中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (6): 791-799 DOI: 10.7536/PC181040 Previous Articles   Next Articles

Organocatalyzed Atom Transfer Radical Polymerization

Ning Li, Xin Hu**(), Liang Fang, Jiahui Kou, Yaru Ni, Chunhua Lu**()   

  1. College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing Tech University, Nanjing 210009, China
  • Received: Online: Published:
  • Contact: Xin Hu, Chunhua Lu
  • About author:
    ** E-mail: (Xin Hu);
  • Supported by:
    National Natural Science Foundation of China(21604037); National Natural Science Foundation of China(51872138); National Natural Science Foundation of China(51503098); Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD); Qing Lan Project; Six Talent Peaks Project in Jiangsu Province(XCL-029)
Richhtml ( 30 ) PDF ( 829 ) Cited
Export

EndNote

Ris

BibTeX

Atom transfer radical polymerization(ATRP) is one of the most robust and versatile tools for the synthesis of well-defined polymers. The traditional ATRP have to be conducted with high concentration of metal catalyst to compensate for the unavoidable radical termination reaction. A series of ATRP variants have been developed to reduce the metal catalyst concentration to 100 ppm or below. However, the contamination of the metal residue still remains. Organocatalyzed ATRP(O-ATRP) provides a green and reliable route to functionalized well-defined polymer without metal residue. The development of organic photoredox catalyst system is the key point of O-ATRP. This review highlights the recent progress in O-ATRP, including the various organic photoredox catalyst systems and polymerization mechanism. Moreover, the applications of O-ATRP in polymer synthesis are discussed.

Fig. 1 Structures of organocatalysts in metal-free ATRP[59]
Fig. 2 Proposed mechanism for metal-free ATRP with 10-phenylphenothiazine(PTH) photocatalyst[39]
Fig. 3 Structures of phenothiazine catalysts studied in metal-free ATRP[60]
Fig. 4 Metal-free light-mediated ATRP using perylene as an organic photocatalyst[38]
Fig. 5 PC development for O-ATRP(top and mid).A proposed mechanism for ATRP mediated by a PC via photoexcitation to 1PC*, intersystem crossing(ISC)to the triplet state 3PC*, ET to form the radical cation doublet 2PC·+, and back ET to regenerate PC(bottom) and reversibly terminate polymerization[64]
Fig. 6 Geometric reorganization energies and reduction potentials(vs SCE) for 10-phenylphenoxazine, diphenyl dihydrophenazine, and 10-phenylphenothiazine(top). Extinction coefficients at λmax with the visible absorbance spectrum of functionalized phenoxazine(bottom)[65]
Fig. 7 Proposed mechanism for metal-free photo-ATRP mediated by ?uorescein(FL) in the presence of tertiary-amine reducing agent[41]
Fig. 8 Proposed mechanism of photoinduced, metal-free ATRP using dye/amine initiating system[66]
Fig. 9 Proposed mechanism of photomediated ATRP with 4CzIPN organic molecules as catalysts[68]
Fig. 10 Proposed mechanism of photomediated ATRP with benzaldehydic organic molecules as catalysts[42]
Fig. 11 Photomediated flow reactors offer significant advantages to batch systems[82]
Fig. 12 (a) Chemical scheme and conditions for metal-free ATRP using α-bromoisobutyrate-based initiator-functionalized silicon substrates.(b) Illustration of surface-initiated, metal-free ATRP.(c) Plot of brush height as a function of irradiation time using varied light intensities in the benchtop chamber[84]
Fig. 13 Flow setup for the synthesis of a semifluorinated block copolymer[86]
Fig. 14 Schematic stepwise representation of the synthetic route to core/shell PMMA-capped Fe3O4 nanoparticles by metal-free ATRP based on PTH as photocatalyst[89]
[1]
Matyjaszewski K, Tsarevsky N V . J. Am. Chem. Soc., 2014,136(18):6513. https://www.ncbi.nlm.nih.gov/pubmed/24758377

doi: 10.1021/ja408069v pmid: 24758377
[2]
Matyjaszewski K . Macromolecules, 2012,45(10):4015.
[3]
Abreu C M R, Mendonça P V, Serra A C, Popov A V, Matyjaszewski K, Guliashvili T, Coelho J F J . ACS Macro Lett., 2012,1(11):1308.
[4]
Hentschel J, Bleek K, Ernst O, Lutz J, Börner H G . Macromolecules, 2008,41(4):1073.
[5]
Wang M Q, Jiang X W, Luo Y J, Zhang L F, Cheng Z P, Zhu X L . Polym. Chem., 2017,8(38):5918.
[6]
Sciannamea V, Jérôme R, Detrembleur C . Chem. Rev., 2008,108(3):1104. https://www.ncbi.nlm.nih.gov/pubmed/18254646

