中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (6): 882-893 DOI: 10.7536/PC181103 Previous Articles   Next Articles

Sn-Based Light-Absorbing Materials for Perovskite Solar Cells

Xiaoyin Li, Chuancong Zhou, Yinghua Wang, Feifei Ding, Huawei Zhou, Xianxi Zhang**()   

  1. Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
  • Received: Online: Published:
  • Contact: Xianxi Zhang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21171084); Natural Science Foundation of Shandong Province(ZR2016BQ20); Science and Technology Projects for Colleges and Universities in Shandong Province(J17KA097); Science and Technology Projects for Colleges and Universities in Shandong Province(J16LC05); Science and Technology Projects of Liaocheng University.
Richhtml ( 95 ) PDF ( 3708 ) Cited
Export

EndNote

Ris

BibTeX

Due to its excellent optical absorption properties, carrier transport capability and simple fabrication processes, perovskite solar cells have attracted much attention in recent years. High efficiency, pollution-free and low cost have always been the goals pursued in the solar cell field. However, traditional perovskite solar cells have a greater impact on the environment due to the heavy metal element lead in their light absorbing materials, which limits the further commercial application of such perovskite solar cells. Based on this consideration, many scientists are working hard to find novel lead-free perovskite materials. Among numerous lead-free perovskite materials, Sn-based perovskite materials have become the most promising alternatives due to their relatively low toxicity, suitable band gap, and high power conversion efficiency of corresponding devices. Sn-based perovskite solar cells also have some weak points, however. Their energy conversion efficiency and the device stability are much lower compared with Pb-based perovskite solar cells. The device is very sensitive to air during the preparation process. In order to solve these problems, it is imperative to study the factors affecting the performances of Sn-based perovskite materials and devices. The paper introduces various kinds of Sn-based perovskite materials and their application in perovskite solar cells, including organic-inorganic hybrid Sn-based perovskite materials, mixed Sn-Pb perovskite materials and all-inorganic Sn-based perovskite materials. The latest research progress of Sn-based perovskite materials and their corresponding device properties are summarized. In addition, the factors affecting the device performances are discussed, and the future directions of the Sn-based perovskite solar cells are forecast.

Fig. 1 Schematic energy-level diagram of MASnI3-xBrx compounds[16]
Fig. 2 Crystal structure(a、b and c) of the MASn1-xPbxI3 solid solutions[28]
Fig. 3 Schematic energy level diagram of the MASn1-xPbxI3 solid solution perovskites[28]
Fig. 4 Crystal structure of CsSnI3(a), Cs2SnI6(b) and chemical potential-phase map(c)[90]
[1]
Ma S, Cai M, Cheng T, Ding X, Shi X, Alsaedi A, Hayat T, Ding Y, Tan Z A, Dai S . Sci. China Mater., 2018,61(10):1257.
[2]
Tsai C M, Lin Y P, Pola M K, Narra S, Jokar E, Yang Y W, Diau E W G . ACS Energy Lett., 2018,3(9):2077.
[3]
Zuo C, Bolink H J, Han H, Huang J, Cahen D, Ding L . Adv. Sci., 2016,3:1500324. https://www.ncbi.nlm.nih.gov/pubmed/27812475

doi: 10.1002/advs.201500324 pmid: 27812475
[4]
阙亚萍(Que Y P), 翁坚(Weng J), 胡林华(Hu L H), 戴松元(Dai S Y) . 化学进展 (Progress in Chemistry), 2016,28(1):40.
[5]
王露(Wang L), 霍志鹏(Huo Z P), 易锦馨(Yi J X), Alsaedi A, Hayat T, 戴松元(Dai S Y) . 化学进展 (Progress in Chemistry), 2017,29(8):870.
[6]
Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H, Han H . Science, 2018,361:6408.
[7]
Rajagopal A, Yao K, Jen A K . Adv. Mater., 2018,30(32):e1800455. https://www.ncbi.nlm.nih.gov/pubmed/29883006

doi: 10.1002/adma.201800455 pmid: 29883006
[8]
白晓功(Bai X G), 史彦涛(Shi Y T), 王开(Wang K), 董庆顺(Dong Q S), 邢玉瑾(Xing Y J), 张鸿(Zhang H), 王亮(Wang L), 马廷丽(Ma T L) . 物理化学学报 (Acta Physico-Chimica Sinica), 2015,2:285.
[9]
Zhao Y, Zhu K . Chem. Soc. Rev., 2016,45(3):655. https://www.ncbi.nlm.nih.gov/pubmed/26645733

