中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (9): 1263-1282 DOI: 10.7536/PC190222 Previous Articles   Next Articles

Cationic Antimicrobial Polymers

Jingshi Liang1, Jiaming Zeng1, Junjie Li1, Jueqin She1, Ruixuan Tan2,**(), Bo Liu1,**()   

  1. 1. College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
    2. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received: Online: Published:
  • Contact: Ruixuan Tan, Bo Liu
  • About author:
    ** E-mail: (Ruixuan Tan);
  • Supported by:
    The Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, and the Hunan Provincial Natural Science Foundation(No.2019JJ50641)
Richhtml ( 95 ) PDF ( 2399 ) Cited
Export

EndNote

Ris

BibTeX

Cationic antimicrobial polymers, as a kind of novel antimicrobial material with unique antimicrobial mechanism and high antimicrobial activity, can effectively solve the problem of bacterial resistance, which have caused widespread concern. Although cationic antimicrobial polymers have potent antimicrobial activities, the factors that affect their antimicrobial activities, including the balance of hydrophilicity and hydrophobicity, molecular weight, alkyl chain length, counter ions, and so on, are reviewed. Antimicrobial activity is one of the important factors to evaluate the pros and cons of antimicrobial agents. Thus, it is of great significance for optimizing or developing the safer and more efficient cationic antimicrobial polymers by controlling the factors affecting antimicrobial activity. In this review, multiple antimicrobial strategies of different modes acting on bacteria are firstly summarized. Then, the research progress of natural cationic antibacterial polymers, quaternary ammonium salt polymers, N-halamine polymers, phosphonium and sulfonium salt polymers, guanidine salt polymers and antibacterial hydrogels are listed based on the parameters affecting the properties of cationic antimicrobial polymers. In addition, the antibacterial coatings, membranes or gels fabricated with some cationic antimicrobial are also described. Finally, the current challenges about realizing the clinical application of antibacterial agents and the future perspectives in this field are discussed.

Table 1 Multiple antibacterial strategies
Antibacterial strategy Antibacterial mechanism ref
Antibiotic (1) Interaction with cell wall biosynthesis to prevent cross-linking of peptidoglycan chains;(2) Blocking the protein biosynthesis on ribosomes;(3) Interfering with DNA replication. 9~11
Antibacterial peptide (1) Membrane interaction mechanism targeting bacterial cell membrane;(2) Intracellular mechanism of action targeting intracellular macromolecular substances(enzymes, nucleic acids and heat shock proteins). 12
Photodynamic antibacterial method Cell death by singlet oxygen(1O2) and its reactive oxygen species produced by interaction with cellular components. 13~15
Inorganic antibacterial material (1) Under certain conditions, nanoparticles interact with bacterial cell walls through charge interaction to destroy cell membrane structure;(2) Nanoparticles produce reactive oxygen species;(3) Destroy the surface morphology of bacteria;(4) Anti-fouling ability;(5) High surface area to volume ratio, surface modification process. 16~24
Hydrophilic antibacterial adhesion material Inhibits protein and bacterial adhesion and stain resistance 25~27
Super hydrophobic or "slippery" anti-bacterial
adhesion surface
Prevents surface wetting of water, low surface energy, and excellent adhesion resistance 28, 29
Biomimetic nanostructure antibacterial surface The combination of a layered surface and a low surface free energy provided by surface chemistry provides cleanness and stain resistance. In addition, the surface of the biomimetic nanostructure affects the metabolism of bacterial cells and destroys the morphology of the cells. 30~32
Gas antibacterial method(CO、NO) Inhibition of bacterial respiratory chain and production of adenosine triphosphate, promoting bacterial phagocytosis. 33~37
Scheme. 1 Quaternized β-chitin[41]
Scheme. 2 Structure of chitosan[42]
Scheme. 3 Structure of some chitosan derivatives[62, 63, 64, 65, 66, 67, 68, 69, 70]
Fig. 1 Schematic illustration of the preparation of antibacterial coating[71].(Reprinted from Applied Surface Science, 478, Liang J S, She J Q, He H, Fan Z, Chen S, Li J, Liu B, A new approach to fabricate polyimidazolium salt(PIMS) coatings with efficient antifouling and antibacterial properties, 770~778. Copyright(2019), with permission from Elsevier).
Scheme. 4 Structure of poly(ε-lysine)[72]
Scheme. 5 Polymers affected by chain length[102, 107, 109, 111~114]
Scheme. 6 Cationic polymers with different anions[119, 122, 123]
Scheme. 7 Polymers with the balance of hydrophilicity and hydrophobicity[133~137, 139~141]
Fig. 10 Scheme 8 Polysiloxane quaternary ammonium salts with different molecular weights of epoxy groups[146]
Scheme. 9 Main chain imidazolium salt oligomer[147]
Scheme. 10 Side chain cationic polymer and backbone cationic polymer[148]
Scheme. 11 Structures of amphiphilic polymers[149]
Fig. 2 Structure-activity relationship for amphiphilic polymers[149].(Reprinted with permission from ref[149]. Copyright(2019) American Chemical Society).
Scheme. 12 Chi-HDH-Cl[162]
Scheme. 13 Polymers of phosphonium and phosphonium salt[167, 171, 173~175]
Scheme. 14 Polymers of guanidine salt[181, 183, 185~187, 191]
Scheme. 15 Structures of antibacterial hydrogels[195, 196]
[1]
Whitman W B, Coleman D C, Wiebe W J . Proc. Natl. Acad. Sci. U.S.A, 1998, 95:6578. https://www.ncbi.nlm.nih.gov/pubmed/9618454

doi: 10.1073/pnas.95.12.6578 pmid: 9618454
[2]
Lode H M . Clin. Microbiol., 2009, 15:212. https://JCM.asm.org/content/15/2/212

