中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (6): 872-881 DOI: 10.7536/PC181017 Previous Articles   Next Articles

Noble Metal Nanoparticles Produced by Microorganism

Rui Bai1,2, Xiaochun Tian1, Shuhua Wang1,2, Weifu Yan1, Haiyin Gang1,3, Yong Xiao1,**()   

  1. 1.CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
  • Received: Online: Published:
  • Contact: Yong Xiao
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(51478451); National Natural Science Foundation of China(51878640); Youth Innovation Promotion Association of Chinese Academy of Sciences(2018344)
Richhtml ( 11 ) PDF ( 746 ) Cited

Metal nanoparticles have been widely applied in many fields,including materials, catalysis, medicine, environment, etc. Furthermore, nanoparticles from noble metal, such as gold, silver, platinum, palladium, possess the ability of increasing the efficiency of catalytic reaction. Therefore, the synthesis of noble metal nanoparticles by microorganisms has attracted the attention of many researchers. Although traditional physical and chemical methods can synthesize nanoparticles efficiently and controllably, these methods are complicated and expensive, in addition to the wide use of hazardous chemicals. Therefore, exploring energy-saving, environmentally friendly and sustainable green synthesis method for synthesizing nano-materials is continuously attracting interests in this field. The microbial synthesis of noble metal nanoparticles conforms to the requirements of green synthesis technology, and researches have shown that many microorganisms can convert metal ions into nano-materials. Besides, microorganisms can be grown in mild condition cheaply and fast, so microbial synthesis has been widely concerned in the field of nanometer research. This review summarizes progress of microbial synthesis of noble metal nanoparticles, including the possible synthesis mechanisms and the control of size and shape. Meanwhile, the specific applications of microbial sourced nanoparticles in medicine, catalysis, biosensing and environment are discussed, and the future development of microbial nanomaterials synthesis is further prospected.

Fig. 1 TEM images of a Shewanella oneidensis MR-1 cell(A) before and (B) after the bio-reduction of Pd(Ⅱ)[19].Copyright 2018, Royal Society of Chemistry.
Table 1 List of the microorganisms employed for the synthesis of metal nanoparticles and nanoparticles synthesized
Microbial species Nanoparticle type Size(nm) Shape Way of
synthesis
ref
Bacteria
Rhodopseudomonas capsulata Au 10-20 Spherical Extracellular 45
Rhodococcus sp. Au 5-15 Intracellular 46
Bacillus subtilis 168 Au 5-25 Octahedral Intracellular 15
Bacillus methylotrophicus Ag 10-30 Spherical Extracellular 47
Shewanella algae Pt ~5 Intracellular 48
Shewanella oneidensis MR-1 Pd ~6.2 Spherical Intracellular 19
Thermomonospora sp. Au ~8 Spherical Extracellular 49
Streptomyces fulvissimus Au 20-50 Spherical, Triangular Extracellular 21
Streptomyces sp. LK3 Ag ~5 Spherical 50
Pseudomonas deceptionensis Ag 10-30 Spherical Extracellular 51
Pseudomonas stutzeri up to 200 Triangular, Hexagonal, Spherical Periplasmic space 52
Pseudomonas stutzeri AG259 Ag 35-46 Spherical Extracellular 8
Plectonema boryanum UTEX 485 Pt 30-300 Spherical, Chains, Dendritic 53
Desulfovibrio desulfuricans Pd ~50 Intracellular 54
Fungi
Fusarium oxysporum Au 20-40 Spherical, Triangular Extracellular 55
Fusarium semitectum Ag, Au-Ag 10-60 Spherical Extracellular 27
Fusarium xysporum sp. Pt 10-50 Triangle, Hexagons, Square, Extracellular 56
Verticillium sp. Au 12-28 Spherical Intracellular 23
Volvariella volvacea Au, Ag, Au-Ag 20-150 Spherical, Hexagonal Extracellular 57
Cell filtrate
Bacillus licheniformis Ag ~40 58
Duddingtonia flagrans Ag 11-38 Spherical 30
Nigrospora oryzae Au 6-18 Spherical, Triangular 33
Pseudomonas aeruginosa Au 15-30 Spherical 31
Rhodopseudomonas capsulata Au 10-20 Spherical, Nanowires 32
Staphylococcus aureus Ag 160-180 Spherical 59
Fig. 2 Mechanism of microbial synthesis of nanoparticles[64]. Copyright 2016, Springer Nature.
Fig. 3 Schematic diagram of microbial synthesis of nanoparticles by Streptomyces sp. LK3[65]
Fig. 4 Hypothetical mechanisms of silver nanoparticle biosynthesis by Fusarium oxysporum[70].Reproduced with permission from BioMed Central Ltd.
Fig. 5 Schematic diagram of biological sensor for detecting vanillin. WE: Glassy carbon electrode; RE: Saturated calomel electrode; CE: Platinum wire;CDA: Cellulose diacetate; GC: Glassy carbon electrode
[1]
Marcial M M, Pleixats R . Acc. Chem. Res., 2003,36(8):638. https://www.ncbi.nlm.nih.gov/pubmed/12924961