doi: 10.1039/c4cs00458b pmid: 26645733
[10]
Shi Z, Guo J, Chen Y, Li Q, Pan Y, Zhang H, Xia Y, Huang W . Adv. Mater., 2017,29:1605005.
[11]
Nie Z, Yin J, Zhou H, Chai N, Chen B, Zhang Y, Qu K, Shen G, Ma H, Li Y, Zhao J, Zhang X . ACS Appl. Mater. Interfaces, 2016,8:28187.
[12]
Zhang X, Yin J, Nie Z, Zhang Q, Sui N, Chen B, Zhang Y, Qu K, Zhao J, Zhou H . RSC Adv., 2017,7:37419.
[13]
Zhou H, Liu X, He G, Fan L, Shi S, Wei J, Xu W, Yuan C, Chai N, Chen B, Zhang Y, Zhang X, Zhao J, Wei X, Yin J, Tian D . ACS Omega, 2018,3:14021. https://www.ncbi.nlm.nih.gov/pubmed/31458097

doi: 10.1021/acsomega.8b01337 pmid: 31458097
[14]
Shao S, Liu J, Portale G, Fang H, Blake G R, Brink G H, Koster L J, Loi M A . Adv. Energy Mater., 2018,8:1702019.
[15]
Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S . J. Phys. Chem. Lett., 2014,5(6):1004. https://www.ncbi.nlm.nih.gov/pubmed/26270980

doi: 10.1021/jz5002117 pmid: 26270980
[16]
Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G. Nat . Photonics, 2014,8(6):489.
[17]
Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J . Energy Environ. Sci., 2014,7(9):3061.
[18]
Stoumpos C C, Malliakas C D, Kanatzidis M G . Inorg. Chem., 2013,52(15):9019 https://www.ncbi.nlm.nih.gov/pubmed/23834108

doi: 10.1021/ic401215x pmid: 23834108
[19]
Zhang J, Wu T, Duan J, Ahmadi M, Jiang F, Zhou Y, Hu B . Nano Energy, 2017,38:297.
[20]
Giorgi G, Fujisawa J I, Segawa H, Yamashita K . J. Phys. Chem. C, 2014,118(23):12176.
[21]
Borriello I, Cantele G, Ninno D . Phys. Rev. B, 2008,77:235214.
[22]
Umari P, Mosconi E, De Angelis F . Sci. Rep., 2014,4:4467. https://www.ncbi.nlm.nih.gov/pubmed/24667758

doi: 10.1038/srep04467 pmid: 24667758
[23]
Takahashi Y, Hasegawa H, Takahashi Y . J. Solid State Chem., 2013,44(42):39.
[24]
Feng J, Xiao B . J. Phys. Chem. C, 2014,118(34):19655.
[25]
Moyez S A, Roy S J . J. Nanopart. Res., 2018,20:5.
[26]
Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G . J. Am. Chem. Soc., 2016,138(44):14750. https://www.ncbi.nlm.nih.gov/pubmed/27750426

doi: 10.1021/jacs.6b09257 pmid: 27750426
[27]
Rahul, Singh P K, Singh R, Singh V, Bhattacharya B, Khan Z H . Mater. Res. Bull., 2018,97:572.
[28]
Hao F, Stoumpos C C, Chang R P, Kanatzidis M G . J. Am. Chem. Soc., 2014,136(22):8094. https://www.ncbi.nlm.nih.gov/pubmed/24823301

doi: 10.1021/ja5033259 pmid: 24823301
[29]
Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P, Kanatzidis M G . J. Am. Chem. Soc., 2015,137(35):11445. https://www.ncbi.nlm.nih.gov/pubmed/26313318

doi: 10.1021/jacs.5b06658 pmid: 26313318
[30]
Weiss M, Horn J, Richter C, Schlettwein D . Phys. Status Solidi A, 2016,213(4):975.
[31]
Parrott E S, Milot R L, Stergiopoulos T, Snaith H J, Johnston M B, Herz L M . J. Phys. Chem. Lett., 2016,7(7):1321. https://www.ncbi.nlm.nih.gov/pubmed/26990282

doi: 10.1021/acs.jpclett.6b00322 pmid: 26990282
[32]
Yang Z, Wang Y, Liu Y . Appl. Surf. Sci., 2018,441:394. https://linkinghub.elsevier.com/retrieve/pii/S0169433218303817

doi: 10.1016/j.apsusc.2018.02.038
[33]
Gao F, Li C, Qin L, Zhu L, Huang X, Liu H, Liang L, Hou Y, Lou Z, Hu Y, Teng F . RSC Adv., 2018,8:14025.
[34]
Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S, Kanatzidis M G . J. Phys. Chem. Lett., 2016,7(5):776. https://www.ncbi.nlm.nih.gov/pubmed/26877089

