中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (5): 773-782 DOI: 10.7536/PC180910 Previous Articles   

Research on Bioactive Glass Nanospheres as Delivery

Qiwei Ying, Jianguo Liao**(), Minhang Wu, Zhihao Zhai, Xinru Liu   

  1. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
  • Received: Online: Published:
  • Contact: Jianguo Liao
  • About author:
  • Supported by:
    National Natural Science Foundation of China(U1304820); Education Department of Henan Province Basic Research Program(19A430015); Education Department of Henan Province Basic Research Program(19B430004); Fundamental Research Funds for the Universities of Henan Province(NSFRF180311); Henan Province University Science and Technology Innovation Team(19IRTSTHN027)
Richhtml ( 5 ) PDF ( 438 ) Cited
Export

EndNote

Ris

BibTeX

Bioactive glass nanosphere(BGN) contains elements such as silicon, calcium and phosphorus. It has controlled morphology and particle size, ordered mesoporous structure, high specific surface area and porosity, and due to the good biocompatibility and osteogenic activity, BGN has been widely used in bone repair and dental treatment. BGN can also be doped with different metal ions to enhance osteogenic, vascular, etc., or to provide antibacterial or bioimaging capabilities. At the same time, spherical shape, ordered mesoporous structures, nanoscale size and high specific surface facilitate the entry of drugs/biological-factors into cells, which gives BGN potential for high loading capacity and targeted therapeutic capabilities. However, since it is difficult to prepare monodisperse BGN with nanoscale particle size, and the agglomeration problem is common in nanoscale particles, the impact on the body is not completely clear. Therefore, BGN cannot be used as a drug carrier in clinical, and related research still needs to be further studied. In this paper, the research and application status of BGN preparation, loading capacity, biocompatibility and biological activity in recent years are reviewed, and its development directions are prospected.

Fig. 1 Schematic illustration of the formation process of HMBGs[13]
Fig. 2 TEM images of HMBGs[12].(a)4 mM CTAB;(b)2 mM CTAB and (c)6 mM CTAB
Fig. 3 SEM micrograph(a) and TEM image(b) of mesoporous bioactive glass nanospheres with large pore[11]
Fig. 4 Schematic illustration of the synthesis process and mechanism of BGN[11]
Fig. 5 Schematic illustration of the structure-controlled formation of mesoporous bioactive glass nanoparticle(BGN) with different pore sizes by changing the co-solvent(ethyl ether or ethoxyethanol)[10]
Fig. 6 Typical bonds between the BGN and drug
Fig. 7 Distribution of drug molecules for the mesoporous channels in glass[52]
Fig. 8 LSC quantitative measurement of tissue distribution of 45Ca-BGN nanospheres[94]
[1]
Larry H, Juli P . Science, 2002,295:1014. https://www.ncbi.nlm.nih.gov/pubmed/11834817

doi: 10.1126/science.1067404 pmid: 11834817
[2]
Larry H . Biomaterials, 1998,19:1419. https://www.ncbi.nlm.nih.gov/pubmed/9794512

doi: 10.1016/s0142-9612(98)00133-1 pmid: 9794512
[3]
Larry H, Donna W, David G . J. Sol-Gel Sci. Technol., 1998,13:245.
[4]
Zheng K, Lu M, Rutkowski B, Dai X Y, Yang Y Y, Taccardi N, Stachewicz U, Czyrska-Filemonowicz A, Hüser N, Boccaccini A . J. Mate. Chem. B, 2016,4:7936.
[5]
Wang X, Zhang Y, Ma Y Y, Chen D Y, Yang H L, Li M Z . Ceram. Int., 2016,42:3609.
[6]
Shih S, J Lin Y C, Panjaitan L, Sari D . Materials(Basel), 2016,9:58.
[7]
Francesco B, Giorgia N, Valentina M, Aldo B, Chiara V . J. Non-Cryst. Solids, 2016,432:15.
[8]
Li X, Liang Q, Zhang W, Ye J D, Zhao F J, Chen X F, Wang S R . J. Mater. Chem. B, 2017,5:6376. https://www.ncbi.nlm.nih.gov/pubmed/32264454

doi: 10.1039/c7tb01021d pmid: 32264454
[9]
Vichery C, Nedelec J M . Materials(Basel), 2016,9:288. https://www.ncbi.nlm.nih.gov/pubmed/19664277