doi: 10.1021/ar020267y pmid: 12924961
[2]
Kramer N, Birk H, Jorritsma J, Schonenberger C . Appl. Phys. Lett., 1995,66(11):1325. http://aip.scitation.org/doi/10.1063/1.113230

doi: 10.1063/1.113230
[3]
Silvis C N, Hagen C W, Kruit P, Maj V S, Groen H B . Appl. Phys. Lett., 2003,82(20):3514.
[4]
Wang X, Zhuang J, Peng Q, Li Y . Nature, 2005,437(7055):121. https://www.ncbi.nlm.nih.gov/pubmed/16136139

doi: 10.1038/nature03968 pmid: 16136139
[5]
Zhang S . Nat. Biotechnol., 2003,21(10):1171. https://www.ncbi.nlm.nih.gov/pubmed/14520402

doi: 10.1038/nbt874 pmid: 14520402
[6]
Oxana K, Rasika D H, Boris K, Betsabee O P, Victor J P . Trends Biotechnol., 2013,31(4):240. https://www.ncbi.nlm.nih.gov/pubmed/23434153

doi: 10.1016/j.tibtech.2013.01.003 pmid: 23434153
[7]
Cueva M, Horsfall L . Microb. Biotechnol., 2017,10(5):1212. https://www.ncbi.nlm.nih.gov/pubmed/28771979

doi: 10.1111/1751-7915.12788 pmid: 28771979
[8]
Tanja K J, Joerger R, Olsson E, Granqvist C G . Trends Biotechnol., 2001,19(1):15. https://www.ncbi.nlm.nih.gov/pubmed/11146098

doi: 10.1016/s0167-7799(00)01514-6 pmid: 11146098
[9]
Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S R, Khan M I, Parishcha R, Ajaykumar P V, Alam M, Kumar R, Sastry M . Nano Lett., 2001,1(10):515.
[10]
Kannan B N, Natarajan S . Adv. Colloid Interface Sci., 2010,156(1):1.
[11]
Mandal D, Bolander M E, Mukhopadhyay D, Sarkar G, Mukherjee P . Appl. Microbiol. Biotechnol., 2006,69(5):485. https://www.ncbi.nlm.nih.gov/pubmed/16317546

doi: 10.1007/s00253-005-0179-3 pmid: 16317546
[12]
Mohanpuria P, Rana N, Yadav S . J. Nanopart. Res., 2008,10(3):507.
[13]
Hulkoti N, Taranath T . Colloid Surf. B -Biointerfaces, 2014,121(9):474. https://linkinghub.elsevier.com/retrieve/pii/S0927776514002628

doi: 10.1016/j.colsurfb.2014.05.027
[14]
Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E, Winge D R . Nature, 1989,338(6216):596. https://www.ncbi.nlm.nih.gov/pubmed/2648161

doi: 10.1038/338594a0 pmid: 2648161
[15]
Southam G, Beveridge T J . Geochim. Cosmochim. Acta, 1994,58(20):4517.
[16]
Reith F, Etschmann B, Grosse C, Moors H, Benotmane M A, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Gema M C, George G, Nies D H, Mergeay M, Pring A, Southam G, Brugger J . Proc. Natl. Acad. Sci. U. S. A., 2009,106(42):17757. https://www.ncbi.nlm.nih.gov/pubmed/19815503