doi: 10.1128/JCM.15.2.212-215.1982
[3]
McDonnell G, Russel A D . Clin. Microbiol. Rev., 1999, 12:147. https://www.ncbi.nlm.nih.gov/pubmed/9880479

pmid: 9880479
[4]
Siedenbiedel F, Tiller J C . Polymers, 2012, 4:46. http://www.mdpi.com/2073-4360/4/1/46

doi: 10.3390/polym4010046
[5]
Haydar S, Aziz J A . J. Hazard. Mater., 2009, 168:1035. https://www.ncbi.nlm.nih.gov/pubmed/19345491

doi: 10.1016/j.jhazmat.2009.02.140 pmid: 19345491
[6]
Singha P, Locklin J, Handa H . Acta Biomater., 2017, 50:20. https://www.ncbi.nlm.nih.gov/pubmed/27916738

doi: 10.1016/j.actbio.2016.11.070 pmid: 27916738
[7]
Gao D, Feng J, Ma J, Lü B, Lin J, Zhang J . Prog. In. Org. Coat., 2014, 77:1834.
[8]
Timofeeva L, Kleshcheva N . Appl. Microbiol. Biot., 2011, 89:475. https://www.ncbi.nlm.nih.gov/pubmed/20953604

doi: 10.1007/s00253-010-2920-9 pmid: 20953604
[9]
Walsh C . Nature, 2000, 406:775. https://www.ncbi.nlm.nih.gov/pubmed/10963607

doi: 10.1038/35021219 pmid: 10963607
[10]
Williams D H . Nat. Prod. Rep., 1996, 13:469. https://www.ncbi.nlm.nih.gov/pubmed/8972102

doi: 10.1039/np9961300469 pmid: 8972102
[11]
Anderson G J . Emerg. Infect. Dis., 2004, 10:1177.
[12]
Nguyen L T, Haney E F, Vogel H J . Trends. Biotechnol., 2011, 29:464. https://www.ncbi.nlm.nih.gov/pubmed/21680034

doi: 10.1016/j.tibtech.2011.05.001 pmid: 21680034
[13]
Felsher D W . Nat. Rev. Cancer., 2003, 3:375. https://www.ncbi.nlm.nih.gov/pubmed/12724735

doi: 10.1038/nrc1070 pmid: 12724735
[14]
Costa L, Alves E, Carvalho C M, Tome J P, Faustino M A, Neves M G, Tome A C, Cavaleiro J A, Cunha A, Almeida A . Photoch. Photobio. Sci., 2008, 7:415.
[15]
Liu K, Liu Y, Yao Y, Yuan H, Wang S, Wang Z, Zhang X . Angewandte Chemie, 2013, 52:8285. https://www.ncbi.nlm.nih.gov/pubmed/23804550

doi: 10.1002/anie.201303387 pmid: 23804550
[16]
Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A M . Environ. Sci. Technol., 2006, 40:6151. https://www.ncbi.nlm.nih.gov/pubmed/17051814

doi: 10.1021/es060999b pmid: 17051814
[17]
Soenen S J, Rivera-Gil P, Montenegro J M, Parak W J, de Smedt S C, Braeckmans K . Nano Today, 2011, 6:446.
[18]
Nel A E, Madler L, Velegol D, Xia T, Hoek E M, Somasundaran P, Klaessig F, Castranova V, Thompson M . Nat. Mater., 2009, 8:543. https://www.ncbi.nlm.nih.gov/pubmed/19525947

doi: 10.1038/nmat2442 pmid: 19525947
[19]
Mukherjee M, De S . Environ. Sci-Wat Res., 2015, 1:204.
[20]
Damodar R A, You S J, Chou H H . J. Hazard. Mater., 2009, 172:1321. https://www.ncbi.nlm.nih.gov/pubmed/19729240

doi: 10.1016/j.jhazmat.2009.07.139 pmid: 19729240
[21]
Zeng Z, Yu D, He Z, Liu J, Xiao F X, Zhang Y, Wang R, Bhattacharyya D, Tan T T . Sci. Rep-UK., 2016, 6:20142. https://www.ncbi.nlm.nih.gov/pubmed/26832603

doi: 10.1038/srep20142 pmid: 26832603
[22]
Kang S, Pinault M, Pfefferle L D, Elimelech M . Langmuir, 2007, 23:8670. https://www.ncbi.nlm.nih.gov/pubmed/17658863

doi: 10.1021/la701067r pmid: 17658863
[23]
Kang S, Herzberg M, Rodrigues D F, Elimelech M . Langmuir, 2008, 24:6409. https://www.ncbi.nlm.nih.gov/pubmed/18512881

doi: 10.1021/la800951v pmid: 18512881
[24]
Al-Hinai M H, Sathe P, Al-Abri M Z, Dobretsov S, Al-Hinai A T, Dutta J . ACS Omega, 2017, 2:3157. https://www.ncbi.nlm.nih.gov/pubmed/30023686

doi: 10.1021/acsomega.7b00314 pmid: 30023686
[25]
Khoo X, Hamilton P, O’Toole G A, Snyder B D, Kenan D J, Grinstaff M W . J. Am. Chem. Soc., 2009, 131:10992. https://www.ncbi.nlm.nih.gov/pubmed/19621876

doi: 10.1021/ja9020827 pmid: 19621876
[26]
Ham H O, Park S H, Kurutz J W, Szleifer I G, Messersmith P B . J. Am. Chem. Soc., 2013, 135:13015.
[27]
Smith R S, Zhang Z, Bouchard M, Li J, Lapp H S, Brotske G R, Lucchino D L, Weaver D, Roth L A, Coury A, Biggerstaff J, Sukavaneshvar S, Langer R, Loose C . Sci. Transl. Med., 2012, 4:153ra132. https://www.ncbi.nlm.nih.gov/pubmed/23019657