doi: 10.1021/cr0680540 pmid: 18254646
[7]
Audran G, Bagryanskaya E G, Brémond P, Edeleva M V, Marque S R A, Parkhomenko D A, Rogozhnikova O Y, Tormyshev V M, Tretyakov E V, Trukhin D V, Zhivetyeva S I . Polym. Chem., 2016,7(42):6490. https://www.ncbi.nlm.nih.gov/pubmed/28989533

doi: 10.1039/C6PY01303A pmid: 28989533
[8]
Nicolaÿ R, Kwak Y, Matyjaszewski K . Angewandte Chemie International Edition, 2010,49(3):541. https://www.ncbi.nlm.nih.gov/pubmed/20013835

doi: 10.1002/anie.200905340 pmid: 20013835
[9]
Jakubowski W, Min K, Matyjaszewski K . Macromolecules, 2006,39(1):39.
[10]
Jakubowski W, Matyjaszewski K . Angewandte Chemie International Edition, 2006,45(27):4482. https://www.ncbi.nlm.nih.gov/pubmed/16770821

doi: 10.1002/anie.200600272 pmid: 16770821
[11]
Simakova A, Averick S E, Konkolewicz D, Matyjaszewski K . Macromolecules, 2012,45(16):6371.
[12]
Kwak Y, Magenau A J D, Matyjaszewski K . Macromolecules, 2011,44(4):811. https://www.ncbi.nlm.nih.gov/pubmed/11315920

doi: 10.1002/1529-0131(200104)44:4【-逻*辑*与-】lt;811::AID-ANR137【-逻*辑*与-】gt;3.0.CO;2-F pmid: 11315920
[13]
Matyjaszewski K, Dong H C, Jakubowski W, Pietrasik J, Kusumo A . Langmuir, 2007,23(8):4528. https://www.ncbi.nlm.nih.gov/pubmed/17371060

doi: 10.1021/la063402e pmid: 17371060
[14]
Bhut B V, Conrad K A, Husson S M . J. Membrane Sci., 2012,390/391:43.
[15]
Liu X H, Li Y, Chu Z Y, Fang Y C, Zheng H L . J. Appl. Biomater. Func., 2018,16(1_suppl):163. https://www.ncbi.nlm.nih.gov/pubmed/29618253

doi: 10.1177/2280800018757337 pmid: 29618253
[16]
Konkolewicz D, Magenau A J D, Averick S E, Simakova A, He H K, Matyjaszewski K . Macromolecules, 2012,45(11):4461. https://pubs.acs.org/doi/10.1021/ma300887r

doi: 10.1021/ma300887r
[17]
Cohen-Karni D, Kovaliov M, Ramelot T, Konkolewicz D, Graner S, Averick S . Polym. Chem., 2017,8(27):3992. http://xlink.rsc.org/?DOI=C7PY00669A

doi: 10.1039/C7PY00669A
[18]
Fleischmann S, Rosen B M, Percec V . Journal of Polymer Science Part A: Polymer Chemistry, 2010,48(5):1190. http://doi.wiley.com/10.1002/pola.v48%3A5

doi: 10.1002/pola.v48:5
[19]
Nguyen N H, Percec V . Journal of Polymer Science Part A: Polymer Chemistry, 2011,49(22):4756. http://doi.wiley.com/10.1002/pola.v49.22

doi: 10.1002/pola.v49.22
[20]
Fleischmann S, Percec V . Journal of Polymer Science Part A: Polymer Chemistry, 2010,48(10):2243.
[21]
Zhang Z B, Wang W X, Xia H D, Zhu J, Zhang W, Zhu X L . Macromolecules, 2009,42(19):7360. https://www.ncbi.nlm.nih.gov/pubmed/18939571

doi: 10.1021/es800306m pmid: 18939571
[22]
Percec V, Guliashvili T, Ladislaw J S, Wistrand A, Stjerndahl A, Sienkowska M J, Monteiro M J, Sahoo S . J. Am. Chem. Soc., 2006,128(43):14156. https://www.ncbi.nlm.nih.gov/pubmed/17061900