doi: 10.1073/pnas.0904583106 pmid: 19815503
[17]
Sharma V K, Yngard R A, Lin Y . Adv. Colloid Interface Sci., 2009,145(1):83.
[18]
Klaus T, Joerger R, Olsson E, Granqvist C G . Proc. Natl. Acad. Sci. U. S. A., 1999,96(24):13611. https://www.ncbi.nlm.nih.gov/pubmed/10570120

doi: 10.1073/pnas.96.24.13611 pmid: 10570120
[19]
Wu R, Tian X, Xiao Y, Ulstrup J, Christensen H E M, Zhao F, Zhang J . J. Mater. Chem. A, 2018,6(12):10555. http://xlink.rsc.org/?DOI=C8TA90130A

doi: 10.1039/C8TA90130A
[20]
Corte S D, Hennebel T, Fitts J, Sabbe T, Bliznuk V, Verschuere S, Lelie D, Verstraete W, Boon N . Environ. Sci. Technol., 2011,45(19):8506. https://www.ncbi.nlm.nih.gov/pubmed/21877727

doi: 10.1021/es2019324 pmid: 21877727
[21]
Nejad M S, Hosein S B . Nanomedicine-UK, 2014,2(2):153.
[22]
Dehnad A, Hamedi J, Derakhshan F K, Abuşov R . IEEE Trans. Nanobiosci., 2015,14(4):393. http://ieeexplore.ieee.org/document/7008573/

doi: 10.1109/TNB.2014.2377232
[23]
Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S R, Khan M I, Ramani R, Parischa R, Ajayakumar P V, Alam M, Sastry M, Kumar R . Angew. Chem. Int. Edit., 2001,40(19):3585. https://www.ncbi.nlm.nih.gov/pubmed/11592189

doi: 10.1002/1521-3773(20011001)40:19【-逻*辑*与-】lt;3585::aid-anie3585【-逻*辑*与-】gt;3.0.co;2-k pmid: 11592189
[24]
Gericke M, Pinches A . Gold Bull., 2006,39(1):22. a517b3f6-b1c5-4a55-8143-e45cf7207601http://www.springerlink.com/content/e341459hjuk61k81/

doi: 10.1007/BF03215529
[25]
Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I, Kumar R, Sastry M . ColloidSurf. B -Biointerfaces, 2003,28(4):313.
[26]
Binupriya A R, Sathishkumar M, Yun S I . Acta Pol. Pharm., 2010,70(4):597. https://www.ncbi.nlm.nih.gov/pubmed/23923383

pmid: 23923383
[27]
Dasaratrao S B, Salimath B, Deshpande R, Dhondojirao B M, Krishnamurthy P B, Venkataraman A . Sci. Technol. Adv. Mater., 2008,9(3):035012. https://www.ncbi.nlm.nih.gov/pubmed/27878009

doi: 10.1088/1468-6996/9/3/035012 pmid: 27878009
[28]
Govender Y, Riddin T, Gericke M, Whiteley C G . Biotechnol. Lett., 2009,31(1):95. https://www.ncbi.nlm.nih.gov/pubmed/18773149

doi: 10.1007/s10529-008-9825-z pmid: 18773149
[29]
Govender R Y, Grewar T, Gericke M, Whiteley C . J. Nanopart. Res., 2009,12(1):261.
[30]
Costa L S, Oliveira J P, Keijok W J, Silva A R, Aguiar A, Guimarães M, Ferraz C, Araújo J, Tobias F L, Braga F . Int. J. Nanomed., 2017,12:6373. https://www.dovepress.com/international-journal-of-nanomedicine-journal

doi: 10.2147/IJN
[31]
Husseiny M, Elaziz M A, Badr Y, Mahmoud M . Spectroc. Acta Pt. A -Molec. Biomolec. Spectr., 2007,67(3):1003.
[32]
He S, Zhang Y, Guo Z, Ning G . Biotechnol. Prog., 2008,24(2):476. https://www.ncbi.nlm.nih.gov/pubmed/18293997

doi: 10.1021/bp0703174 pmid: 18293997
[33]
Kar P K, Sanatan M, Saswati S, Tandon V, Acharya K . PLoS One, 2014,9(1):e84693. https://www.ncbi.nlm.nih.gov/pubmed/24465424

doi: 10.1371/journal.pone.0084693 pmid: 24465424
[34]
Binupriya A R, Sathishkumar M, Kuppusamy V, Yun S I . J. Hazard. Mater., 2010,177(1/3):539. https://www.ncbi.nlm.nih.gov/pubmed/20056324