doi: 10.1021/acs.jpclett.6b00118 pmid: 26877089
[35]
Hoshi H, Shigeeda N, Dai T . Mater. Lett., 2016,183:391.
[36]
Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J . Energy Environ. Sci., 2014,7(3):982. http://xlink.rsc.org/?DOI=c3ee43822h

doi: 10.1039/c3ee43822h
[37]
Snaith H J . Adv. Funct. Mater., 2010,20:13. https://www.ncbi.nlm.nih.gov/pubmed/22199989

doi: 10.1002/adfm.201000367 pmid: 22199989
[38]
Pisanu A, Mahata A, Mosconi E, Patrini M, Quadrelli P, Milanese C, Angelis F D, Malavasi L . ACS Energy Lett., 2018,3(6):1353.
[39]
Xi J, Wu Z, Jiao B, Dong H, Ran C, Piao C, Lei T, Song T B, Ke W, Yokoyama T, Hou X, Kanatzidis M G . Adv. Mater., 2017,29(23):1606964.
[40]
Zhang M, Lyu M, Yun J H, Noori M, Zhou X, Cooling N A, Wang Q, Yu H, Dastoor P C, Wang L . Nano. Res., 2016,9(6):1570.
[41]
Ke W, Stoumpos C C, Zhu M, Mao L, Spanopoulos I, Liu J, Kontsevoi O Y, Chen M, Sarma D, Zhang Y, Wasielewski M R, Kanatzidis M G . Sci. Adv., 2017,3(8):e1701293. https://www.ncbi.nlm.nih.gov/pubmed/28875173

doi: 10.1126/sciadv.1701293 pmid: 28875173
[42]
Zhao Z, Gu F, Li Y, Sun W, Ye S, Rao H, Liu Z, Bian Z, Huang C . Adv. Sci., 2017,4(11):1700204. https://www.ncbi.nlm.nih.gov/pubmed/29201617

doi: 10.1002/advs.201700204 pmid: 29201617
[43]
Lee S J, Shin S S, Im J, Ahn T K, Noh J H, Jeon N J, Seok S Il, Seo J . ACS Energy Lett., 2018,3:46.
[44]
Koh T M, Krishnamoorthy T, Yantara N, Shi C, Leong W L, Boix P P, Grimsdale A C, Mhaisalkar S G, Mathews N . J. Mater. Chem. A, 2015,3(29):14996.
[45]
Lee S J, Shin S S, Kim Y C, Kim D, Ahn T K, Noh J H, Seo J, Seok S I . J. Am. Chem. Soc., 2016,138(12):3974. https://www.ncbi.nlm.nih.gov/pubmed/26960020

doi: 10.1021/jacs.6b00142 pmid: 26960020
[46]
Liao W, Zhao D, Yu Y, Grice C R, Wang C, Cimaroli A J, Schulz P, Meng W, Zhu K, Xiong R G, Yan Y . Adv. Mater., 2016,28(42):9333. https://www.ncbi.nlm.nih.gov/pubmed/27571446

doi: 10.1002/adma.201602992 pmid: 27571446
[47]
Dang Y, Zhou Y, Liu X, Ju D, Xia S, Xia H, Tao X . Angew. Chem. Int. Ed., 2016,55(10):3447. https://www.ncbi.nlm.nih.gov/pubmed/26889919

doi: 10.1002/anie.201511792 pmid: 26889919
[48]
Ran C, Xi J, Gao W, Yuan F, Lei T, Jiao B, Hou X, Wu Z . ACS Energy Lett., 2018,3:713.
[49]
Lang L, Yang J H, Liu H R, Xiang H J, Gong X G . Phys. Lett. A, 2014,378(3):290.
[50]
Gao X, Daw M S . Phys. Rev. B, 2008,77:033103.
[51]
Im J, Stoumpos C C, Jin H, Freeman A J, Kanatzidis M G . J. Phys. Chem. Lett., 2015,6(17):3503. https://www.ncbi.nlm.nih.gov/pubmed/27120685

doi: 10.1021/acs.jpclett.5b01738 pmid: 27120685
[52]
Feng H J, Paudel T R, Tsymbal E Y, Zeng X C . J. Am. Chem. Soc., 2015,137(25):8227. https://www.ncbi.nlm.nih.gov/pubmed/26011597