doi: 10.1021/ja065484z pmid: 17061900
[23]
Guliashvili T, Mendonça P V, Serra A C, Popov A V, Coelho J F J . Chemistry - A European Journal, 2012,18(15):4607.
[24]
Konkolewicz D, Wang Y, Zhong M J, Krys P, Isse A A, Gennaro A, Matyjaszewski K . Macromolecules, 2013,46(22):8749.
[25]
Bortolamei N, Isse A A, Magenau A J D, Gennaro A, Matyjaszewski K . Angewandte Chemie International Edition, 2011,50(48):11391. https://www.ncbi.nlm.nih.gov/pubmed/21922623

doi: 10.1002/anie.201105317 pmid: 21922623
[26]
Park S, Chmielarz P, Gennaro A, Matyjaszewski K . Angewandte Chemie International Edition, 2015,54(8):2388. https://www.ncbi.nlm.nih.gov/pubmed/25565188

doi: 10.1002/anie.201410598 pmid: 25565188
[27]
Discekici E H, Anastasaki A, Kaminker R, Willenbacher J, Truong N P, Fleischmann C, Oschmann B, Lunn D J, Read De Alaniz J, Davis T P, Bates C M, Hawker C J .J. Am. Chem. Soc., 2017,139(16):5939.
[28]
Taskin O S, Yilmaz G, Tasdelen M A, Yagci Y . Polym. Int., 2014,63(5):902.
[29]
Konkolewicz D, Schröder K, Buback J, Bernhard S, Matyjaszewski K . ACS Macro Lett., 2012,1(10):1219.
[30]
Tasdelen M A, Ciftci M, Yagci Y . Macromol. Chem. Phys., 2012,213(13):1391. http://doi.wiley.com/10.1002/macp.201200204

doi: 10.1002/macp.201200204
[31]
Dadashi-Silab S, Doran S, Yagci Y . Chem. Rev., 2016,116(17):10212. https://www.ncbi.nlm.nih.gov/pubmed/26745441

doi: 10.1021/acs.chemrev.5b00586 pmid: 26745441
[32]
Hu X, Li J J, Li H Y, Zhang Z C . J. Polym. Sci. Pol. Chem., 2012,50(15):3126.
[33]
Hu X, Tan S B, Gao G X, Xie Y C, Wang Q Z, Li N, Zhang Z C . J. Polym. Sci. Pol. Chem., 2014,52(23):3429.
[34]
Silvi M, Arceo E, Jurberg I D, Cassani C, Melchiorre P . J. Am. Chem. Soc., 2015,137(19):6120. https://www.ncbi.nlm.nih.gov/pubmed/25748069

doi: 10.1021/jacs.5b01662 pmid: 25748069
[35]
Hu X, Cui G P, Zhu N, Zhai J L, Guo K . Polymers, 2018,10:68.
[36]
Wang G, Chen D, Zhang L H, Wang Y D, Zhao C W, Yan X, He B, Ma Y H, Yang W T . J. Mater. Sci., 2018,53(2):880.
[37]
Xu T C, Zhang L F, Cheng Z P, Zhu X L . RSC Adv., 2017,7(29):17988.
[38]
Miyake G M, Theriot J C . Macromolecules, 2014,47(23):8255.
[39]
Treat N J, Sprafke H, Kramer J W, Clark P G, Barton B E, Read De Alaniz J, Fors B P, Hawker C J . J. Am. Chem. Soc., 2014,136(45):16096. https://www.ncbi.nlm.nih.gov/pubmed/25360628

doi: 10.1021/ja510389m pmid: 25360628
[40]
Pan X C, Lamson M, Yan J J, Matyjaszewski K . ACS Macro Lett., 2015,4(2):192.
[41]
Liu X D, Zhang L F, Cheng Z P, Zhu X L . Polym. Chem., 2016,7(3):689.
[42]
Ma W C, Zhang X H, Ma Y H, Chen D, Wang L, Zhao C W, Yang W T . Polym. Chem., 2017,8(23):3574.
[43]
Miyake G M, Theriot J C, Boyer C A . ACS Macro. Lett., 2018,7(6):662. https://www.ncbi.nlm.nih.gov/pubmed/30705782

doi: 10.1021/acsmacrolett.8b00281 pmid: 30705782
[44]
McCarthy B G, Miyake G M . ACS Macro Lett. 2018,7(8):1016 https://www.ncbi.nlm.nih.gov/pubmed/31827976