doi: 10.1016/j.jhazmat.2009.12.066 pmid: 20056324
[35]
Kang F, Alvarez P J, Zhu D . Environ. Sci. Technol., 2014,48(1):316. https://www.ncbi.nlm.nih.gov/pubmed/24328348

doi: 10.1021/es403796x pmid: 24328348
[36]
Li S W, Zhang X, Sheng G P . Environ. Sci. Pollut. Res., 2016,23(9):8627. https://www.ncbi.nlm.nih.gov/pubmed/26797954

doi: 10.1007/s11356-016-6105-7 pmid: 26797954
[37]
Li S W, Sheng G P, Cheng Y Y, Yu H Q . Sci. Rep., 2016,6:39098. https://www.ncbi.nlm.nih.gov/pubmed/27991531

doi: 10.1038/srep39098 pmid: 27991531
[38]
Xiao Y, Zhang E, Zhang J, Dai Y, Yang Z, Christensen H E M, Ulstrup J, Zhao F . Sci. Adv., 2017,3(7):e1700623. https://www.ncbi.nlm.nih.gov/pubmed/28695213

doi: 10.1126/sciadv.1700623 pmid: 28695213
[39]
Xiao Y, Zhao F . Curr. Opin. Electrochem., 2017,4(1):206.
[40]
Justin H, Peter S, Richard E G, David J R, David A R, Sodeau J . Arch. Microbiol., 1995,163(2):143. https://www.ncbi.nlm.nih.gov/pubmed/7710328

doi: 10.1007/BF00381789 pmid: 7710328
[41]
Sastry M, Ahmad A, Khan M I, Kumar R . Curr. Sci., 2003,85(25):162.
[42]
Gericke M, Pinches A . Hydrometallurgy, 2006,83(1):132.
[43]
Jung J H, Park T J, Lee S Y, Seo T S . Angew. Chem. Int. Edit., 2012,51(23):5634. https://www.ncbi.nlm.nih.gov/pubmed/22529022

doi: 10.1002/anie.201108977 pmid: 22529022
[44]
Ha C, Zhu N, Ru S, Shi C, Cui J, Sohoo I, Wu P, Cao Y . Chem. Eng. J., 2016,288(s1/2):246.
[45]
He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N . Mater. Lett., 2007,61(18):3984.
[46]
Ahmad A, Senapati S, Islam Khan M, Kumar R, Ramani R, Srinivas V, Sastry M . Nanotechnology, 2003,14(7):824. https://iopscience.iop.org/article/10.1088/0957-4484/14/7/323

doi: 10.1088/0957-4484/14/7/323
[47]
Wang C, Kim Y J, Singh P, Mathiyalagan R, Jin Y, Yang D C . Artif. Cell. Nanomed. Biotechnol., 2016,24(24):1.
[48]
Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T . J. Biotechnol., 2007,128(3):648. https://www.ncbi.nlm.nih.gov/pubmed/17182148

doi: 10.1016/j.jbiotec.2006.11.014 pmid: 17182148
[49]
Ahmad A, Senapati S, Islam Khan M, Kumar R, Sastry M . Langmuir, 2003,19(87):3550. https://www.ncbi.nlm.nih.gov/pubmed/15377635

doi: 10.3168/jds.S0022-0302(04)73492-X pmid: 15377635
[50]
Karthik L, Kumar G, Kirthi A V, Rahuman A A, Bhaskara R K . Bioprocess. Biosyst. Eng., 2014,37(2):261. https://www.ncbi.nlm.nih.gov/pubmed/23771163

doi: 10.1007/s00449-013-0994-3 pmid: 23771163
[51]
Jae H J, Singh P, Kim Y J, Wang C, Mathiyalagan R, Jin C G, Yang D C . Artif. Cell. Nanomed. Biotechnol., 2016,44(6):1576. https://www.ncbi.nlm.nih.gov/pubmed/26232081

doi: 10.3109/21691401.2015.1068792 pmid: 26232081
[52]
Joerger R, Klaus T, Granqvist C G . Adv. Mater., 2000,12(6):407. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095
[53]
Lengke M, Michael E F, Southam G . Langmuir, 2006,22(17):7318. https://www.ncbi.nlm.nih.gov/pubmed/16893232

