016/j.procbio.2016.06.004
[10]
Jo S , Wurm F R , Landfester K. ACS Appl. Mater. Interfaes., 2018,10(40):34230.
[11]
Belluati A , Craciun I , Liu J , Palivan C G . Biomacromolecules, 2018,19(10):4023. https://pubs.acs.org/doi/10.1021/acs.biomac.8b01019

doi: 10.1021/acs.biomac.8b01019
[12]
Simon R C , Richter N , Busto E , Kroutil W. . ACS Catal, 2014,4(1):129. 40201a8c-fd6c-4632-9d80-bec5c2418417 http://dx.doi.org/10.1021/cs400930v

doi: 10.1021/cs400930v
[13]
Xia S , Zhao X , Frigovaz B , Zheng W , Kim J , Wang P. . Bioresour. Technol, 2015,182:368. https://linkinghub.elsevier.com/retrieve/pii/S0960852415001133

doi: 10.1016/j.biortech.2015.01.093
[14]
Yin J F , Xu T , Zhang N , Wang H. . Anal. Chem, 2016,88(15):7730. https://pubs.acs.org/doi/10.1021/acs.analchem.6b01682

doi: 10.1021/acs.analchem.6b01682
[15]
Ricca E , Brucher B , Schrittwieser J H. Adv. Synth. Catal., 2011,353(13):2239. 61c4bd1b-64f4-4d9d-a1ba-2ecccda6be57 http://dx.doi.org/10.1002/adsc.201100256

doi: 10.1002/adsc.201100256
[16]
Meller K , Pomastowski P , Grzywiński D , Szumski M , Buszewski B . J. Chromatogr. A, 2016,1440:45. https://linkinghub.elsevier.com/retrieve/pii/S0021967316302151

doi: 10.1016/j.chroma.2016.02.070
[17]
Zhao Y , Wang Y , Zhang X , Kong R , Xia L , Qu F . Talanta, 2016,155:265. https://linkinghub.elsevier.com/retrieve/pii/S0039914016302958

doi: 10.1016/j.talanta.2016.04.056
[18]
Ibarlucea B , Munoz-Berbel X , Ortiz P , Büttgenbach S , Fernández-Sánchez C , Llobera A . Sensor. Actuat. B-Chem., 2016,237:16. https://linkinghub.elsevier.com/retrieve/pii/S092540051630911X

doi: 10.1016/j.snb.2016.06.059
[19]
Lin L , Yan J , Li J . Anal. Chem., 2014,86(21):10546. https://pubs.acs.org/doi/10.1021/ac501983a

doi: 10.1021/ac501983a
[20]
Jeong C Y , Han Y D , Yoon J H , Yoon H C . J Biotechnol., 2014,175(1):7. https://linkinghub.elsevier.com/retrieve/pii/S0168165614000698

doi: 10.1016/j.jbiotec.2014.01.036
[21]
Yu X , Lian W , Zhang J , Liu H . Bioelectron., 2016,80:631. https://linkinghub.elsevier.com/retrieve/pii/S0956566316301178

doi: 10.1016/j.bios.2016.02.010
[22]
Grotzky A , Nauser T , Erdogan H , Schlüter A D , Walde P . J. Am. Chem. Soc., 2012,134(28):11392. 347a7cde-84c6-4e9d-bd05-66035648bab4 http://dx.doi.org/10.1021/ja304837f

doi: 10.1021/ja304837f
[23]
Qu R , Shen L , Qu A , Wang R , An Y , Shi L . ACS Appl. Mater. Interfaces, 2015,7(30):16694. https://pubs.acs.org/doi/10.1021/acsami.5b04398

doi: 10.1021/acsami.5b04398
[24]
Xiang B , He K , Zhu R , Liu Z , Zeng S , Huang Y , Nie Z , Yao S . ACS Appl. Mater. Interfaces, 2016,8(35):22801. https://pubs.acs.org/doi/10.1021/acsami.6b03572

doi: 10.1021/acsami.6b03572
[25]
Yang L , Du J , Ming Y , Lau M Y , Hu J , Han H , Yang O O , Sheng L , Wei W , Wang H , Li X , Shi L , Chen W , Ji C , Lu Y . Nat. Nanotech., 2013,8(3):187. https://doi.org/10.1038/nnano.2012.264

doi: 10.1038/nnano.2012.264
[26]
de Oliveira R F , de Moraes M L , Oliverira O N , Ferreira M . J. Phys. Chem. C, 2011,115(39):19136. https://pubs.acs.org/doi/10.1021/jp207610w

