中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (6): 872-881 DOI: 10.7536/PC181017 Previous Articles   Next Articles

Noble Metal Nanoparticles Produced by Microorganism

Rui Bai1,2, Xiaochun Tian1, Shuhua Wang1,2, Weifu Yan1, Haiyin Gang1,3, Yong Xiao1,**()   

  1. 1.CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
  • Received: Online: Published:
  • Contact: Yong Xiao
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(51478451); National Natural Science Foundation of China(51878640); Youth Innovation Promotion Association of Chinese Academy of Sciences(2018344)
Richhtml ( 30 ) PDF ( 1131 ) Cited
Export

EndNote

Ris

BibTeX

Metal nanoparticles have been widely applied in many fields,including materials, catalysis, medicine, environment, etc. Furthermore, nanoparticles from noble metal, such as gold, silver, platinum, palladium, possess the ability of increasing the efficiency of catalytic reaction. Therefore, the synthesis of noble metal nanoparticles by microorganisms has attracted the attention of many researchers. Although traditional physical and chemical methods can synthesize nanoparticles efficiently and controllably, these methods are complicated and expensive, in addition to the wide use of hazardous chemicals. Therefore, exploring energy-saving, environmentally friendly and sustainable green synthesis method for synthesizing nano-materials is continuously attracting interests in this field. The microbial synthesis of noble metal nanoparticles conforms to the requirements of green synthesis technology, and researches have shown that many microorganisms can convert metal ions into nano-materials. Besides, microorganisms can be grown in mild condition cheaply and fast, so microbial synthesis has been widely concerned in the field of nanometer research. This review summarizes progress of microbial synthesis of noble metal nanoparticles, including the possible synthesis mechanisms and the control of size and shape. Meanwhile, the specific applications of microbial sourced nanoparticles in medicine, catalysis, biosensing and environment are discussed, and the future development of microbial nanomaterials synthesis is further prospected.

Fig. 1 TEM images of a Shewanella oneidensis MR-1 cell(A) before and (B) after the bio-reduction of Pd(Ⅱ)[19].Copyright 2018, Royal Society of Chemistry.
Table 1 List of the microorganisms employed for the synthesis of metal nanoparticles and nanoparticles synthesized
Microbial species Nanoparticle type Size(nm) Shape Way of
synthesis
ref
Bacteria
Rhodopseudomonas capsulata Au 10-20 Spherical Extracellular 45
Rhodococcus sp. Au 5-15 Intracellular 46
Bacillus subtilis 168 Au 5-25 Octahedral Intracellular 15
Bacillus methylotrophicus Ag 10-30 Spherical Extracellular 47
Shewanella algae Pt ~5 Intracellular 48
Shewanella oneidensis MR-1 Pd ~6.2 Spherical Intracellular 19
Thermomonospora sp. Au ~8 Spherical Extracellular 49
Streptomyces fulvissimus Au 20-50 Spherical, Triangular Extracellular 21
Streptomyces sp. LK3 Ag ~5 Spherical 50
Pseudomonas deceptionensis Ag 10-30 Spherical Extracellular 51
Pseudomonas stutzeri up to 200 Triangular, Hexagonal, Spherical Periplasmic space 52
Pseudomonas stutzeri AG259 Ag 35-46 Spherical Extracellular 8
Plectonema boryanum UTEX 485 Pt 30-300 Spherical, Chains, Dendritic 53
Desulfovibrio desulfuricans Pd ~50 Intracellular 54
Fungi
Fusarium oxysporum Au 20-40 Spherical, Triangular Extracellular 55
Fusarium semitectum Ag, Au-Ag 10-60 Spherical Extracellular 27
Fusarium xysporum sp. Pt 10-50 Triangle, Hexagons, Square, Extracellular 56
Verticillium sp. Au 12-28 Spherical Intracellular 23
Volvariella volvacea Au, Ag, Au-Ag 20-150 Spherical, Hexagonal Extracellular 57
Cell filtrate
Bacillus licheniformis Ag ~40 58
Duddingtonia flagrans Ag 11-38 Spherical 30
Nigrospora oryzae Au 6-18 Spherical, Triangular 33
Pseudomonas aeruginosa Au 15-30 Spherical 31
Rhodopseudomonas capsulata Au 10-20 Spherical, Nanowires 32
Staphylococcus aureus Ag 160-180 Spherical 59
Fig. 2 Mechanism of microbial synthesis of nanoparticles[64]. Copyright 2016, Springer Nature.
Fig. 3 Schematic diagram of microbial synthesis of nanoparticles by Streptomyces sp. LK3[65]
Fig. 4 Hypothetical mechanisms of silver nanoparticle biosynthesis by Fusarium oxysporum[70].Reproduced with permission from BioMed Central Ltd.
Fig. 5 Schematic diagram of biological sensor for detecting vanillin. WE: Glassy carbon electrode; RE: Saturated calomel electrode; CE: Platinum wire;CDA: Cellulose diacetate; GC: Glassy carbon electrode
[1]
Marcial M M, Pleixats R . Acc. Chem. Res., 2003,36(8):638. https://www.ncbi.nlm.nih.gov/pubmed/12924961