doi: 10.1126/scitranslmed.3004120 pmid: 23019657
[28]
Hu C, Liu S, Li B, Yang H, Fan C, Cui W . Adv. Heal. Mater., 2013, 2:1314.
[29]
Tan R, Xie H, She J, Liang J, He H, Li J, Fan Z, Liu B . Carbon, 2019, 145:359.
[30]
Ivanova E P, Hasan J, Webb H K, Truong V K, Watson G S, Watson J A, Baulin V A, Pogodin S, Wang J Y, Tobin M J, Lobbe C, Crawford R J . Small, 2012, 8:2489. https://www.ncbi.nlm.nih.gov/pubmed/22674670

doi: 10.1002/smll.201200528 pmid: 22674670
[31]
Mitik-Dineva N, Wang J, Truong V K, Stoddart P, Malherbe F, Crawford R J, Ivanova E P . Curr. Microbiol., 2009, 58:268. http://link.springer.com/10.1007/s00284-008-9320-8

doi: 10.1007/s00284-008-9320-8
[32]
Campoccia D, Montanaro L, Agheli H, Sutherland D S, Pirini V, Donati M E, Arciola C R . Int. J. Artif. Organs., 2006, 29:622. https://www.ncbi.nlm.nih.gov/pubmed/16841292

doi: 10.1177/039139880602900612 pmid: 16841292
[33]
De Jong W H, Borm P J A . Int. J. Nanomed., 2008, 3:133.
[34]
Duong H T, Jung K, Kutty S K, Agustina S, Adnan N N, Basuki J S, Kumar N, Davis T P, Barraud N, Boyer C . Biomacromolecules, 2014, 15:2583. https://www.ncbi.nlm.nih.gov/pubmed/24915286

doi: 10.1021/bm500422v pmid: 24915286
[35]
Yepuri N R, Barraud N, Mohammadi N S, Kardak B G, Kjelleberg S, Rice S A, Kelso M J . Chem. Commun., 2013, 49:4791. https://www.ncbi.nlm.nih.gov/pubmed/23603842

doi: 10.1039/c3cc40869h pmid: 23603842
[36]
Hasegawa U, van der Vlies A J, Simeoni E, Wandrey C, Hubbell J A . J. Am. Chem. Soc., 2010, 132:18273. https://www.ncbi.nlm.nih.gov/pubmed/21128648

doi: 10.1021/ja1075025 pmid: 21128648
[37]
van der Vlies A J, Inubushi R, Uyama H, Hasegawa U . Bioconjugate. Chem., 2016, 27:1500. https://www.ncbi.nlm.nih.gov/pubmed/27128363

doi: 10.1021/acs.bioconjchem.6b00135 pmid: 27128363
[38]
Jin J, Lee D, Im H G, Han Y C, Jeong E G, Rolandi M, Choi K C, Bae B S . Adv. Mater., 2016, 28:5169. https://www.ncbi.nlm.nih.gov/pubmed/27146562

doi: 10.1002/adma.201600336 pmid: 27146562
[39]
Yusof N L B M, Wee A, Lim L Y, Khor E . J. Biomed. Mater. Res. A, 2003, 66A:224.
[40]
Kato Y, Onishi H, Machida Y . Curr. Pharm. Biotechno., 2003, 4:303.
[41]
Xu H, Fang Z, Tian W, Wang Y, Ye Q, Zhang L, Cai J . Adv. Mater., 2018: e1801100. https://www.ncbi.nlm.nih.gov/pubmed/29845657

doi: 10.1002/adma.201801100 pmid: 29845657
[42]
Tokura S, Ueno K, Miyazaki S, Nishi N . New Macromolecular Architecture and Functions, 1996, 199.
[43]
Li X, Feng X, Yang S, Fu G, Wang T, Su Z . Carbohyd. Polym., 2010, 79:493. 8f85c371-5292-4cb6-9924-af5f66caf563http://www.sciencedirect.com/science/article/pii/S014486170900366X

doi: 10.1016/j.carbpol.2009.07.011
[44]
Li J, Wu Y, Zhao L Q . Carbohyd. Polym., 2016, 148:200. https://www.ncbi.nlm.nih.gov/pubmed/27185132

doi: 10.1016/j.carbpol.2016.04.025 pmid: 27185132
[45]
Kong M, Chen X G, Liu C S, Liu C G, Meng X H, Yu le J . Colloid. Surface B, 2008, 65:197. 284dde10-8ecb-4cce-be0d-4e4214a363ebhttp://www.sciencedirect.com/science/article/pii/S0927776508001434

doi: 10.1016/j.colsurfb.2008.04.003
[46]
Sudarshan N R, Hoover D G, Knorr D . Food. Biotechnol., 1992, 6:257. http://www.tandfonline.com/doi/abs/10.1080/08905439209549838

doi: 10.1080/08905439209549838
[47]
Benhabiles M S, Salah R, Lounici H, Drouiche N, Goosen M F A, Mameri N . Food. Hydrocolloid., 2012, 29:48. 0bdce028-443a-4f9e-87ef-eac9a75e848chttp://dx.doi.org/10.1016/j.foodhyd.2012.02.013

doi: 10.1016/j.foodhyd.2012.02.013
[48]
Kim K W, Thomas R L, Lee C, Park H J . J. Food. Protect., 2003, 66:1495. https://meridian.allenpress.com/jfp/article/66/8/1495/169045/Antimicrobial-Activity-of-Native-Chitosan-Degraded

doi: 10.4315/0362-028X-66.8.1495
[49]
Younes I, Sellimi S, Rinaudo M, Jellouli K, Nasri M . Int. J. Food. Microbiol., 2014, 185:57. d5f76a88-a2a3-440e-96be-cad30b17d5cehttp://dx.doi.org/10.1016/j.ijfoodmicro.2014.04.029