doi: 10.1021/jp207610w
[27]
Palazzo G , Colafemmina G , Iudice C G , Mallardi A . Sensor. Actuat. B-Chem., 2014,202:2173.
[28]
Kang J , Hussain A T , Catt M , Trenell M , Haggett B , Yu E H. Sensor. Actuat. B-Chem., 2014,190(1):535. https://linkinghub.elsevier.com/retrieve/pii/S0925400513010514

doi: 10.1016/j.snb.2013.09.011
[29]
Zhang Y Y , Arugula M A , Williams S T , Minteer S D , Simonian A L . J Electrochemical Soc., 2016,163:449.
[30]
Yin J F , Chen S K , Zhang N , Zhang N , Wang H L. ACS Appl. Mater. Interfaces, 2018,10:21883. https://pubs.acs.org/doi/10.1021/acsami.8b05399

doi: 10.1021/acsami.8b05399
[31]
Vong T H , Schoffelen S , van Dongen S F M , van Beek T A V , Han Z , van Hest J C M Chem. Sci., 2011,2(7):1278. 525c48a1-0ade-46f7-b725-4e16a283a116 http://dx.doi.org/10.1039/c1sc00146a

doi: 10.1039/c1sc00146a
[32]
Mancini R J , Paluck S J , Bat E , Maynard H D . Langmuir, 2016,32(16):4043 https://pubs.acs.org/doi/10.1021/acs.langmuir.6b00560

doi: 10.1021/acs.langmuir.6b00560
[33]
Shi J , Wu Y , Zhang S , Tian Y , Yang D , Jiang Z Y. Chem. Soc. Rev., 2018,47(12):4295. http://xlink.rsc.org/?DOI=C7CS00914C

doi: 10.1039/C7CS00914C
[34]
Zhang L , Shi J , Jiang Z Y , Jiang Y , Qiao S , Jian L I , Wang R , Meng R , Zhu Y , Zheng Y . Green Chemistry, 2011,13(2):300. http://xlink.rsc.org/?DOI=C0GC00432D

doi: 10.1039/C0GC00432D
[35]
Wang X , Zheng L , Shi J , Hong W , Jiang Z , Zhang W , Song X , Ai Q . ACS Catal., 2014,4(3):962. d6660ac5-a4d6-4418-bffb-53e9e464acfb http://dx.doi.org/10.1021/cs401096c

doi: 10.1021/cs401096c
[36]
Shi J , Wang X , Zhang W , Jiang Z Y , Liang Y , Zhu Y , Zhang C. Adv. Funct. Mater., 2013,23(11):1450. http://doi.wiley.com/10.1002/adfm.201202068

doi: 10.1002/adfm.201202068
[37]
Hosta-Rigau L , York-Duran M J , Zhang Y , Goldie K N , Städler B. ACS Appl. Mater. Interfaces, 2014,6(15):12771. https://pubs.acs.org/doi/10.1021/am502743z

doi: 10.1021/am502743z
[38]
Ji X , Su Z , Ping W , Ma G , Zhang S . ACS Catal., 2014,4(12):4548. 308261b3-3c4f-431c-a077-629fddef4230 http://dx.doi.org/10.1021/cs501383j

doi: 10.1021/cs501383j
[39]
Vriezema D M , Aragonès M C , Elemans J A A W , Cornelissen J J L M , Rowan A E , Nolte R J M. Chem.Rev., 105(4):1445.
[40]
Li S , Jiang Q , Liu S , Zhang Y , Tian Y , Song C , Wang J , Zou Y , Anderson G J , Han J Y. Nat. Biotechnol., 2018,36(3):258. http://www.nature.com/articles/nbt.4071

doi: 10.1038/nbt.4071
[41]
贾思思(Jia S S), 晁洁(Chao J), 樊春海(Fan C H), 柳华杰(Liu H L) . 化学进展(Prog. Chem.), 2013,26(5):695.
[42]
Hong F , Zhang F , Liu Y , Yan H . Chem. Rev., 2017,117(20):12584.
[43]
Chao J , Wang J , Wang F , Ouyang X , Kopperger E , Liu H , Li Q , Shi J , Wang L , Hu J , Wang L , Huang W , Simmel F C , Fan C . Nat. Mater., 2019,18(3):273. https://doi.org/10.1038/s41563-018-0205-3

doi: 10.1038/s41563-018-0205-3
[44]
Timm C , Niemeyer C M. Angew.Chem. Int. Ed., 2015,54(23):6745.
[45]
Linko V , Eerikäinen M , Kostiainen M A. Chem. Comm., 2015,51(25):5351. http://xlink.rsc.org/?DOI=C4CC08472A