doi: 10.1021/ar020267y pmid: 12924961
[2]
Kramer N, Birk H, Jorritsma J, Schonenberger C . Appl. Phys. Lett., 1995,66(11):1325. http://aip.scitation.org/doi/10.1063/1.113230

doi: 10.1063/1.113230
[3]
Silvis C N, Hagen C W, Kruit P, Maj V S, Groen H B . Appl. Phys. Lett., 2003,82(20):3514.
[4]
Wang X, Zhuang J, Peng Q, Li Y . Nature, 2005,437(7055):121. https://www.ncbi.nlm.nih.gov/pubmed/16136139

doi: 10.1038/nature03968 pmid: 16136139
[5]
Zhang S . Nat. Biotechnol., 2003,21(10):1171. https://www.ncbi.nlm.nih.gov/pubmed/14520402

doi: 10.1038/nbt874 pmid: 14520402
[6]
Oxana K, Rasika D H, Boris K, Betsabee O P, Victor J P . Trends Biotechnol., 2013,31(4):240. https://www.ncbi.nlm.nih.gov/pubmed/23434153

doi: 10.1016/j.tibtech.2013.01.003 pmid: 23434153
[7]
Cueva M, Horsfall L . Microb. Biotechnol., 2017,10(5):1212. https://www.ncbi.nlm.nih.gov/pubmed/28771979

doi: 10.1111/1751-7915.12788 pmid: 28771979
[8]
Tanja K J, Joerger R, Olsson E, Granqvist C G . Trends Biotechnol., 2001,19(1):15. https://www.ncbi.nlm.nih.gov/pubmed/11146098

doi: 10.1016/s0167-7799(00)01514-6 pmid: 11146098
[9]
Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S R, Khan M I, Parishcha R, Ajaykumar P V, Alam M, Kumar R, Sastry M . Nano Lett., 2001,1(10):515.
[10]
Kannan B N, Natarajan S . Adv. Colloid Interface Sci., 2010,156(1):1.
[11]
Mandal D, Bolander M E, Mukhopadhyay D, Sarkar G, Mukherjee P . Appl. Microbiol. Biotechnol., 2006,69(5):485. https://www.ncbi.nlm.nih.gov/pubmed/16317546

doi: 10.1007/s00253-005-0179-3 pmid: 16317546
[12]
Mohanpuria P, Rana N, Yadav S . J. Nanopart. Res., 2008,10(3):507.
[13]
Hulkoti N, Taranath T . Colloid Surf. B -Biointerfaces, 2014,121(9):474. https://linkinghub.elsevier.com/retrieve/pii/S0927776514002628

doi: 10.1016/j.colsurfb.2014.05.027
[14]
Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E, Winge D R . Nature, 1989,338(6216):596. https://www.ncbi.nlm.nih.gov/pubmed/2648161

doi: 10.1038/338594a0 pmid: 2648161
[15]
Southam G, Beveridge T J . Geochim. Cosmochim. Acta, 1994,58(20):4517.
[16]
Reith F, Etschmann B, Grosse C, Moors H, Benotmane M A, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Gema M C, George G, Nies D H, Mergeay M, Pring A, Southam G, Brugger J . Proc. Natl. Acad. Sci. U. S. A., 2009,106(42):17757. https://www.ncbi.nlm.nih.gov/pubmed/19815503