doi: 10.1021/jacs.5b04015 pmid: 26011597
[53]
Goyal A, McKechnie S, Pashov D, Tumas W, Schilfgaarde M, Stevanovic V . Chem. Mater., 2018,30:3920.
[54]
Xu P, Chen S, Xiang H J, Gong X G, Wei S H . Chem. Mater., 2014,26(20):6068.
[55]
Berdiyorov G R, Madjet M E, El-Mellouhi F . Sol. Energy Mater. Sol. Cells, 2017,170:8.
[56]
Mosconi E, Umari P, De Angelis F . J. Mater. Chem. A, 2015,3(17):9208.
[57]
Zhang X, Cao W, Wang W, Xu B, Liu S, Dai H, Chen S, Wang K, Sun X W . Nano. Energy, 2016,30:511. https://linkinghub.elsevier.com/retrieve/pii/S2211285516304578

doi: 10.1016/j.nanoen.2016.10.039
[58]
Dimesso L, Das C, Stöhr M, Jaegermann W . Mater. Res. Bull., 2017,85:80.
[59]
Pramchu S, Jaroenjittichai A P, Laosiritaworn Y . Surf. Coat. Technol. A, 2016,306:285.
[60]
Shen Q, Ogomi Y, Chang J, Toyoda T, Fujiwara K, Yoshino K, Sato K, Yamazaki K, Akimoto M, Kuga Y, Katayama K, Hayase S . J. Mater. Chem. A, 2015,3(17):9308. http://xlink.rsc.org/?DOI=C5TA01246E

doi: 10.1039/C5TA01246E
[61]
Zuo F, Williams S T, Liang P W, Chueh C C, Liao C Y, Jen A K . Adv. Mater., 2014,26(37):6454. https://www.ncbi.nlm.nih.gov/pubmed/25123496

doi: 10.1002/adma.201401641 pmid: 25123496
[62]
Lin G, Lin Y, Huang H, Cui R, Guo X, Liu B, Dong J, Guo X, Sun B . Nano Energy, 2016,27:638. https://linkinghub.elsevier.com/retrieve/pii/S2211285516303019

doi: 10.1016/j.nanoen.2016.08.015
[63]
Zhu L, Yuh B, Schoen S, Li X, Aldighaithir M, Richardson B J, Alamer A, Yu Q . Nanoscale, 2016,8(14):7621. https://www.ncbi.nlm.nih.gov/pubmed/26987754

doi: 10.1039/c6nr00301j pmid: 26987754
[64]
Lyu M, Zhang M, Cooling N A, Jiao Y, Wang Q, Yun J H, Vaughan B, Triani G, Evans P, Zhou X, Feron K, Du A, Dastoor P, Wang L . Sci. Bull., 2016,61(20):1558.
[65]
Lee S, Ha T J, Kang D W . Mater. Lett., 2018,227:311.
[66]
Tavakoli M M, Zakeeruddin S M, Grätzel M, Fan Z . Adv. Mater., 2018,30:1705998.
[67]
Wang Y, Fu W, Yan J, Chen J, Yang W, Chen H . J. Mater. Chem. A, 2018,6(27):13090. http://xlink.rsc.org/?DOI=C8TA03054E

doi: 10.1039/C8TA03054E
[68]
Xu X, Chueh C C, Yang Z, Rajagopal A, Xu J, Jo S B, Jen A K Y . Nano Energy, 2017,34:392.
[69]
Li M, Wang Z, Zhuo M, Hu Y, Hu K, Ye Q, Jain S M, Yang Y, Gao X, Liao L . Adv. Mater., 2018,30:1800258.
[70]
Scaife D E, Weller P F, Fisher W G . J. Solid State Chem., 1974,9(3):308.
[71]
Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G . J. Am. Chem. Soc., 2012,134(20):8579. https://www.ncbi.nlm.nih.gov/pubmed/22578072

doi: 10.1021/ja301539s pmid: 22578072
[72]
Chung I, Lee B, He J, Chang R P, Kanatzidis M G . Nature, 2012,485(7399):486. https://www.ncbi.nlm.nih.gov/pubmed/22622574

doi: 10.1038/nature11067 pmid: 22622574
[73]
Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N . Adv. Mater., 2014,26(41):7122. https://www.ncbi.nlm.nih.gov/pubmed/25212785

doi: 10.1002/adma.201401991 pmid: 25212785
[74]
Shum K, Chen Z, Qureshi J, Yu C, Wang J J, Pfenninger W, Vockic N, Midgley J, Kenney J T . Appl. Phys. Lett., 2010,96(22):221903.
[75]
Chen Z, Yu C, Shum K, Wang J J, Pfenninger W, Vockic N, Midgley J, Kenney J T . J. Lumin., 2012,132(2):345.
[76]
Huang L Y, Lambrecht W R L . Phys. Rev. B, 2013,88(16).
[77]
Sabba D, Mulmudi H K, Prabhakar R R, Krishnamoorthy T, Baikie T, Boix P P, Mhaisalkar S, Mathews N . J. Phys. Chem. C, 2015,119(4):1763.
[78]
Jellicoe T C, Richter J M, Glass H F, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Bohm M L . J. Am. Chem. Soc., 2016,138(9):2941. https://www.ncbi.nlm.nih.gov/pubmed/26901659