doi: 10.1039/C4CC08472A
[46]
Fu Y , Zeng D , Jie C , Jin Y , Zhao Z , Liu H , Di L , Ma H , Huang Q , Gothelf K V , Fan C H .J Am. Chem. Soc., 2013,135(2):696. https://pubs.acs.org/doi/10.1021/ja3076692

doi: 10.1021/ja3076692
[47]
Sun L , Gao Y , Xu Y , Chao J , Liu H , Wang L , Li D , Fan C H .J Am. Chem. Soc., 2017,139(48):17525. https://pubs.acs.org/doi/10.1021/jacs.7b09323

doi: 10.1021/jacs.7b09323
[48]
Ge Z , Fu J , Liu M , Jiang S , Andreoni A , Zuo X , Liu Y , Yan H , Fan C H. ACS Appl. Mater. Interfaces, 2019,11(15):13881 https://pubs.acs.org/doi/10.1021/acsami.8b12374

doi: 10.1021/acsami.8b12374
[49]
Delebecque C J , Lindner A B , Silver P A , Aldaye F A . Science, 2011,333(6041):470. 3e1be21d-91ee-4c50-aec9-0493bec26873 http://dx.doi.org/10.1126/science.1203903

doi: 10.1126/science.1203903
[50]
Dueber J E , Wu G C , Malmirchegini G R , Moon T S , Petzold C J , Ullal A V , Prather K L , Keasling J D. Nat. Biotechnol., 2009,27(8):753. https://doi.org/10.1038/nbt.1557

doi: 10.1038/nbt.1557
[51]
You C , Myung S , Zhang Y H P Angew. Chem. Int. Ed., 2012,51(35):8787. http://doi.wiley.com/10.1002/anie.v51.35

doi: 10.1002/anie.v51.35
[52]
Delebecque C J , Lindner A B , Silver P , Aldaye F A . Science, 2011,333:470. 3e1be21d-91ee-4c50-aec9-0493bec26873 http://dx.doi.org/10.1126/science.1203903

doi: 10.1126/science.1203903
[53]
Dueber J E , Wu G C , Malmirchegini G R , Moon T S , Petzold C J , Ullal A V , Keasling J D. Nat. Biotechnol., 2009,27:753. https://doi.org/10.1038/nbt.1557

doi: 10.1038/nbt.1557
[54]
Fan L H , Zhang Z J , Yu X Y , Xue Y X , Tan T W. Proc. Natl. Acad. Sci. USA, 2012,109:13260. http://www.pnas.org/cgi/doi/10.1073/pnas.1209856109

doi: 10.1073/pnas.1209856109
[55]
陈少坤(Chen S K) . 中国科学院大学硕士论文(Master Dissertation of University of Chinese Academy of Sciences), 2018.
[56]
申刚义(Shen G Y). . 固定化酶微反应器—制备与应用(mmobilized enzyme Micro-reactor: Preparation And Application). 北京: 中央民族大学出版社(Beijing: Minzu University of China Press), 2014.
[57]
Kreft O , Prevot M , Möhwald H , Sukhorukov G B. Angew Chem. Int. Ed. Engl., 2010,46(29):5605. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773
[58]
Begum G , Goodwin W B , de Glee B M , Sandhage K H , Kröger N . J. Mater. Chem. B., 2015,3:5232. http://xlink.rsc.org/?DOI=C5TB00333D

doi: 10.1039/C5TB00333D
[59]
Tsitkoc S , Pesenti T , Palacci H , Blanchet J , Hess H . ACS Catal., 2018,8:10721. https://pubs.acs.org/doi/10.1021/acscatal.8b02760

doi: 10.1021/acscatal.8b02760
[60]
Lin J L , Palomec L , Wheeldon I . ACS Catal., 2014,4(2):505. ff7038d0-ab2e-4a1b-86da-ab30f93ef368 http://dx.doi.org/10.1021/cs401009z

doi: 10.1021/cs401009z
[61]
Kou B B , Chai Y Q , Yuan Y L , Yuan R . Anal. Chem., 2017,89(17):9383. https://pubs.acs.org/doi/10.1021/acs.analchem.7b02210

doi: 10.1021/acs.analchem.7b02210
[62]
Wu Z Q , Liu J J , Li J Y , Xu D , Xia X H. Anal. Chem., 2017,89(23):12394.
[63]
Yang Y R , Liu Y , Yan H . Bioconjugate. Chem., 2015,26(8):1381. https://pubs.acs.org/doi/10.1021/acs.bioconjchem.5b00194