doi: 10.1073/pnas.0904583106 pmid: 19815503
[17]
Sharma V K, Yngard R A, Lin Y . Adv. Colloid Interface Sci., 2009,145(1):83.
[18]
Klaus T, Joerger R, Olsson E, Granqvist C G . Proc. Natl. Acad. Sci. U. S. A., 1999,96(24):13611. https://www.ncbi.nlm.nih.gov/pubmed/10570120

doi: 10.1073/pnas.96.24.13611 pmid: 10570120
[19]
Wu R, Tian X, Xiao Y, Ulstrup J, Christensen H E M, Zhao F, Zhang J . J. Mater. Chem. A, 2018,6(12):10555. http://xlink.rsc.org/?DOI=C8TA90130A

doi: 10.1039/C8TA90130A
[20]
Corte S D, Hennebel T, Fitts J, Sabbe T, Bliznuk V, Verschuere S, Lelie D, Verstraete W, Boon N . Environ. Sci. Technol., 2011,45(19):8506. https://www.ncbi.nlm.nih.gov/pubmed/21877727

doi: 10.1021/es2019324 pmid: 21877727
[21]
Nejad M S, Hosein S B . Nanomedicine-UK, 2014,2(2):153.
[22]
Dehnad A, Hamedi J, Derakhshan F K, Abuşov R . IEEE Trans. Nanobiosci., 2015,14(4):393. http://ieeexplore.ieee.org/document/7008573/

doi: 10.1109/TNB.2014.2377232
[23]
Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S R, Khan M I, Ramani R, Parischa R, Ajayakumar P V, Alam M, Sastry M, Kumar R . Angew. Chem. Int. Edit., 2001,40(19):3585. https://www.ncbi.nlm.nih.gov/pubmed/11592189

doi: 10.1002/1521-3773(20011001)40:19【-逻*辑*与-】lt;3585::aid-anie3585【-逻*辑*与-】gt;3.0.co;2-k pmid: 11592189
[24]
Gericke M, Pinches A . Gold Bull., 2006,39(1):22. a517b3f6-b1c5-4a55-8143-e45cf7207601http://www.springerlink.com/content/e341459hjuk61k81/

doi: 10.1007/BF03215529
[25]
Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I, Kumar R, Sastry M . ColloidSurf. B -Biointerfaces, 2003,28(4):313.
[26]
Binupriya A R, Sathishkumar M, Yun S I . Acta Pol. Pharm., 2010,70(4):597. https://www.ncbi.nlm.nih.gov/pubmed/23923383

pmid: 23923383
[27]
Dasaratrao S B, Salimath B, Deshpande R, Dhondojirao B M, Krishnamurthy P B, Venkataraman A . Sci. Technol. Adv. Mater., 2008,9(3):035012. https://www.ncbi.nlm.nih.gov/pubmed/27878009

doi: 10.1088/1468-6996/9/3/035012 pmid: 27878009
[28]
Govender Y, Riddin T, Gericke M, Whiteley C G . Biotechnol. Lett., 2009,31(1):95. https://www.ncbi.nlm.nih.gov/pubmed/18773149

doi: 10.1007/s10529-008-9825-z pmid: 18773149
[29]
Govender R Y, Grewar T, Gericke M, Whiteley C . J. Nanopart. Res., 2009,12(1):261.
[30]
Costa L S, Oliveira J P, Keijok W J, Silva A R, Aguiar A, Guimarães M, Ferraz C, Araújo J, Tobias F L, Braga F . Int. J. Nanomed., 2017,12:6373. https://www.dovepress.com/international-journal-of-nanomedicine-journal

doi: 10.2147/IJN
[31]
Husseiny M, Elaziz M A, Badr Y, Mahmoud M . Spectroc. Acta Pt. A -Molec. Biomolec. Spectr., 2007,67(3):1003.
[32]
He S, Zhang Y, Guo Z, Ning G . Biotechnol. Prog., 2008,24(2):476. https://www.ncbi.nlm.nih.gov/pubmed/18293997