doi: 10.1016/j.ijfoodmicro.2014.04.029
[50]
Luo L J, Huang C C, Chen H C, Lai J Y, Matsusaki M . Carbohyd. Polym., 2018, 197:375. https://www.ncbi.nlm.nih.gov/pubmed/30007625

doi: 10.1016/j.carbpol.2018.06.020 pmid: 30007625
[51]
Taskın P, Canısag H, Sen M . Radiat. Phys. Chem., 2014, 94:236. https://linkinghub.elsevier.com/retrieve/pii/S0969806X13002168

doi: 10.1016/j.radphyschem.2013.04.007
[52]
Byun S M, No H K, Hong J H, Lee S I, Prinyawiwatkul W . Int. J. Food. Sci. Tech., 2013, 48:136. 9fbf04c2-6efb-482d-8a7d-76938a10809bhttp://dx.doi.org/10.1111/j.1365-2621.2012.03169.x

doi: 10.1111/j.1365-2621.2012.03169.x
[53]
Andres Y, Giraud L, Gerente C, Le Cloirec P . Environ. Technol., 2007, 28:1357. https://www.ncbi.nlm.nih.gov/pubmed/18341146

doi: 10.1080/09593332808618893 pmid: 18341146
[54]
Mellegard H, Strand S P, Christensen B E, Granum P E, Hardy S P . Int. J. Food. Microbiol., 2011, 148:48. 6158fae5-e0cb-4aec-abff-d09df352e7c4http://dx.doi.org/10.1016/j.ijfoodmicro.2011.04.023

doi: 10.1016/j.ijfoodmicro.2011.04.023
[55]
Ardila N, Daigle F, Heuzey M C, Ajji A . J. Food. Sci., 2017, 82:679. https://www.ncbi.nlm.nih.gov/pubmed/28140469

doi: 10.1111/1750-3841.13635 pmid: 28140469
[56]
Chang S H, Lin H T, Wu G J, Tsai G J . Carbohyd. Polym., 2015, 134:74. https://www.ncbi.nlm.nih.gov/pubmed/26428102

doi: 10.1016/j.carbpol.2015.07.072 pmid: 26428102
[57]
Chung Y C, Kuo C L, Chen C C . Bioresource. Technol., 2005, 96:1473. https://linkinghub.elsevier.com/retrieve/pii/S0960852404004183

doi: 10.1016/j.biortech.2004.12.001
[58]
Chung Y . Bioresource. Technol., 2003, 88:179. https://www.ncbi.nlm.nih.gov/pubmed/12618038

doi: 10.1016/s0960-8524(03)00002-6 pmid: 12618038
[59]
Chung Y C, Yeh J Y, Tsai C F . Molecules, 2011, 16:8504. 4fca3793-6ef7-4e6f-9b1e-93dbbd86c147http://dx.doi.org/10.3390/molecules16108504

doi: 10.3390/molecules16108504
[60]
Li B, Wang X, Chen R, Huangfu W, Xie G . Carbohyd. Polym., 2008, 72:287. 49ea4872-339f-4cd3-8cb5-f36117fef570http://www.sciencedirect.com/science/article/pii/S0144861707004365

doi: 10.1016/j.carbpol.2007.08.012
[61]
Tan H, Ma R, Lin C, Liu Z, Tang T . Int. J. Mol. Sci., 2013, 14:1854. http://www.mdpi.com/1422-0067/14/1/1854

doi: 10.3390/ijms14011854
[62]
Li Z, Yang F, Yang R D . Int. J. Biol. Macromol., 2015, 75:378. https://www.ncbi.nlm.nih.gov/pubmed/25666853

doi: 10.1016/j.ijbiomac.2015.01.056 pmid: 25666853
[63]
Upadhyaya L, Singh J, Agarwal V, Tewari R P . Carbohyd. Polym., 2013, 91:452. https://www.ncbi.nlm.nih.gov/pubmed/23044156

doi: 10.1016/j.carbpol.2012.07.076 pmid: 23044156
[64]
Kim C H, Choi K S . J. Ind. Eng. Chem., 1998, 4:19.
[65]
Kurita K, Kojima T, Nishiyama Y, Shimojoh M . Macromolecules, 2000, 33:4711.
[66]
Liu X, Song L, Li L, Li S, Yao K . J. Appl. Polyr. Sci., 2007, 103:3521.
[67]
Suvannasara P, Juntapram K, Praphairaksit N, Siralertmukul K, Muangsin N . Carbohyd. Polym., 2013, 94:244. https://www.ncbi.nlm.nih.gov/pubmed/23544535

doi: 10.1016/j.carbpol.2013.01.039 pmid: 23544535
[68]
Geisberger G, Gyenge E B, Hinger D, Kach A, Maake C, Patzke G R . Biomacromolecules, 2013, 14:1010. https://www.ncbi.nlm.nih.gov/pubmed/23470196

doi: 10.1021/bm3018593 pmid: 23470196
[69]
Eweis M, Elkholy S S, Elsabee M Z . Int. J. Biol. Macromol., 2006, 38:1. https://www.ncbi.nlm.nih.gov/pubmed/16413607

doi: 10.1016/j.ijbiomac.2005.12.009 pmid: 16413607
[70]
Li P, Poon Y F, Li W, Zhu H Y, Yeap S H, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman R W, Kang E T, Mu Y, Li C M, Chang M W, Leong S S, Chan-Park M B, . Nat. Mater., 2011, 10:149. https://www.ncbi.nlm.nih.gov/pubmed/21151166