doi: 10.1021/acs.bioconjchem.5b00194
[64]
Fu J , Liu M , Liu Y , Woodbury N W , Yan H .J Am. Chem. Soc., 2012,134(12):5516. 7b6840ac-bed6-40e9-a12c-2c74764a2af1 http://dx.doi.org/10.1021/ja300897h

doi: 10.1021/ja300897h
[65]
Chen Y , Ke G , Ma Y , Zhu Z , Liu M , Liu Y , Yan H , Yang C J .J Am. Chem. Soc., 2018,140(28):8996.
[66]
Ngo T A , Nakata E , Saimura M , Morii T .J Am. Chem. Soc., 2016,138(9):3012. https://pubs.acs.org/doi/10.1021/jacs.5b10198

doi: 10.1021/jacs.5b10198
[67]
Chado G R , Stoykovich M P , Kaar J L. ACS Catal., 2016,6(8):5161. https://pubs.acs.org/doi/10.1021/acscatal.6b01302

doi: 10.1021/acscatal.6b01302
[68]
Zhang Y , Qin W , Hess H . ACS Catal., 2017,7(3):20471.
[69]
Franssen M C , Steunenberg P , Scott E L , Zuilhof H , Sanders J P. Chem. Soc. Rev., 2013,42(15):6491. http://xlink.rsc.org/?DOI=c3cs00004d

doi: 10.1039/c3cs00004d
[70]
Zhang J , Zhou X , Wang D , Wang Y , Zhou X , Wang H , Li Q , Tan S . J. Mol. Catal. B-Enzym., 2013,97:80. 145421ca-bc50-4d79-84e9-127d88d5c159 http://dx.doi.org/10.1016/j.molcatb.2013.07.009

doi: 10.1016/j.molcatb.2013.07.009
[71]
Fang Y , Umasankar Y , Ramasamy R P. Biosens. Bioelectron., 2016,81(64):39. https://linkinghub.elsevier.com/retrieve/pii/S0956566316300963

doi: 10.1016/j.bios.2016.01.095
[72]
Fang Y , Bullock H , Lee S A , Sekar N , Eiteman M A , Whitman W B , Ramasamy R P. Biosens. Bioelectron., 2016,85:603. https://linkinghub.elsevier.com/retrieve/pii/S0956566316304900

doi: 10.1016/j.bios.2016.05.060
[73]
Zhang Y , Ren W , Luo H Q , Li N B. Biosens. Bioelectron., 2016,80(1):463. https://linkinghub.elsevier.com/retrieve/pii/S0956566316301221

doi: 10.1016/j.bios.2016.02.016
[74]
Yi H , Xu W , Yuan Y , Bai L , Wu Y , Chai Y , Yuan R . Biosens. Bioelectron., 2014,54(12):415. https://linkinghub.elsevier.com/retrieve/pii/S0956566313008221

doi: 10.1016/j.bios.2013.11.036
[75]
Peng K , Zhao H , Yuan Y , Yuan R , Wu X . Biosens. Bioelectron., 2014,55:366. https://linkinghub.elsevier.com/retrieve/pii/S0956566313008774

doi: 10.1016/j.bios.2013.12.008
[76]
Kim M C , Kwak J , Lee S Y. Actuat. B, 2016,232:744. https://linkinghub.elsevier.com/retrieve/pii/S0925400516305032

doi: 10.1016/j.snb.2016.04.033
[77]
Jo S M , Wurm F R , Landfester K . ACS Appl. Mater. Interfaces 2018,10:34230. https://pubs.acs.org/doi/10.1021/acsami.8b11198

doi: 10.1021/acsami.8b11198
[78]
Godoy-Gallardo M , Labay C , Trikalitis V D , Kempen P J , Larsen J B , Andresen T L , Hosta-Rigau L . ACS Appl. Mater. Interfaces, 2017,9(19):15907. https://pubs.acs.org/doi/10.1021/acsami.6b16275

doi: 10.1021/acsami.6b16275
[79]
Nijemeisland M , Abdelmohsen L K , Huck W T , Wilson D A , van Hest J C ACS Cent. Sci., 2016,2(11):843. https://pubs.acs.org/doi/10.1021/acscentsci.6b00254

doi: 10.1021/acscentsci.6b00254
[80]
Lu J S , Zhang Y J , Li H N , Yu J C , Liu S Q. Chem. Comm., 2014,50:13896. http://xlink.rsc.org/?DOI=C4CC06200K