doi: 10.1021/bp0703174 pmid: 18293997
[33]
Kar P K, Sanatan M, Saswati S, Tandon V, Acharya K . PLoS One, 2014,9(1):e84693. https://www.ncbi.nlm.nih.gov/pubmed/24465424

doi: 10.1371/journal.pone.0084693 pmid: 24465424
[34]
Binupriya A R, Sathishkumar M, Kuppusamy V, Yun S I . J. Hazard. Mater., 2010,177(1/3):539. https://www.ncbi.nlm.nih.gov/pubmed/20056324

doi: 10.1016/j.jhazmat.2009.12.066 pmid: 20056324
[35]
Kang F, Alvarez P J, Zhu D . Environ. Sci. Technol., 2014,48(1):316. https://www.ncbi.nlm.nih.gov/pubmed/24328348

doi: 10.1021/es403796x pmid: 24328348
[36]
Li S W, Zhang X, Sheng G P . Environ. Sci. Pollut. Res., 2016,23(9):8627. https://www.ncbi.nlm.nih.gov/pubmed/26797954

doi: 10.1007/s11356-016-6105-7 pmid: 26797954
[37]
Li S W, Sheng G P, Cheng Y Y, Yu H Q . Sci. Rep., 2016,6:39098. https://www.ncbi.nlm.nih.gov/pubmed/27991531

doi: 10.1038/srep39098 pmid: 27991531
[38]
Xiao Y, Zhang E, Zhang J, Dai Y, Yang Z, Christensen H E M, Ulstrup J, Zhao F . Sci. Adv., 2017,3(7):e1700623. https://www.ncbi.nlm.nih.gov/pubmed/28695213

doi: 10.1126/sciadv.1700623 pmid: 28695213
[39]
Xiao Y, Zhao F . Curr. Opin. Electrochem., 2017,4(1):206.
[40]
Justin H, Peter S, Richard E G, David J R, David A R, Sodeau J . Arch. Microbiol., 1995,163(2):143. https://www.ncbi.nlm.nih.gov/pubmed/7710328

doi: 10.1007/BF00381789 pmid: 7710328
[41]
Sastry M, Ahmad A, Khan M I, Kumar R . Curr. Sci., 2003,85(25):162.
[42]
Gericke M, Pinches A . Hydrometallurgy, 2006,83(1):132.
[43]
Jung J H, Park T J, Lee S Y, Seo T S . Angew. Chem. Int. Edit., 2012,51(23):5634. https://www.ncbi.nlm.nih.gov/pubmed/22529022

doi: 10.1002/anie.201108977 pmid: 22529022
[44]
Ha C, Zhu N, Ru S, Shi C, Cui J, Sohoo I, Wu P, Cao Y . Chem. Eng. J., 2016,288(s1/2):246.
[45]
He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N . Mater. Lett., 2007,61(18):3984.
[46]
Ahmad A, Senapati S, Islam Khan M, Kumar R, Ramani R, Srinivas V, Sastry M . Nanotechnology, 2003,14(7):824. https://iopscience.iop.org/article/10.1088/0957-4484/14/7/323

doi: 10.1088/0957-4484/14/7/323
[47]
Wang C, Kim Y J, Singh P, Mathiyalagan R, Jin Y, Yang D C . Artif. Cell. Nanomed. Biotechnol., 2016,24(24):1.
[48]
Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T . J. Biotechnol., 2007,128(3):648. https://www.ncbi.nlm.nih.gov/pubmed/17182148

doi: 10.1016/j.jbiotec.2006.11.014 pmid: 17182148
[49]
Ahmad A, Senapati S, Islam Khan M, Kumar R, Sastry M . Langmuir, 2003,19(87):3550. https://www.ncbi.nlm.nih.gov/pubmed/15377635

doi: 10.3168/jds.S0022-0302(04)73492-X pmid: 15377635
[50]
Karthik L, Kumar G, Kirthi A V, Rahuman A A, Bhaskara R K . Bioprocess. Biosyst. Eng., 2014,37(2):261. https://www.ncbi.nlm.nih.gov/pubmed/23771163