doi: 10.1038/nmat2915 pmid: 21151166
[71]
Liang J S, She J Q, He H, Fan Z, Chen S, Li J, Liu B . Appl. Surf. Sci., 2019, 478:770.
[72]
Shih I L, Shen M H, Van Y T . Bioresource. Technol., 2006, 97:1148. https://www.ncbi.nlm.nih.gov/pubmed/16551535

doi: 10.1016/j.biortech.2004.08.012 pmid: 16551535
[73]
Zahi M R, El Hattab M, Liang H, Yuan Q P . Food. Chem., 2017, 221:18. https://www.ncbi.nlm.nih.gov/pubmed/27979165

doi: 10.1016/j.foodchem.2016.10.037 pmid: 27979165
[74]
Gallagher A G, McLean K, Stewart R M, Wellings D A, Allison H E, Williams R L . Invest. Ophth. Vis. Sci., 2017, 58:4499. https://www.ncbi.nlm.nih.gov/pubmed/28873175

doi: 10.1167/iovs.17-22301 pmid: 28873175
[75]
Cheng L, Weir M D, Zhang K, Arola D D, Zhou X, Xu H H . J. Dent., 2013, 41:345. https://www.ncbi.nlm.nih.gov/pubmed/23353068

doi: 10.1016/j.jdent.2013.01.004 pmid: 23353068
[76]
Jiao Y, Niu L N, Ma S, Li J, Tay F R, Chen J H . Prog. Polym. Sci., 2017, 71:53.
[77]
Sekhavat P Z, Makvandi P, Ghaemy M . Int. J. Biol. Macromol., 2015, 80:596.
[78]
Belkhir K, Lacroix M, Jamshidian M, Salmieri S, Jegat C, Taha M . Food. Packaging. Shelf., 2017, 12:28.
[79]
Yao C, Li X, Neoh K G, Shi Z, Kang E T . J. Membrane. Sci., 2008, 320:259.
[80]
Li G, Shen J, Zhu Y . J. Appl. Polym. Sci., 1998, 67:1761.
[81]
Li G, Shen J . J. Appl. Polym. Sci., 2000, 78:676.
[82]
Li L, Zhao Y, Zhou H, Ning A, Zhang F, Zhao Z . Tetrahedron Lett., 2017, 58:321.
[83]
Anderson E B, Long T E . Polymer, 2010, 51:2447.
[84]
Aljuhani A, El-Sayed W S, Sahu P K, Rezki N, Aouad M R, Salghi R, Messali M . J. Mol. Liq., 2018, 249:747.
[85]
Muñoz-Bonilla A, Fernández-García M . Prog. Polym. Sci., 2012, 37:281.
[86]
Chemburu S, Corbitt T S, Ista L K, Ji E, Fulghum J, Lopez G P, Ogawa K, Schanze K S, Whitten D G . Langmuir, 2008, 24:11053.
[87]
Wang Y, Tang Y, Zhou Z, Ji E, Lopez G P, Chi E Y, Schanze K S, Whitten D G . Langmuir, 2010, 26:12509.
[88]
Damavandi M, Pilkington L I, Whitehead K A, Wilson-Nieuwenhuis J, McBrearty J, Dempsey-Hibbert N, Travis-Sejdic J, Barker D, Wilson-Nieuwenhuis J . Eur. Polym. J., 2018, 98:368.
[89]
Zhao Y B, Shi L Q, Ji X J, Li J C, Han Z Z, Li S Q, Zeng R C, Zhang F, Wang Z L . J. Colloid Interf. Sci., 2018, 526:43.
[90]
Fortuniak W, Mizerska U, Chojnowski J, Basinska T, Slomkowski S, Chehimi M M, Konopacka A, Turecka K, Werel W . J. Inorg. Organomet. P., 2011, 21:576.
[91]
Pasquier N, Keul H, Heine E, Moeller M, Angelov B, Linser S, Willumeit R . Macromol. Biosci., 2008, 8:903.
[92]
Gao B, Zhang X, Zhu Y . J. Biomat. Sci. Polymer. Edition., 2007, 18:531.
[93]
Gultekinoglu M, Tunc Sarisozen Y, Erdogdu C, Sagiroglu M, Aksoy E A, Oh Y J, Hinterdorfer P, Ulubayram K . Acta Biomater., 2015, 21:44.
[94]
Lin J, Qiu S, Lewis K, Klibanov A M . Biotechnol. Bioeng., 2003, 83:168.
[95]
Yudovin-Farber I, Beyth N, Weiss E I, Domb A J . J. Nanopart. Res., 2009, 12:591.
[96]
Yudovin-Farber I, Golenser J, Beyth N, Weiss E I, Domb A J . J. Nanomater., 2010, 2010:1.
[97]
Pan X, Liu Y, Li Z, Cui S, Gebru H, Xu J, Xu S, Liu J, Guo K . Macromol. Chem. Phys., 2017, 218:1600483.
[98]
Alexis C, Charnay C, Lapinte V, Robin J J . Prog. Org. Coat., 2013, 76:519.
[99]
Stemmelen M, Travelet C, Lapinte V, Borsali R, Robin J J . Polym. Chem-UK., 2013, 4:1445.
[100]
Correia V G, Ferraria A M, Pinho M G, Aguiar-Ricardo A . Biomacromolecules, 2015, 16:3904.
[101]
Correia V G, Bonifacio V D, Raje V P, Casimiro T, Moutinho G, da Silva C L, Pinho M G, Aguiar-Ricardo A . Macromol. Biosci., 2011, 11:1128.
[102]
Ng V W L, Tan J P K, Leong J, Voo Z X, Hedrick J L, Yang Y Y . Macromolecules, 2014, 47:1285.
[103]
Hae Cho C A, Liang C, Perera J, Liu J, Varnava K G, Sarojini V, Cooney R P, McGillivray D J, Brimble M A, Swift S, Jin J . Biomacromolecules, 2018, 19:1389.