doi: 10.1021/acsmacrolett.8b00497 pmid: 31827976
[45]
Du Y, Pearson R M, Lim C, Sartor S M, Ryan M D, Yang H S, Damrauer N H, Miyake G M . Chem. Eur. J. 2017,23(46):10962. https://www.ncbi.nlm.nih.gov/pubmed/28654171

doi: 10.1002/chem.201702926 pmid: 28654171
[46]
McCarthy B G, Pearson R M, Lim C, Sartor S M, Damrauer N H, Miyake G M . J. Am. Chem. Soc. 2018,140(15):5088. https://www.ncbi.nlm.nih.gov/pubmed/29513533

doi: 10.1021/jacs.7b12074 pmid: 29513533
[47]
Theriot J C, McCarthy B G, Lim C, Miyake G M . Macromol. Rapid Commun. 2017,38(13):1700040
[48]
Buss B L, Beck L R, Miyake G M . Polym. Chem., 2018,9(13):1658 https://www.ncbi.nlm.nih.gov/pubmed/29628993

doi: 10.1039/C7PY01833A pmid: 29628993
[49]
Xu Q H, Tian C, Zhang L F, Cheng Z P, Zhu X L . Macromol. Rapid Comm., 2019,40(2):1800327. https://www.ncbi.nlm.nih.gov/pubmed/30027663

doi: 10.1002/marc.201800327 pmid: 30027663
[50]
Tu K, Xu T C, Zhang L F, Cheng Z P, Zhu X L . RSC Adv., 2017,7(39):24040. http://xlink.rsc.org/?DOI=C7RA03103C

doi: 10.1039/C7RA03103C
[51]
Xu T C, Tu K, Cheng J N, Ni Y Y, Zhang L F, Cheng Z P, Zhu X L . Macromol. Rapid Comm., 2018,39(15):1800151. https://www.ncbi.nlm.nih.gov/pubmed/29900627

doi: 10.1002/marc.201800151 pmid: 29900627
[52]
Huang Z C, Zhang L F, Cheng Z P, Zhu X L . Polymers, 2017,9(12):4.
[53]
Wang Y A, Shi Y, Fu Z F, Yang W T . Polym. Chem., 2017,8(39):6073.
[54]
Yang Q, Zhang X H, Ma W C, Ma Y H, Chen D, Wang L, Zhao C W, Yang W T . J. Polym. Sci. Pol. Chem., 2018,56(2):229.
[55]
Yang Q, Zhang X H, Ma Y H, Chen D, Yang W T . J. Polym. Sci. Pol. Chem., 2018,56(18):2072.
[56]
He B, Zhu X, Zhao C W, Ma Y H, Yang W T . Science China Chemistry, 2018,61(12):1600.
[57]
Zhu X, He B, Zhao C W, Ma Y H, Yang W T . Langmuir, 2017,33(22):5577. https://www.ncbi.nlm.nih.gov/pubmed/28514852

doi: 10.1021/acs.langmuir.7b00594 pmid: 28514852
[58]
Hu X, Zhang Y J, Cui G P, Zhu N, Guo K . Macromol. Rapid Comm., 2017,38(21):1700399.
[59]
Pan X C, Fantin M, Yuan F, Matyjaszewski K . Chem. Soc. Rev., 2018,47(14):5457. https://www.ncbi.nlm.nih.gov/pubmed/29868657

doi: 10.1039/c8cs00259b pmid: 29868657
[60]
Pan X C, Fang C, Fantin M, Malhotra N, So W Y, Peteanu L A, Isse A A, Gennaro A, Liu P, Matyjaszewski K . J. Am. Chem. Soc., 2016,138(7):2411. https://www.ncbi.nlm.nih.gov/pubmed/26820243

doi: 10.1021/jacs.5b13455 pmid: 26820243
[61]
Dadashi-Silab S, Pan X C, Matyjaszewski K . Chemistry - A European Journal, 2017,23(25):5972.
[62]
Aydogan C, Yilmaz G, Yagci Y . Macromolecules, 2017,50(23):9115.
[63]
Allushi A, Jockusch S, Yilmaz G, Yagci Y . Macromolecules, 2016,49(20):7785.
[64]
Theriot1 J C, Lim C H, Yang H, Ryan M D, Musgrave C B, Miyake G M . Science, 2016,352(6289):1082. https://www.ncbi.nlm.nih.gov/pubmed/27033549