doi: 10.1007/s00449-013-0994-3 pmid: 23771163
[51]
Jae H J, Singh P, Kim Y J, Wang C, Mathiyalagan R, Jin C G, Yang D C . Artif. Cell. Nanomed. Biotechnol., 2016,44(6):1576. https://www.ncbi.nlm.nih.gov/pubmed/26232081

doi: 10.3109/21691401.2015.1068792 pmid: 26232081
[52]
Joerger R, Klaus T, Granqvist C G . Adv. Mater., 2000,12(6):407. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095
[53]
Lengke M, Michael E F, Southam G . Langmuir, 2006,22(17):7318. https://www.ncbi.nlm.nih.gov/pubmed/16893232

doi: 10.1021/la060873s pmid: 16893232
[54]
Yong P, Rowson N, Farr J P, Harris I R, Macaskie L . Biotechnol. Bioeng., 2002,80(4):369. https://www.ncbi.nlm.nih.gov/pubmed/12325145

doi: 10.1002/bit.10369 pmid: 12325145
[55]
Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan M I, Kumar R, Sastry M . ChemBioChem, 2002,3(5):461. https://www.ncbi.nlm.nih.gov/pubmed/12007181

doi: 10.1002/1439-7633(20020503)3:5【-逻*辑*与-】lt;461::AID-CBIC461【-逻*辑*与-】gt;3.0.CO;2-X pmid: 12007181
[56]
Riddin T L, Gericke M, Whiteley C G . Nanotechnology, 2006,17(14):3482. https://www.ncbi.nlm.nih.gov/pubmed/19661593

doi: 10.1088/0957-4484/17/14/021 pmid: 19661593
[57]
Philip D . Spectroc. Acta Pt. A -Molec. Biomolec. Spectr., 2009,73(2):374.
[58]
Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G . Mater. Lett., 2008,62(29):4411.
[59]
Nanda A, Saravanan M . Nanomed.-Nanotechnol. Biol. Med., 2009,5(4):452.
[60]
Avd W, Minor M, Norde W, Zehnder A J, Lyklema J . Langmuir, 1997,13(1997):165.
[61]
Zhang X, Yan S, Tyagi R D, Surampalli R Y . Chemosphere, 2011,82(4):489. https://www.ncbi.nlm.nih.gov/pubmed/21055786

doi: 10.1016/j.chemosphere.2010.10.023 pmid: 21055786
[62]
Simkiss K, Wilbur K M . Biomineralization: Cell Biology and Mineral Deposition. New York. 1989. 257.
[63]
Vert M . Biochimie, 1996,78(3):216.
[64]
Salunke B K, Sawant S S, Lee S I, Kim B S . World J. Microbiol. Biotechnol., 2016,32(5):88. https://www.ncbi.nlm.nih.gov/pubmed/27038958

doi: 10.1007/s11274-016-2044-1 pmid: 27038958
[65]
Karthik L, Kumar G, Kirthi A V, Rahuman A A, Rao K V B . Bioprocess. Biosyst. Eng., 2014,37(2):261. https://www.ncbi.nlm.nih.gov/pubmed/23771163

doi: 10.1007/s00449-013-0994-3 pmid: 23771163
[66]
Nangia Y, Wangoo N, Sharma S, Wu J S, Dravid V, Shekhawat G S, Suri C R . Appl. Phys. Lett., 2009,94(23):112.
[67]
Wu R R, Cui L, Chen L X, Wang C, Cao C L, Sheng G P, Yu H Q, Zhao F . Sci. Rep., 2013,3:3307. https://www.ncbi.nlm.nih.gov/pubmed/24264440

doi: 10.1038/srep03307 pmid: 24264440
[68]
Riddin T L, Govender Y, Gericke M, Whiteley C G . Enzyme Microb. Technol., 2009,45(4):267.
[69]
Senapati S, Ahmad A, Khan M I, Murali S, Rajiv K . Small, 2010,1(5):517. https://www.ncbi.nlm.nih.gov/pubmed/17193479