doi: 10.1021/la060873s pmid: 16893232
[54]
Yong P, Rowson N, Farr J P, Harris I R, Macaskie L . Biotechnol. Bioeng., 2002,80(4):369. https://www.ncbi.nlm.nih.gov/pubmed/12325145

doi: 10.1002/bit.10369 pmid: 12325145
[55]
Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan M I, Kumar R, Sastry M . ChemBioChem, 2002,3(5):461. https://www.ncbi.nlm.nih.gov/pubmed/12007181

doi: 10.1002/1439-7633(20020503)3:5【-逻*辑*与-】lt;461::AID-CBIC461【-逻*辑*与-】gt;3.0.CO;2-X pmid: 12007181
[56]
Riddin T L, Gericke M, Whiteley C G . Nanotechnology, 2006,17(14):3482. https://www.ncbi.nlm.nih.gov/pubmed/19661593

doi: 10.1088/0957-4484/17/14/021 pmid: 19661593
[57]
Philip D . Spectroc. Acta Pt. A -Molec. Biomolec. Spectr., 2009,73(2):374.
[58]
Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G . Mater. Lett., 2008,62(29):4411.
[59]
Nanda A, Saravanan M . Nanomed.-Nanotechnol. Biol. Med., 2009,5(4):452.
[60]
Avd W, Minor M, Norde W, Zehnder A J, Lyklema J . Langmuir, 1997,13(1997):165.
[61]
Zhang X, Yan S, Tyagi R D, Surampalli R Y . Chemosphere, 2011,82(4):489. https://www.ncbi.nlm.nih.gov/pubmed/21055786

doi: 10.1016/j.chemosphere.2010.10.023 pmid: 21055786
[62]
Simkiss K, Wilbur K M . Biomineralization: Cell Biology and Mineral Deposition. New York. 1989. 257.
[63]
Vert M . Biochimie, 1996,78(3):216.
[64]
Salunke B K, Sawant S S, Lee S I, Kim B S . World J. Microbiol. Biotechnol., 2016,32(5):88. https://www.ncbi.nlm.nih.gov/pubmed/27038958

doi: 10.1007/s11274-016-2044-1 pmid: 27038958
[65]
Karthik L, Kumar G, Kirthi A V, Rahuman A A, Rao K V B . Bioprocess. Biosyst. Eng., 2014,37(2):261. https://www.ncbi.nlm.nih.gov/pubmed/23771163

doi: 10.1007/s00449-013-0994-3 pmid: 23771163
[66]
Nangia Y, Wangoo N, Sharma S, Wu J S, Dravid V, Shekhawat G S, Suri C R . Appl. Phys. Lett., 2009,94(23):112.
[67]
Wu R R, Cui L, Chen L X, Wang C, Cao C L, Sheng G P, Yu H Q, Zhao F . Sci. Rep., 2013,3:3307. https://www.ncbi.nlm.nih.gov/pubmed/24264440

doi: 10.1038/srep03307 pmid: 24264440
[68]
Riddin T L, Govender Y, Gericke M, Whiteley C G . Enzyme Microb. Technol., 2009,45(4):267.
[69]
Senapati S, Ahmad A, Khan M I, Murali S, Rajiv K . Small, 2010,1(5):517. https://www.ncbi.nlm.nih.gov/pubmed/17193479

doi: 10.1002/smll.200400053 pmid: 17193479
[70]
Durán N, Marcato P D, Alves O L, Souza G I D, Esposito E .J. Nanobiotechnol., 2005,3(1):8.
[71]
Thomas R, Janardhanan A, Varghese R T, Soniya E V, Mathew J, Radhakrishnan E K . Braz. J. Microbiol., 2014,45(4):1221. https://www.ncbi.nlm.nih.gov/pubmed/25763025

doi: 10.1590/s1517-83822014000400012 pmid: 25763025
[72]
Sutradhar K, Amin M L . Isrn Nanotechnology, 2014,2014(2014):1.
[73]
韩冬琳(Han D L), 亓洪昭(Qi H Z), 赵瑾(Zhao J), 龙丽霞(Long L X), 任玉(Ren Y), 原续波(Yuan X B) . 化学进展 (Process in Chemistry), 2016,28(09):1397.
[74]
Ruan S, Cao X, Cun X, Hu G, Zhou Y, Zhang Y, Lu L, He Q, Gao H . Biomaterials, 2015,60:100. https://www.ncbi.nlm.nih.gov/pubmed/25988725