doi: 10.1186/1471-2458-9-288 pmid: 19664277
[10]
Kim T H, Singh R K, Kang M S, Kim J H, Kim H W . Nanoscale, 2016,8:8300. https://www.ncbi.nlm.nih.gov/pubmed/27035682

doi: 10.1039/c5nr07933k pmid: 27035682
[11]
Tang J Y, Chen X F, Dong Y M, Fu X L, Hu Q . Mater. Lett., 2017,209:626.
[12]
Wang Y D, Chen X F . Mater. Lett., 2017,189:325.
[13]
Li Y Q, Bastakoti B P, Yamauchi Y . Chem. Eur. J., 2015,21:8038. https://www.ncbi.nlm.nih.gov/pubmed/25900326

doi: 10.1002/chem.201406570 pmid: 25900326
[14]
Wu C T, Fan W, Chang J . J. Mater. Chem. B, 2013,1:2710. https://www.ncbi.nlm.nih.gov/pubmed/32260976

doi: 10.1039/c3tb20275e pmid: 32260976
[15]
Zhao S, Li Y B, Li D X . Micropor. Mesopor. Mat., 2010,135:67.
[16]
Liu T, Li Z H, Ding X B, Zhang L X, Zi Y X . Mater. Lett., 2017,190:99. https://www.ncbi.nlm.nih.gov/pubmed/2163838

doi: 10.1111/j.1432-1033.1990.tb15551.x pmid: 2163838
[17]
Li Y L, Hu Q, Miao G H, Zhang Q, Yuan B, Zhu Y, Fu X L, Chen X F, Mao C B . J. Biomed. Nanotechnol., 2016,12:863. https://www.ncbi.nlm.nih.gov/pubmed/27305811

doi: 10.1166/jbn.2016.2235 pmid: 27305811
[18]
Jones J R . Acta Biomater., 2013,9:4457. https://www.ncbi.nlm.nih.gov/pubmed/22922331

doi: 10.1016/j.actbio.2012.08.023 pmid: 22922331
[19]
Li B, Luo W Q, Wang Y Y, Wu H Y, Zhang C C . J. Non-Cryst. Solids, 2016,447:98.
[20]
El-Rashidy A, Waly G, Gad A, Hashem A, Balasubramanian P, Seray K, Aldo R B, Inas S . J. Non-Cryst. Solids, 2018,483:26.
[21]
Zagrajczuk B, Dziadek M, Olejniczak Z, Cholewa-Kowalska K, Laczka M . Ceram. Int., 2017,43:12742.
[22]
Greasley S L, Page S J, Sirovica S, Chen S, Martin R, Riveiro A, Hanna J V, Porter A, Jones J R . J. Colloid Interface Sci., 2016,469:213. https://www.ncbi.nlm.nih.gov/pubmed/26890387

doi: 10.1016/j.jcis.2016.01.065 pmid: 26890387
[23]
Fernando D, Attik N, Cresswell M, Mokbel I, Pradelle-Plasse N, Jackson P, Grosgogeat B, Colon P . Micropor. Mesopor. Mat., 2018,257:99.
[24]
Ting H K, Page S J, Poologasundarampillai G, Chen S, Yu B B, Hanna J, Jones J R . Int. J. Appl. Glass Sci., 2017,8:372.
[25]
Li L Y, Wang H, Zhang Z H, Chen X, Li Q Y . J. Disper. Sci. Technol., 2017,38:1711.
[26]
Ajita J, Saravanan S, Selvamurugan N . Mat. Sci. Eng. C, 2015,53:142.
[27]
Zheng K, Boccaccini A . Adv. Colloid Interface Sci., 2017,249:363. https://www.ncbi.nlm.nih.gov/pubmed/28364954

doi: 10.1016/j.cis.2017.03.008 pmid: 28364954
[28]
Zheng K, Taccardi N, Beltrán A, Sui B Y, Zhou T, Marthala V R R, Hartmann M, Boccaccini A R . RSC Adv., 2016,6:95101.
[29]
Bari A, Bloise N, Fiorilli S, Novajra G, Vallet-Regi M, Bruni G, Torres-Pardo A, Gonzalez-Calbet J M, Visai L, Vitale-Brovarone C . Acta Biomater., 2017,55:493. https://www.ncbi.nlm.nih.gov/pubmed/28412552

doi: 10.1016/j.actbio.2017.04.012 pmid: 28412552
[30]
Li Y L, Chen X F, Ning C Y, Yuan B, Hu Q . Mater. Lett., 2015,161:605.
[31]
Wang X J, Li W . Nanotechnology, 2016,27:225102. https://www.ncbi.nlm.nih.gov/pubmed/27102805