doi: 10.1126/science.aaf3935 pmid: 27033549
[65]
Pearson R M, Lim C H, McCarthy B G, Musgrave C B, Miyake G M .J. Am. Chem. Soc., 2016,138(35):11399.
[66]
Kutahya C, Aykac F S, Yilmaz G, Yagci Y . Polym. Chem., 2016,7(39):6094.
[67]
Niu T F, Jiang J Y, Li S Y, Ni B Q, Liu X M, Chen M Q . Macromol. Chem. Phys., 2017,218(15):1700169. http://doi.wiley.com/10.1002/macp.v218.15

doi: 10.1002/macp.v218.15
[68]
Huang Z C, Gu Y, Liu X D, Zhang L F, Cheng Z P, Zhu X L . Macromol. Rapid Comm., 2017,38(10):1600461.
[69]
Kutahya C, Allushi A, Isci R, Kreutzer J, Ozturk T, Yilmaz G, Yagci Y . Macromolecules, 2017,50(17):6903.
[70]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K . Chem. Eng. J., 2018,333:43.
[71]
Hu X, Zhu N, Fang Z, Li Z J, Guo K . Eur. Polym. J., 2016,80:177.
[72]
Zhu N, Zhang Z L, Feng W Y, Zeng Y Q, Li Z Y, Fang Z, Zhang K, Li Z J, Guo K . RSC Adv., 2015,5(40):31554.
[73]
Zhu N, Feng W Y, Hu X, Zhang Z L, Fang Z, Zhang K, Li Z J, Guo K . Polymer, 2016,84:391.
[74]
Zhu N, Hu X, Zhang Y J, Zhang K, Li Z J, Guo K . Polym. Chem., 2016,7(2):474. http://xlink.rsc.org/?DOI=C5PY01728A

doi: 10.1039/C5PY01728A
[75]
Zhu N, Liu Y H, Feng W Y, Huang W J, Zhang Z L, Hu X, Fang Z, Li Z J, Guo K . Eur. Polym. J., 2016,80:234
[76]
Hu X, Zhu N, Fang Z, Guo K . Reaction Chemistry & Engineering, 2017,2(1):20.
[77]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K . Macromol. Rapid Comm., 2018,39(8):1700807. https://www.ncbi.nlm.nih.gov/pubmed/29450925

doi: 10.1002/marc.201700807 pmid: 29450925
[78]
Zhu N, Hu X, Fang Z, Guo K . ChemPhotoChem, 2018,2(10):831.
[79]
Huang W J, Zhu N, Liu Y H, Wang J, Zhong J, Sun Q, Sun T, Hu X, Fang Z, Guo K . Chem. Eng. J., 2019,356:592.
[80]
赵婉如(Zhao W R), 胡欣(Hu X), 朱宁(Zhu N), 方正(Fang Z), 郭凯(Guo K) . 化学进展 (Progress in Chemistry), 2018,30(9):1330.
[81]
刘一寰(Liu Y H), 胡欣(Hu X), 朱宁(Zhu N), 郭凯(Guo K) . 化学进展 (Progress in Chemistry), 2018,30(8):1133.
[82]
Ramsey B L, Pearson R M, Beck L R, Miyake G M . Macromolecules, 2017,50(7):2668. https://www.ncbi.nlm.nih.gov/pubmed/29051672

doi: 10.1021/acs.macromol.6b02791 pmid: 29051672
[83]
Ramakers G, Krivcov A, Trouillet V, Welle A, Möbius H, Junkers T . Macromol. Rapid Comm., 2017,38(21):1700423.
[84]
Discekici E H, Pester C W, Treat N J, Lawrence J, Mattson K M, Narupai B, Toumayan E P, Luo Y, McGrath A J, Clark P G, Read De Alaniz J, Hawker C J . ACS Macro Lett., 2016,5(2):258.
[85]
Yan J J, Pan X C, Schmitt M, Wang Z Y, Bockstaller M R, Matyjaszewski K . ACS Macro Lett., 2016,5(6):661.
[86]
Gong H H, Zhao Y C, Shen X W, Lin J, Chen M . Angewandte Chemie International Edition, 2018,57(1):333. https://www.ncbi.nlm.nih.gov/pubmed/29135062