doi: 10.1016/j.biomaterials.2015.05.006 pmid: 25988725
[75]
Tuo Y, Liu G, Dong B, Yu H, Zhou J, Wang J, Jin R . Environ. Sci. Pollut. Res., 2016,24(6):1. http://link.springer.com/10.1007/s11356-015-5582-4

doi: 10.1007/s11356-015-5582-4
[76]
Shin K H, Cha D K . Chemosphere, 2008,72(2):257. https://www.ncbi.nlm.nih.gov/pubmed/18331753

doi: 10.1016/j.chemosphere.2008.01.043 pmid: 18331753
[77]
Wu X, Zhao F, Rahunen N, Varcoe J R, Claudio A R, Thumser A E, Slade R C T . Angew. Chem.-Int. Edit., 2011,50(2):427. http://doi.wiley.com/10.1002/anie.201002951

doi: 10.1002/anie.201002951
[78]
Zheng D, Hu C, Gan T, Dang X, Hu S . Sens. Actuator B -Chem., 2010,148(1):247.
[79]
Du L, Jiang H, Liu X, Wang E . Electrochem. Commun., 2007,9(5):1165.
[80]
Zhang H, Hu X . Enzyme Microb. Technol., 2018,113:59.
[81]
Patespadas A M, Field J A, Lila O G, Elías R F, Cervantes F, Reyes S A . Chemosphere, 2016,144:745. https://www.ncbi.nlm.nih.gov/pubmed/26408982

doi: 10.1016/j.chemosphere.2015.09.035 pmid: 26408982
[82]
Patespadas A M, Field J A, Flores E R, Cervantes F J, Sierra A R . J. Chem. Technol. Biotechnol., 2016,91(4):1183.
[83]
Bunge M, Lina S S, Rotaru A E, Gauthier D, Lindhardt A, Hause G, Finster K, Kingshott P, Skrydstrup T, Meyer R . Biotechnol. Bioeng., 2010,107(2):206. https://www.ncbi.nlm.nih.gov/pubmed/20506339

doi: 10.1002/bit.22801 pmid: 20506339
[84]
Corte S D, Sabbe T, Hennebel T, Vanhaecke L, Bart D G, Verstraete W, Boon N . Water Res., 2012,46(8):2718. https://www.ncbi.nlm.nih.gov/pubmed/22406286

doi: 10.1016/j.watres.2012.02.036 pmid: 22406286
[85]
Martins M, Mourato C, Sanches S, Noronha J P, Crespo M T B, Pereira I A C . Water Res., 2016,108:160. https://www.ncbi.nlm.nih.gov/pubmed/27817891

doi: 10.1016/j.watres.2016.10.071 pmid: 27817891
[1] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[2] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[3] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[4] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[5] Lixu Lei, Yiming Zhou. Solvent-Free or Less-Solvent Solid State Reactions [J]. Progress in Chemistry, 2020, 32(8): 1158-1171.
[6] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.
[7] Wei Kang, Lu Li, Qing Zhao, Cheng Wang, Jianlong Wang, Yue Teng. Application of New Hydrogen and Oxygen Evolution Electrochemical Catalysts for Solid Polymer Water Electrolysis System [J]. Progress in Chemistry, 2020, 32(12): 1952-1977.
[8] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[9] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[10] Guoying Yao, Qinglu Liu, Zongyan Zhao. Applications of Localized Surface Plasmon Resonance Effect in Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 516-535.
[11] Hong Su, Yejun Han. Electroautotrophic Microorganisms:Uptaking Extracellular Electron and Catalyzing CO2 Fixation and Synthesis [J]. Progress in Chemistry, 2019, 31(2/3): 433-441.
[12] Chang Liu, Feng Wu, Qianqian Su, Weiping Qian. Template Preparation and Application in Biological Detection of Porous Noble Metal Nanostructures [J]. Progress in Chemistry, 2019, 31(10): 1396-1405.
[13] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.
[14] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[15] Dongdong Zhang, Jingmin Liu, Yaoyao Liu, Meng Dang, Guozhen Fang, Shuo Wang. The Application of Nanoparticles in Drug Delivery [J]. Progress in Chemistry, 2018, 30(12): 1908-1919.
Viewed
Full text


Abstract