doi: 10.1088/0957-4484/27/22/225102 pmid: 27102805
[32]
Liang Q M, Hu Q, Miao G H, Yuan B, Chen X F . Mater. Lett., 2015,148:45. https://linkinghub.elsevier.com/retrieve/pii/S0167577X15001354

doi: 10.1016/j.matlet.2015.01.122
[33]
Wang Y D, Liao T S, Shi M, Liu C, Chen X F . Mater. Lett., 2017,206:205. https://linkinghub.elsevier.com/retrieve/pii/S0167577X17310571

doi: 10.1016/j.matlet.2017.07.021
[34]
Pontiroli L, Dadkhah M, Novajra G, Tcacencu I, Fiorilli S, Vitale-Brovarone C . Mater. Lett., 2017,190:111.
[35]
Kaya S, Cresswell M, Boccaccini A R . Mater. Sci. Eng. C, 2018,83:99. https://www.ncbi.nlm.nih.gov/pubmed/29208293

doi: 10.1016/j.msec.2017.11.003 pmid: 29208293
[36]
Prasad S S, Ratha I, Adarsh T, Anand A, Sinha P K, Diwan P, Annapurna K, Biswas K . J. Mater. Res., 2018,33:178.
[37]
Meyer N, Rivera L, Ellis T, Qi J H, Ryan M, Boccaccini A . Coatings, 2018,8:27.
[38]
Douglas T E L, Dziadek M, Gorodzha S, Liskova J, Brackman G, Vanhoorne V Vervaet C, Balcaen L, Del R F G M, Boccaccini R, Weinhardt V, Baumbach T, Vanhaecke F, Coenye T, Bacakova L, Surmeneva M, Surmenev R, Cholewa-Kowalska, K, Skirtach, Andre G S . J. Tissue Eng. Regen. M., 2018,12:1313. https://www.ncbi.nlm.nih.gov/pubmed/29489058

doi: 10.1002/term.2654 pmid: 29489058
[39]
Lee J H, El-Fiqi A, Mandakhbayar N, Lee H H, Kim H W . Biomaterials, 2017,142:62. https://www.ncbi.nlm.nih.gov/pubmed/28727999

doi: 10.1016/j.biomaterials.2017.07.014 pmid: 28727999
[40]
Emanuene G P, Roberta F B, Italo M R, Ingrid M F G, Joelma R D S, Laura H V G, Jose V J S J, Danyel E D C P, Paula C B T, Sydnei M D S, Renata P A, Luiz R G, Eliton S D M, Lucio R C, Paulo R F B . Int. J. Appl. Glass Sci., 2018,9:52.
[41]
Rajendran V, Prabhu M, Suriyaprabha R . J. Mater. Sci., 2015,50:5145.
[42]
Moghanian A, Firoozi S, Tahriri M . Ceram. Int., 2017,43:14880.
[43]
Phetnin R, Rattanachan S T . J. Sol-Gel Sci. Technol., 2015,75:279.
[44]
Haas L M, Smith C M, Placek L M, Hall M M, Gong Y, Mellott N P, Wren A W . J. Biomater. Appl., 2015,30:450. https://www.ncbi.nlm.nih.gov/pubmed/26088293

doi: 10.1177/0885328215591902 pmid: 26088293
[45]
Lee J H, Mandakhbayar N, El-Fiqi A, Kim H . Acta Biomater., 2017,60:93. https://www.ncbi.nlm.nih.gov/pubmed/28713017

doi: 10.1016/j.actbio.2017.07.021 pmid: 28713017
[46]
Naruphontjirakul P, Porter A, Jones J . Acta Biomater., 2018,66:67. https://www.ncbi.nlm.nih.gov/pubmed/29129790

doi: 10.1016/j.actbio.2017.11.008 pmid: 29129790
[47]
Weng L, Boda S K, Teusink M, Shuler F D, Li X R, Xie J W . ACS Appl. Mater. Inter., 2017,9:24484. https://www.ncbi.nlm.nih.gov/pubmed/28675029

doi: 10.1021/acsami.7b06521 pmid: 28675029
[48]
Littmann E, Autefage H, Solanki A K, Kallepitis C, Jones J R, Alini M, Peroglio M, Stevens M M . J. Eur. Ceram. Soc., 2018,38:877. https://www.ncbi.nlm.nih.gov/pubmed/29456294