[104]
Isik M, Tan J P, Ono R J, Sanchez-Sanchez A, Mecerreyes D, Yang Y Y, Hedrick J L, Sardon H . Macromol. Biosci., 2016, 16:1360.
[105]
Chin W, Yang C, Ng V W L, Huang Y, Cheng J, Tong Y W, Coady D J, Fan W, Hedrick J L, Yang Y Y . Macromolecules, 2013, 46:8797.
[106]
Li M, Liu X, Liu N, Guo Z, Singh P K, Fu S Y . Colloid. Surface. A, 2018, 554:122.
[107]
Engler A C, Shukla A, Puranam S, Buss H G, Jreige N, Hammond P T . Biomacromolecules, 2011, 12:1666.
[108]
Li F, Weir M D, Xu H H . J. Dent. Res., 2013, 92:932.
[109]
Babbs M, Collier H O J, Austin W C, Potter M D, Taylor E P J . J. Pharm. Pharmacol., 1956, 8:110.
[110]
Tischer M, Pradel G, Ohlsen K, Holzgrabe U . ChemMedChem, 2012, 7:22.
[111]
Thiyagarajan D, Goswami S, Kar C, Das G, Ramesh A . Chem. Commun., 2014, 50:7434.
[112]
Gupta A, Landis R F, Li C H, Schnurr M, Das R, Lee Y W, Yazdani M, Liu Y, Kozlova A, Rotello V M . J. Am. Chem. Soc., 2018, 140:12137.
[113]
Qin J, Guo J, Xu Q, Zheng Z, Mao H, Yan F . ACS Appl. Mater. Inter., 2017, 9:10504.
[114]
Zheng Z, Xu Q, Guo J, Qin J, Mao H, Wang B, Yan F . ACS Appl. Mater. Inter., 2016, 8:12684.
[115]
Sharma S K, Chauhan G S, Gupta R, Ahn J H . J. Mater. Sci-Mater. M., 2010, 21:717.
[116]
Chen C Z, Beck-Tan N C, Dhurjati P, van Dyk T K, LaRossa R A, Cooper S L . Biomacromolecules, 2000, 1:473.
[117]
Zhang C, Jiang Y, Ju H, Wang Y, Geng T . J. Mol. Liq., 2017, 241:638.
[118]
Lienkamp K, Madkour A E, Kumar K N, Nusslein K, Tew G N . Chemistry, 2009, 15:11715.
[119]
Kawabata N, Nishiguchi M . Appl. Environ. Microb., 1988, 54:2532.
[120]
Cao Z Q, Mi L, Mendiola J, Ella-Menya J, Zhang L, Xue H, Jiang S Y . Angew. Chem. Int. Ed., 2012, 51:2602.
[121]
Zhang S B, Yang X H, Tang B, Yuan L J, Wang K, Liu X Y, Zhu X L, Li J N, Ge Z C, Chen S G . Chem. Eng. J., 2018, 336:123.
[122]
Panarin E F, Solovskii M V, Zaikina N A, Afinogenov G E . Macromol. Chem. Phys., 1985, 9:25.
[123]
Mizerska U, Fortuniak W, Chojnowski J, Hałasa R, Konopacka A, Werel W . Eur. Polym. J., 2009, 45:779.
[124]
Colak S, Nelson C F, Nüsslein K, Tew G N . Biomacromolecules, 2009, 10:353.
[125]
Palermo E F, Sovadinova I, Kuroda K . Biomacromolecules, 2009, 10:3098.
[126]
Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F . Biofouling, 2011, 27:1017.
[127]
Sambhy V, Peterson B R, Sen A . Angewandte Chemie, 2008, 47:1250.
[128]
Palermo E F, Kuroda K . Biomacromolecules, 2009, 10:1416.
[129]
Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K . Biomacromolecules, 2011, 12:3581.
[130]
Stratton T R, Rickus J L, Youngblood J P . Biomacromolecules, 2009, 10:2550.
[131]
King A, Chakrabarty S, Zhang W, Zeng X, Ohman D E, Wood L F, Abraham S, Rao R, Wynne K J . Biomacromolecules, 2014, 15:456.
[132]
Engler A C, Wiradharma N, Ong Z Y, Coady D J, Hedrick J L, Yang YY . Nano Today., 2012, 7:201.
[133]
Liu R H, Chen X Y, Chakraborty S, Lemke J J, Hayouka Z, Chow C, Welch R A, Weisblum B, Masters K S, Gellman S H . J. Am. Chem. Soc., 2014, 136:4410.
[134]
Liu R H, Suarez J M, Weisblum B, Gellman S H . J. Am. Chem. Soc., 2014, 136:14498.
[135]
Liu R H, Chen X Y, Falk S P, Mowery B P, Karlsson A J, Weisblum B, Palecek S P, Masters K S, Gellman S H . J. Am. Chem. Soc., 2014, 136:4333.
[136]
Yang X, Hu K, Hu G, Shi D, Jiang Y, Hui L, Zhu R, Xie Y, Yang L H . Biomacromolecules, 2014, 15:3267.
[137]
Nederberg F, Zhang Y, Tan J P, Xu K, Wang H, Yang C, Gao S, Guo X D, Fukushima K, Li L, Hedrick J L, Yang Y Y . Nat. Chem., 2011, 3:409.
[138]
Ganewatta M S, Rahman M A, Mercado L, Shokfai T, Decho A W, Reineke T M, Tang C . Bioactivematerials, 2018, 3:186.
[139]
Stratton T R, Howarter J A, Allison B C, Applegate B M, Youngblood J P . Biomacromolecules, 2010, 11:1286.
[140]