doi: 10.1002/anie.201711053 pmid: 29135062
[87]
Li S P, Mohamed A I, Pande V, Wang H, Cuthbert J, Pan X C, He H K, Wang Z Y, Viswanathan V, Whitacre J F, Matyjaszewski K . ACS Energy Letters, 2018,3(1):20.
[88]
Wang J F, Yuan L, Wang Z K, Rahman M A, Huang Y C, Zhu T Y, Wang R B, Cheng J J, Wang C P, Chu F X, Tang C B . Macromolecules, 2016,49(20):7709.
[89]
Wang X B, You N, Lan F Q, Fu P, Cui Z, Pang X C, Liu M Y, Zhao Q X . RSC Adv., 2017,7(13):7789.
[90]
Yang Y, Liu X G, Ye G, Zhu S, Wang Z, Huo X M, Matyjaszewski K, Lu Y X, Chen J . ACS Appl. Mater. Inter., 2017,9(15):13637. https://www.ncbi.nlm.nih.gov/pubmed/28345352

doi: 10.1021/acsami.7b01863 pmid: 28345352
[1] Wenzhong Zhai, Yufeng He, Bin Wang, Yubing Xiong, Pengfei Song, Rongmin Wang. Fabrication and Applications of Polymeric Janus Particles [J]. Progress in Chemistry, 2017, 29(1): 127-136.
[2] Wang Jianjun, Ding Hengchun, Ni Peihong, Dai Lixing, Gao Qiang. Ferrocene-Based Epoxy Derivatives [J]. Progress in Chemistry, 2015, 27(7): 853-860.
[3] Wang Dongdong, Dong Hua, Lei Xiaoli, Yu Yue, Jiao Bo, Wu Zhaoxin. Iridium Complexes for Triplet Photosensitizer [J]. Progress in Chemistry, 2015, 27(5): 492-502.
[4] Li Yang, Niu Junfeng, Zhang Chi, Wang Zhengzao, Zheng Mengyuan, Shang Enxiang. Photoinduced Toxic Mechanism of Metallic Nanoparticles toward Bacteria in Water [J]. Progress in Chemistry, 2014, 26(0203): 436-449.
[5] Xiong Xingquan, Tang Zhongke, Cai Lei. Synthesis of Functional Polymers via Combination of Thiol-Based Click Reactions with RAFT Polymerization [J]. Progress in Chemistry, 2012, (9): 1751-1764.
[6] You Shusen, Yang Wantai, Yin Meizhen. Synthesis and Applications of Stimulus-Responsive Functional Polymers [J]. Progress in Chemistry, 2012, 24(11): 2198-2211.
[7] Xu Yuanhong, Xiong Xingquan, Cai Lei, Tang Zhongke, Ye Zhangji. Thiol-Ene Click Chemistry [J]. Progress in Chemistry, 2012, 24(0203): 385-394.
[8] Yang Zhenglong, Chen Qiuyun, Zhou Dan, Bu Yilong. Synthesis of Functional Polymer Materials via Thiol-Ene/Yne Click Chemistry [J]. Progress in Chemistry, 2012, 24(0203): 395-404.
[9] Qiu Suyan, Gao Sen, Lin Zhenyu, Chen Guonan. Advances in Click Chemistry [J]. Progress in Chemistry, 2011, 23(4): 637-648.
[10] . Photoinduced Intramolecular Energy Transfer in Dendrimers [J]. Progress in Chemistry, 2010, 22(10): 2033-2052.
[11]

Yan Qiang, Yuan Jinying**, Kang Yan, Yuan Weizhong

. Application of Linkage Chemistry in Polymer-Conjugation System [J]. Progress in Chemistry, 2008, 20(12): 1972-1979.
[12] Zhu Lili|Chen Zhengguo**|Luo Chuan|Zhang Meng. Ionic Liquids Functional Polymers [J]. Progress in Chemistry, 2008, 20(0708): 1143-1150.
[13] Xu Wanxian|Yin Ruoyuan|Lin Li|Yu Yanlei**. Stimuli-Responsive Deformation of Liquid-Crystalline Elastomers [J]. Progress in Chemistry, 2008, 20(01): 140-147.
[14] Hu Jinglei,Wang Rong,Zhou Dongshan|Xue Gi**. Left-Handed Materials and Negative Refraction [J]. Progress in Chemistry, 2007, 19(05): 813-819.
[15] Gong Haofei,LüQing,Liu Minghua*. Progress in Interfacial Photochemical Reactions [J]. Progress in Chemistry, 2001, 13(06): 420-.