doi: 10.1016/j.jeurceramsoc.2017.08.001 pmid: 29456294
[49]
Xue Y M, Du Y Z, Yan J, Liu Z Q, Ma P X, Chen X F, Lei B . J. Mater. Sci. B, 2015,3:3831.
[50]
Wu C T, Xia L G, Han P P, Mao L X, Wang J C, Zhai D, Fang B, Chang J, Xiao Y . ACS Appl. Mater. Inter., 2016,8:11342. https://www.ncbi.nlm.nih.gov/pubmed/27096527

doi: 10.1021/acsami.6b03100 pmid: 27096527
[51]
Lins C E C, Oliveira A, Gonzalez I, Macedo W, Pereira M M . J. Biomed. Mater. Res. B, 2018,106:360. https://www.ncbi.nlm.nih.gov/pubmed/28152262

doi: 10.1002/jbm.b.33846 pmid: 28152262
[52]
Gurbinder K, Pandey O P, Singh K, Chudasama B, Kumar V . RSC Adv., 2016,6:51046.
[53]
Zheng K, Bortuzzo J A, Liu Y F, Li W, Pischetsrieder M, Roether J, Lu M, Boccaccini A R . Collid.Surface. B, 2015,135:825.
[54]
Doane T, Burda C . Adv. Drug Deliver. Rev., 2013,65:607. https://www.ncbi.nlm.nih.gov/pubmed/22664231

doi: 10.1016/j.addr.2012.05.012 pmid: 22664231
[55]
Zhu M, Wang H X, Zhang Y J, Ji L X, Huang H, Zhu Y F . Mater. Lett., 2016,171:259.
[56]
Duan H B, Diao J J, Zhao N, Ma Y J . Mater. Lett., 2016,167:201.
[57]
Wang X, Zhang Y, Lin C, Zhong W X . Collid.Surface. B, 2017,160:406.
[58]
El-Kady A, Farag M M, El-Rashedi A M . Eur. J. Pharm. Sci., 2016,91:243. https://www.ncbi.nlm.nih.gov/pubmed/27155253

doi: 10.1016/j.ejps.2016.05.004 pmid: 27155253
[59]
El-Kady M, Farag M M . J. Nanomater., 2015,16:339.
[60]
Ayala C, Liu J G, Knight M W, Wang Y, Day J, Nordlander P, Halas N J . Nano Lett., 2014,14:2926. https://www.ncbi.nlm.nih.gov/pubmed/24738706

doi: 10.1021/nl501027j pmid: 24738706
[61]
Xiao K, Li Y P, Luo J T, Lee J S, Xiao W X, Gonik M, Agarwal R G, Lam K S . Biomaterials, 2011,32:3435. https://www.ncbi.nlm.nih.gov/pubmed/21295849

doi: 10.1016/j.biomaterials.2011.01.021 pmid: 21295849
[62]
Kim T H, Singh R K, Kang M S, Kim J H, Kim H . Acta Biomater., 2016,29:352. https://www.ncbi.nlm.nih.gov/pubmed/26432439

doi: 10.1016/j.actbio.2015.09.035 pmid: 26432439
[63]
Dashnyam K, Jin G Z, Kim J H, Perez R, Jang J H, Kim H W . Biomaterials, 2017,116:145. https://www.ncbi.nlm.nih.gov/pubmed/27918936

doi: 10.1016/j.biomaterials.2016.11.053 pmid: 27918936
[64]
Lin K, Wang X H, Zhang N, Shen Y H . J. Mater. Chem. B, 2016,4:3632. https://www.ncbi.nlm.nih.gov/pubmed/32263301

doi: 10.1039/c6tb00735j pmid: 32263301
[65]
Naruphontjirakul P, Greasley S L, Chen S, Porter A, Jones J R . Biomed. Glass., 2016,2:72.
[66]
Beavers K R, Nelson C E, Duvall C L . Adv. Drug Deliver. Rev., 2015,88:123. https://www.ncbi.nlm.nih.gov/pubmed/25553957

doi: 10.1016/j.addr.2014.12.006 pmid: 25553957
[67]
Aigner A, Fischer D . Pharmazie, 2016,71:27. https://www.ncbi.nlm.nih.gov/pubmed/26867350

pmid: 26867350
[68]
Lam J K, Chow M Y, Zhang Y, Leung S W . Mol. Ther. Nucl. Acids, 2015,4:e252. https://linkinghub.elsevier.com/retrieve/pii/S2162253116300373