Stratton T R, Applegate B M, Youngblood J P . Biomacromolecules, 2011, 12:50.
[141]
Zhou C, Song H, Zhang F, Liu J, Li J, Liu B, Liang J . Polym. Bull., 2018, 1.
[142]
Kuroda K, Caputo G A, DeGrado W F . Chem-Eur. J., 2009, 15:1123.
[143]
Gabriel G J, Maegerlein J A, Nelson C F, Dabkowski J M, Eren T, Nusslein K, Tew G N . Chemistry, 2009, 15:433.
[144]
Li S, Wei D, Guan Y, Zheng A . Eur. Polym. J., 2014, 51:120.
[145]
Geng Z, Finn M G . J. Am. Chem. Soc., 2017, 139:15401.
[146]
Cui X, Qiao C, Wang S, Ding Y, Hao C, Li J Y . Colloid. Polym. Sci., 2015, 293:1971.
[147]
Liu L, Huang Y, Riduan S N, Gao S, Yang Y, Fan W, Zhang Y . Biomaterials, 2012, 33:8625.
[148]
Guo J, Qin J, Ren Y, Wang B, Cui H, Ding Y, Mao H L, Yan F . Polym. Chem-UK., 2018, 9:4611.
[149]
Song A, Walker S G, Parker K A, Sampson N S . ACS Chem. Biol., 2011, 6:590.
[150]
Jiang Z, Liu Y, Li R, Ren X, Huang T S . Polym. Advan. Technol., 2016, 27:460.
[151]
Bastarrachea L J, Goddard J M . Appl. Surf. Sci., 2016, 378:479.
[152]
Kang J, Han J S, Gao Y Y, Gao T Y, Lan S, Xiao L H, Zhang Y L, Gao G, Chokto H, Dong D . ACS Appl. Mater. Inter., 2015, 7:17516.
[153]
Ahmed A E S I, Hay J N, Bushell M E, Wardell J N, Cavalli G . React. Funct. Polym., 2008, 68:1448.
[154]
Zhao L, Yan X, Jie Z, Yang H, Yang S, Liang J . J. Nanopart. Res., 2014, 16:2454.
[155]
Sun Y, Sun G . J. Appl. Polym. Sci., 2002, 84:1592.
[156]
Lin J, Jiang F, Wen J, Lv W, Porteous N, Deng Y, Sun Y . Polymer, 2015, 68:92.
[157]
Kocer H B, Worley S D, Broughton R M, Acevedo O, Huang T S . Ind. Eng. Chem. Res., 2010, 49:11188.
[158]
Kocer H B, Akdag A, Ren X H, Broughton R M, Worley S D, Huang T S . Ind. Eng. Chem. Res., 2008, 47:7558.
[159]
Amiri F, Mesquita M M, Andrews S A . Water. Res., 2010, 44:845.
[160]
Dong A, Huang Z, Lan S, Wang Q, Bao S, Siriguleng , Zhang Y, Gao G, Liu F, Harnoode C . J. Colloid. Interf. Sci., 2014, 413:92.
[161]
Wang Y, Yin M, Lin X, Li L, Li Z, Ren X H, Sun Y . J. Colloid. Interf. Sci., 2019, 533:604.
[162]
Tao B, Shen X, Yuan Z, Ran Q, Shen T, Pei Y, Liu J, He Y, Hu Y, Cai K Y . Colloid. Surface. B, 2018, 170:382.
[163]
Cieniecka-Rosłonkiewicz A, Pernak J, Kubis-Feder J, Ramani A, Robertson A J, Seddon K R . Green Chem., 2005, 7:855.
[164]
Qiu T, Zeng Q, Ao N . Mater. Lett., 2014, 122:13.
[165]
Kanazawa A, Ikeda T, Endo T . J. Polym. Sci. Pol. Chem., 1993, 3:335.
[166]
Kanazawa A, Ikeda T, Endo T . J. Polym. Sci. Pol. Chem., 1993, 31:1441.
[167]
Chen Y, Tan W, Li Q, Dong F, Gu G, Guo Z Y . Int. J. Biol. Macromol., 2018, 113:1273.
[168]
Chang L, Wang J, Tong C, Zhao L, Liu X M . J. Appl. Polym. Sci., 2016, 133.
[169]
Kanazawa A, Ikeda T, Endo T . J. Appl. Polym. Sci., 1994, 53:1237.
[170]
Pugachev M V, Shtyrlin N V, Sapozhnikov S V, Sysoeva L P, Iksanova A G, Nikitina E V, Musin R Z, Lodochnikova O A, Berdnikov E A, Shtyrlin Y G . Bioorgan. Med. Chem., 2013, 21:7330.
[171]
Kanazawa A, Ikeda T, Endo T . J. Polym. Sci. Pol. Chem., 1994, 32:1997.
[172]
Kanazawa A, Ikeda T, Endo T . J. Appl. Polym. Sci., 1994, 53:1245.
[173]
Kanazawa A, Ikeda T, Endo T . J. Polym. Sci. Pol. Chem., 1993, 31:2873.
[174]
Hirayama M . Biocontrol. Sci., 2011, 16:149.
[175]
Hirayama M . Biocontrol. Sci., 2012, 17:27.
[176]
Christen V, Faltermann S, Brun N R, Kunz P Y, Fent K . Sci. Total. Environ., 2017, 586:1204.
[177]
Olmedo G M, Cerioni L, Sepulveda M, Ramallo J, Rapisarda V A, Volentini S I . Food. Microbiol., 2018, 76:128.
[178]
Feng L, Wu F, Li J, Jiang Y, Duan X . Postharvest. Biol. Tec., 2011, 61:160.
[179]
Ikeda T, Yamaguchi H, Tazuke S . Antimicrob. Agents. Ch., 1984, 26:139.
[180]
Ikeda T, Hirayama H, Yamaguchi H, Tazuke S, Watanabe M . Antimicrob. Agents. Ch., 1986, 30:132.
[181]
Broxton P, Woodcock P M, Gilbert P . J. Appl. Microbiol., 1983, 54:345.
[182]