doi: 10.1002/smll.200400053 pmid: 17193479
[70]
Durán N, Marcato P D, Alves O L, Souza G I D, Esposito E .J. Nanobiotechnol., 2005,3(1):8.
[71]
Thomas R, Janardhanan A, Varghese R T, Soniya E V, Mathew J, Radhakrishnan E K . Braz. J. Microbiol., 2014,45(4):1221. https://www.ncbi.nlm.nih.gov/pubmed/25763025

doi: 10.1590/s1517-83822014000400012 pmid: 25763025
[72]
Sutradhar K, Amin M L . Isrn Nanotechnology, 2014,2014(2014):1.
[73]
韩冬琳(Han D L), 亓洪昭(Qi H Z), 赵瑾(Zhao J), 龙丽霞(Long L X), 任玉(Ren Y), 原续波(Yuan X B) . 化学进展 (Process in Chemistry), 2016,28(09):1397.
[74]
Ruan S, Cao X, Cun X, Hu G, Zhou Y, Zhang Y, Lu L, He Q, Gao H . Biomaterials, 2015,60:100. https://www.ncbi.nlm.nih.gov/pubmed/25988725

doi: 10.1016/j.biomaterials.2015.05.006 pmid: 25988725
[75]
Tuo Y, Liu G, Dong B, Yu H, Zhou J, Wang J, Jin R . Environ. Sci. Pollut. Res., 2016,24(6):1. http://link.springer.com/10.1007/s11356-015-5582-4

doi: 10.1007/s11356-015-5582-4
[76]
Shin K H, Cha D K . Chemosphere, 2008,72(2):257. https://www.ncbi.nlm.nih.gov/pubmed/18331753

doi: 10.1016/j.chemosphere.2008.01.043 pmid: 18331753
[77]
Wu X, Zhao F, Rahunen N, Varcoe J R, Claudio A R, Thumser A E, Slade R C T . Angew. Chem.-Int. Edit., 2011,50(2):427. http://doi.wiley.com/10.1002/anie.201002951

doi: 10.1002/anie.201002951
[78]
Zheng D, Hu C, Gan T, Dang X, Hu S . Sens. Actuator B -Chem., 2010,148(1):247.
[79]
Du L, Jiang H, Liu X, Wang E . Electrochem. Commun., 2007,9(5):1165.
[80]
Zhang H, Hu X . Enzyme Microb. Technol., 2018,113:59.
[81]
Patespadas A M, Field J A, Lila O G, Elías R F, Cervantes F, Reyes S A . Chemosphere, 2016,144:745. https://www.ncbi.nlm.nih.gov/pubmed/26408982

doi: 10.1016/j.chemosphere.2015.09.035 pmid: 26408982
[82]
Patespadas A M, Field J A, Flores E R, Cervantes F J, Sierra A R . J. Chem. Technol. Biotechnol., 2016,91(4):1183.
[83]
Bunge M, Lina S S, Rotaru A E, Gauthier D, Lindhardt A, Hause G, Finster K, Kingshott P, Skrydstrup T, Meyer R . Biotechnol. Bioeng., 2010,107(2):206. https://www.ncbi.nlm.nih.gov/pubmed/20506339

doi: 10.1002/bit.22801 pmid: 20506339
[84]
Corte S D, Sabbe T, Hennebel T, Vanhaecke L, Bart D G, Verstraete W, Boon N . Water Res., 2012,46(8):2718. https://www.ncbi.nlm.nih.gov/pubmed/22406286

doi: 10.1016/j.watres.2012.02.036 pmid: 22406286
[85]
Martins M, Mourato C, Sanches S, Noronha J P, Crespo M T B, Pereira I A C . Water Res., 2016,108:160. https://www.ncbi.nlm.nih.gov/pubmed/27817891

doi: 10.1016/j.watres.2016.10.071 pmid: 27817891
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[3] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[4] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[5] Shuangyu Zhang, Yunxuan Hu, Cheng Li, Xinhua Xu. Effect of Microbial Iron Redox on Aqueous Arsenic and Antimony Removal [J]. Progress in Chemistry, 2022, 34(4): 870-883.
[6] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[7] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[8] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[9] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[10] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[11] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[12] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[13] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[14] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[15] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.