doi: 10.1039/C4CC06200K
[81]
Lu J S , Cui D , Li H N , Zhang Y J , Liu S Q . Electrochimica Acta, 2015,165:36. https://linkinghub.elsevier.com/retrieve/pii/S0013468615005046

doi: 10.1016/j.electacta.2015.02.183
[82]
Shangguan L , Wei Y , Liu X , Yu J C , Liu S Q. Chem. Comm., 2017,53:2673. http://xlink.rsc.org/?DOI=C7CC00300E

doi: 10.1039/C7CC00300E
[83]
Huo D , Liu G , Li Y , Wang Y , Guan G , Yang M , Wei K , Yang J , Zeng L , Li G , Zeng W , Zhu C . ACS Nano, 2017,11:10964. https://pubs.acs.org/doi/10.1021/acsnano.7b04836

doi: 10.1021/acsnano.7b04836
[84]
Luo J , Meyer A S , Mateiu R V , Pinelo M . Nat. Biotechnol., 2015,32(3):319. https://doi.org/10.1038/nbt.2865

doi: 10.1038/nbt.2865
[85]
Rodríguez Alonso M J , Rodríguez Vico F , Heras-Vázquez F J L , Clemente-Jiménez J M . J Chem. Technol. Biotechnol., 2016,91(7):1972.
[86]
Bornadel A , Hatti-Kaul R , Hollmann F , Kara S . Tetrahedron, 2016,72(46):7222. https://linkinghub.elsevier.com/retrieve/pii/S0040402015302386

doi: 10.1016/j.tet.2015.11.054
[87]
刘强(Liu Q), 许鑫华(Xu X H), 任光雷(Ren G L), 王为(Wang W) . 化学进展(Prog. Chem.), 2006,18:1530. 30b3ce7b-1ff8-4e9d-ba91-69288b6d8259 http://www.progchem.ac.cn//CN/abstract/abstract9370.shtml
[88]
Minteer S D . Biochimica et Biophysica Acta, 2016,1857(5):621.
[89]
Hickey D P , Giroud F , Schmidtke D W , Glatzhofer D T , Minteer S D. ACS Catal., 2015,3(12):2729. https://pubs.acs.org/doi/10.1021/cs4003832

doi: 10.1021/cs4003832
[90]
Xia L , Nguyen K V , Holade Y , Han H , Dooley K , Atanassov P , Banta S , Minteer S D. ACS Energy Lett., 2017,2:1435. https://pubs.acs.org/doi/10.1021/acsenergylett.7b00134

doi: 10.1021/acsenergylett.7b00134
[91]
Lau C , Moehlenbrock M J , Arechederra R L , Falase A , Garcia K , Rincon R , Minteer S D , Banta S , Gupta G , Babanova S. Atanassov P. Int. J. Hydrogen Energ., 2015,40(42):14661. https://linkinghub.elsevier.com/retrieve/pii/S0360319915015931

doi: 10.1016/j.ijhydene.2015.06.108
[92]
Zhang Y , Ge J , Zheng L . ACS Catal., 2015,5(8):4503. https://pubs.acs.org/doi/10.1021/acscatal.5b00996

doi: 10.1021/acscatal.5b00996
[1] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[2] Zhe Liu, Xiaolan Zhang, Ting Cai, Jing Yua, Kunfeng Zhao, Dannong He. Catalytic Oxidation of Formaldehyde over Manganese-Based Catalysts and the Influence of Synergistic Effect [J]. Progress in Chemistry, 2019, 31(2/3): 311-321.
[3] Shen Gangyi, Yu Wanting, Liu Meirong, Cui Xun. Preparation and Application of Immobilized Enzyme Micro-Reactor [J]. Progress in Chemistry, 2013, 25(07): 1198-1207.
[4] Wang Juan, Liu Ying, Zhang Weide. Photoelectrochemical Properties and Applications of Carbon Nanotubes/Semiconductor Nanocomposites [J]. Progress in Chemistry, 2011, 23(8): 1583-1590.
[5] . TiO2/Carbon Nanotube Composites and Their Synergistic Effects on Enhancing the Photocatalysis Efficiency [J]. Progress in Chemistry, 2010, 22(05): 867-876.
[6] . Magnetic Iron Oxide Nanoparticles Immobilized Enzymes [J]. Progress in Chemistry, 2010, 22(04): 593-602.
Viewed
Full text


Abstract

Immobilized Multi-Enzyme Cascade Reactor