doi: 10.1038/mtna.2015.23
[69]
Wang X, Wang G, Zhang Y . Appl. Surf. Sci., 2017,419:531.
[70]
Miao G H, Chen X F, Dong H, Fang L M, Mao C, Li Y L, Li Z M, Hu Q . Mater. Sci. Eng. C, 2013,33:4236. https://www.ncbi.nlm.nih.gov/pubmed/23910338

doi: 10.1016/j.msec.2013.06.022 pmid: 23910338
[71]
Zhang Y, Wang X, Su Y L, Chen D Y, Zhong W X . Mater. Sci. Eng. C, 2016,67:205. https://linkinghub.elsevier.com/retrieve/pii/S0928493116304489

doi: 10.1016/j.msec.2016.05.019
[72]
Sui B, Liu X, Sun J . ACS Appl. Mater. Inter., 2018,10:23548. https://www.ncbi.nlm.nih.gov/pubmed/29947213

doi: 10.1021/acsami.8b05616 pmid: 29947213
[73]
Li D D . J. Bionic. Eng., 2017,14:672.
[74]
Wang D, Zhang C K, Ren L, Li D D, Yu J H . Inorg. Chem. Front., 2018,5:474.
[75]
Li H Y, He J, Yu H F, Green C R, Chang J . Biomaterials, 2016,84:64. https://www.ncbi.nlm.nih.gov/pubmed/26821121

doi: 10.1016/j.biomaterials.2016.01.033 pmid: 26821121
[76]
Kapoor S, Semitela A, Goel A, Xiang Y, Du J C, Lourenco A H, Sousa D M, Granja P L, Ferreira J M F . Acta Biomater., 2015,15:210. https://www.ncbi.nlm.nih.gov/pubmed/25578990

doi: 10.1016/j.actbio.2015.01.001 pmid: 25578990
[77]
Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K . Ceram. Int., 2016,42:14700. https://linkinghub.elsevier.com/retrieve/pii/S0272884216309257

doi: 10.1016/j.ceramint.2016.06.095
[78]
Shah A, Ain Q, Aqif C, Khan A, Iqbal B, Ahmad S, Siddiqi S, Rehman I . J. Mater. Sci., 2014,50:1794.
[79]
Li Y L, Liang Q M, Lin C, Li X, Chen X F, Hu Q . Mater. Sci. Eng. C, 2017,75:646. https://www.ncbi.nlm.nih.gov/pubmed/28415511

doi: 10.1016/j.msec.2017.02.095 pmid: 28415511
[80]
Hu Q, Jiang W H, Chen X F, Li Y L, Liang Q M . Adv. Powder Technol., 2017,28:2713. https://linkinghub.elsevier.com/retrieve/pii/S0921883117303096

doi: 10.1016/j.apt.2017.07.024
[81]
Baino F, Fiorilli S, Vitale-Brovarone C . Acta Biomater., 2016,42:18. https://www.ncbi.nlm.nih.gov/pubmed/27370907

doi: 10.1016/j.actbio.2016.06.033 pmid: 27370907
[82]
Kang M S, Lee N H, Singh R K, Mandakhbayar N, Perez R, Lee J H, Kim H W . Biomaterials, 2018,162:183. https://www.ncbi.nlm.nih.gov/pubmed/29448144

doi: 10.1016/j.biomaterials.2018.02.005 pmid: 29448144
[83]
Hu S, Chang J, Liu M Q, Ning C Q . J. Mater. Sci: Mater. Med., 2009,20:281. https://www.ncbi.nlm.nih.gov/pubmed/18763024

doi: 10.1007/s10856-008-3564-5 pmid: 18763024
[84]
Khvostenko D, Hilton T J, Ferracane J L, Mitchell J C, Kruzic J J . Dent. Mater., 2016,32:73. https://www.ncbi.nlm.nih.gov/pubmed/26621028

doi: 10.1016/j.dental.2015.10.007 pmid: 26621028
[85]
Kargozar S, Baino F, Hamzehlou S, Hill R G, Mozafari M . Trends. Biotechnol., 2018,36:430. https://www.ncbi.nlm.nih.gov/pubmed/29397989

doi: 10.1016/j.tibtech.2017.12.003 pmid: 29397989
[86]
Gong W Y, Dong Y M, Wang S N, Gao X J, Chen X F . RSC Adv., 2017,7:13760.
[87]
Kaur K, Singh K J, Anand V, Bhatia G, Singh S, Kaur H, Arora D S . Ceram. Int., 2016,42:12651.
[88]
Moghanian A, Firoozi S, Tahriri M . Ceram. Int., 2017,43:12835.
[89]
Arepalli S K, Tripathi H, Hira S K, Manna P P, Pyare R, Singh S P . Mater. Sci. Eng. C, 2016,69:108. https://www.ncbi.nlm.nih.gov/pubmed/27612694