Albert M, Feiertag P, Hayn G, Saf R, Hönig H . Biomacromolecules, 2003, 4:1811.
[183]
Wei D, Ma Q, Guan Y, Hu F, Zheng A N, Zhang X, Teng Z, Jiang H . Mat. Sci. Eng. C., 2009, 29:1776.
[184]
Choi H, Kim K J, Lee D G . Fungal. Biol-UK., 2017, 121:53.
[185]
Locock K E, Michl T D, Valentin J D, Vasilev K, Hayball J D, Qu Y, Traven A, Griesser H J, Meagher L, Haeussler M . Biomacromolecules, 2013, 14:4021.
[186]
Hung N V, Bac N V, Van Chung T, Luong T D . Int. J. Eng. Res. Sci., 2018, 4.
[187]
Escamilla-Garcia E, Alcazar-Pizana A G, Segoviano-Ramirez J C, Del Angel-Mosqueda C, Lopez-Lozano A P, Cardenas-Estrada E, De La, Garza-Ramos M A, Medina-De La Garza C E, Marquez M . Int. J. Microbiol., 2017, 2017:1.
[188]
Landis R F, Li C H, Gupta A, Lee Y W, Yazdani M, Ngernyuang N, Altinbasak I, Mansoor S, Khichi M A S, Sanyal A, Rotello V M . J. Am. Chem. Soc., 2018, 140:6176.
[189]
Zhu D Y, Landis R F, Li C H, Gupta A, Wang L S, Geng Y Y, Gopalakrishnan S, Guo J W, Rotello V M . Nanoscale, 2018, 10:18651.
[190]
Chindera K, Mahato M, Sharma A K, Horsley H, Kloc-Muniak K, Kamaruzzaman N F, Kumar S, McFarlane A, Stach J, Bentin T, Good L, . Sci. Rep-UK., 2016, 6:23121.
[191]
Chin W, Zhong G, Pu Q, Yang C, Lou W, De Sessions P F, Periaswamy B, Lee A, Liang Z C, Ding X, Gao S, Chu C W, Bianco S, Bao C, Tong Y W, Fan W, Wu M, Hedrick J L, Yang Y Y . Nat. Commun., 2018, 9:917.
[192]
Badawy M E I, Rabea E I . Inter. J Carbohyd. Chem., 2011, 2011:1.
[193]
Noppakundilograt S, Sonjaipanich K, Thongchul N, Kiatkamjornwong S . J. Appl. Polym. Sci., 2013, 127:4927.
[194]
Mohamed N A, El-Ghany N A A . Cellulose, 2012, 19:1879.
[195]
Liu S Q, Yang C, Huang Y, Ding X, Li Y, Fan W M, Hedrick J L, Yang Y Y . Adv. Mater., 2012, 24:6484.
[196]
Li Y, Fukushima K, Coady D J, Engler A C, Liu S, Huang Y, Cho J S, Guo Y, Miller L S, Tan J P, Ee P L, Fan W, Yang Y Y, Hedrick J L . Angew. Chem. Int. Edit., 2013, 52:674.
[197]
Zhang C, Ying Z, Luo Q, Du H, Wang Y, Zhang K, Yan S, Li X, Shen Z, Zhu W . J. Polym. Sci. Pol. Chem., 2017, 55:2027.
[198]
Yeo C K, Vikhe Y S, Li P, Guo Z, Greenberg P, Duan H W, Tan N S, Chan-Park M B . ACS Appl. Mater. Inter., 2018, 10:20356.
[199]
Zhou C, Song H, Loh J L C, She J, Deng L, Liu B . J. Biomat. Sci-Polym. E., 2018, 29:1.
[1] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[2] Du Juan, Lu Ying, Wang Yilong, Guo Guiping, Pan Yingjie. Properties and Applications of Janus Nanomaterials [J]. Progress in Chemistry, 2014, 26(12): 2019-2026.
[3] Chen Yangjun, Liu Xiangsheng, Wang Haibo, Wang Yin, Jin Qiao, Ji Jian. Zwitterions in Surface Engineering of Biomedical Nanoparticles [J]. Progress in Chemistry, 2014, 26(11): 1849-1858.
[4] Xu Lina, Ma Peipei, Chen Qiang, Lin Sicong, Shen Jian. Biological Application of Sulfobetaine Methacrylate Polymers [J]. Progress in Chemistry, 2014, 26(0203): 366-374.
[5] . Anticoagulant Biomaterials [J]. Progress in Chemistry, 2010, 22(04): 760-772.
[6] Hu Shengliang Bai Peikang Sun Jing Cao Shirui. Fluorescent Carbon Nanoparticles: Recent Achievements and Technical Challenges [J]. Progress in Chemistry, 2010, 22(0203): 345-351.
[7] Wang Yujiang Tang Liming Yu Jian. Supramolecular Hydrogel Based on Low-Molecular-Weight Gelators: From Structure to Function [J]. Progress in Chemistry, 2009, 21(6): 1312-1324.
[8] Liu Qiong Yang Tingting Gao Qing Yuan Jianjun Cheng Shiyuan. Polymer-Silica Hybrid Materials and Their Applications for Controlled Drug Release [J]. Progress in Chemistry, 2009, 21(12): 2689-2695.
[9] Gong Ming|Yang Shan|Zhang Shiping|Gong Yongkuan**.

Surface Modification of Biomedical Materials with Cell Membrane Mimetic Structures

[J]. Progress in Chemistry, 2008, 20(10): 1628-1634.
Viewed
Full text


Abstract

Cationic Antimicrobial Polymers