doi: 10.1021/jacs.5b13470 pmid: 26901659
[79]
Pramchu S, Laosiritaworn Y, Jaroenjittichai A P . Surf. Coat. Technol., 2016,306:159. https://linkinghub.elsevier.com/retrieve/pii/S0257897216304467

doi: 10.1016/j.surfcoat.2016.05.062
[80]
Gupta S, Bendikov T, Hodes G, Cahen D . ACS Energy Lett., 2016,1(5):1028.
[81]
Moghe D, Wang L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R . Nano Energy, 2016,28:469
[82]
Marshall K P, Walton R I, Hatton R A . J. Mater. Chem. A, 2015,3(21):11631.
[83]
Chen L J, Lee C R, Chuang Y J, Wu Z H, Chen C . J. Phys. Chem. Lett., 2016,7(24):5028. https://www.ncbi.nlm.nih.gov/pubmed/27973874

doi: 10.1021/acs.jpclett.6b02344 pmid: 27973874
[84]
Hong W L, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C . Adv. Mater., 2016,28(36):8029. https://www.ncbi.nlm.nih.gov/pubmed/27376676

doi: 10.1002/adma.201601024 pmid: 27376676
[85]
Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W . Adv. Energy Mater., 2016,6(24):1601130.
[86]
Xiao Z, Lei H, Zhang X, Zhou Y, Hosono H, Kamiya T . Bull. Chem. Soc. Jpn., 2015,88(9):1250.
[87]
Zhang J, Li S, Yang P, Liu W, Liao Y . J. Mater. Sci., 2018,53:4378.
[88]
Lee B, Krenselewski A, Baik S I, Seidman D N, Chang R P H . Sustainable Energy Fuels, 2017,1(4):710.
[89]
Takahashi Y, Obara R, Lin Z Z, Takahashi Y, Naito T, Inabe T, Ishibashi S, Terakura K . Dalton Trans., 2011,40(20):5563. https://www.ncbi.nlm.nih.gov/pubmed/21494720

doi: 10.1039/c0dt01601b pmid: 21494720
[90]
Xiao Z, Zhou Y, Hosono H, Kamiya T . Phys. Chem. Chem. Phys., 2015,17(29):18900. https://www.ncbi.nlm.nih.gov/pubmed/26144220

doi: 10.1039/c5cp03102h pmid: 26144220
[91]
Jiang Y, Zhang H, Qiu X, Cao B . Mater. Lett., 2017,199:50.
[92]
Wang A, Yan X, Zhang M, Sun S, Yang M, Shen W, Pan X, Wang P, Deng Z . Chem. Mater., 2016,28(22):8132.
[93]
Zhu W, Xin G, Wang Y, Min X, Yao T, Xu W, Fang M, Shi S, Shi J, Lian J . J. Mater. Chem. A, 2018,6(6):2577.
[94]
Qiu X, Cao B, Yuan S, Chen X, Qiu Z, Jiang Y, Ye Q, Wang H, Zeng H, Liu J, Kanatzidis M G . Sol. Energy Mater. Sol. Cells, 2017,159:227.
[95]
Qiu X, Jiang Y, Zhang H, Qiu Z, Yuan S, Wang P, Cao B . Phys. Status Solidi RRL, 2016,10(8):587.
[96]
Ke J C, Lewis D J, Walton A S, Spencer B F, O’Brien P, Thomas A G, Flavell W R . J. Mater. Chem. A, 2018,6(24):11205.
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[5] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[6] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[7] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[8] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[9] Lei Wang, Qin Zhou, Yuqiong Huang, Bao Zhang, Yaqing Feng. Interface Passivation Strategy: Improving the Stability of Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(1): 119-132.
[10] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.
[11] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.
[12] Que Yaping, Weng Jian, Hu Linhua, Dai Songyuan. Applications of Titanium Dioxide in Perovskite Solar Cells [J]. Progress in Chemistry, 2016, 28(1): 40-50.
[13] Zhang Xinghong, Min Yuqin, Hua Zhengjiang. Epoxy-Based Electronic Materials Containing Nitrogen Heterocyclic Ring:Flame Retardancy [J]. Progress in Chemistry, 2014, 26(06): 1021-1031.