doi: 10.1016/j.msec.2016.06.070 pmid: 27612694
[90]
El-Fiqi A, Buitrago J O, Yang S H, Kim H W . Acta Biomater., 2017,60:38. https://www.ncbi.nlm.nih.gov/pubmed/28754647

doi: 10.1016/j.actbio.2017.07.036 pmid: 28754647
[91]
Kozon D, Zheng K, Boccardi E, Liu Y F, Liverani L, Boccaccini R . Materials(Basel), 2016,9:225.
[92]
Shi M C, Zhou Y H, Shao J, Chen Z T, Song B T, Chang J, Wu C T, Xiao Y . Acta Biomater., 2015,21:178. https://www.ncbi.nlm.nih.gov/pubmed/25910640

doi: 10.1016/j.actbio.2015.04.019 pmid: 25910640
[93]
Covarrubias C, Cadiz M, Maureira M, Celhay I, Cuadra F, Marttens A . J. Biomater. Appl., 2018,32:1155. https://www.ncbi.nlm.nih.gov/pubmed/29451421

doi: 10.1177/0885328218759042 pmid: 29451421
[94]
Sui B, Zhong G R, Sun J . Sci. Rep., 2016,6:33443. https://www.ncbi.nlm.nih.gov/pubmed/27628013

doi: 10.1038/srep33443 pmid: 27628013
[95]
Mao C, Chen X F, Hu Q, Miao G H, Lin C . Mater. Sci. Eng. C, 2016,58:682. https://www.ncbi.nlm.nih.gov/pubmed/26478360

doi: 10.1016/j.msec.2015.09.002 pmid: 26478360
[96]
Jaganathan H, Godin B . Adv. Drug Del. Rev., 2012,64:1800.
[97]
Xue Y, Chen Q Q, Ding T T, Sun J . Int. J. Nanomed., 2014,9:2891.
[98]
Mendes L S, Saska S, Coelho F, Capote T S, Scarel-Caminaga R M, Marchetto R, Carrodeguas R G, Gaspar A M M, Rodriguez M A . Biomed. Mater., 2018,13:025023. https://www.ncbi.nlm.nih.gov/pubmed/28972203

doi: 10.1088/1748-605X/aa9085 pmid: 28972203
[99]
Kaur G, Pandey O P, Singh K, Homa D, Scott B, Pickrell G . J. Biomed. Mater. Res. A, 2014,102:254. https://www.ncbi.nlm.nih.gov/pubmed/23468256

doi: 10.1002/jbm.a.34690 pmid: 23468256
[100]
Baino F, Hamzehlou S, Kargozar S . J. Funct. Biomater., 2018,9:25.
[101]
Wu C T, Zhou Y H, Xu M C, Han P P, Chen L, Chang J, Xiao Y . Biomaterials, 2013,34:422. https://www.ncbi.nlm.nih.gov/pubmed/23083929

doi: 10.1016/j.biomaterials.2012.09.066 pmid: 23083929
[102]
Zhang Y L, Xia L G, Zhai D, Shi M C, Luo Y X, Feng C, Fang B, Yin J B, Chang J, Wu C T . Nanoscale, 2015,7:19207. https://www.ncbi.nlm.nih.gov/pubmed/26525451

doi: 10.1039/c5nr05421d pmid: 26525451
[103]
Omar S, Repp F, Desimone P M, Weinkamer R, Wagermaier W, Ceré S, Ballarre J . J. Non-Cryst. Solids, 2015,425:1. https://linkinghub.elsevier.com/retrieve/pii/S0022309315300442

doi: 10.1016/j.jnoncrysol.2015.05.024
[104]
Li C D, Jiang C, Deng Y, Li T, Li N, Peng M Z, Wang J W . Sci. Rep., 2017,7:41331. https://www.ncbi.nlm.nih.gov/pubmed/28128363

doi: 10.1038/srep41331 pmid: 28128363
[105]
Brauer D S . Angew Chem. Int. Ed., 2015,54:4160. https://www.ncbi.nlm.nih.gov/pubmed/25765017

doi: 10.1002/anie.201405310 pmid: 25765017
[106]
Zheng K, Dai X Y, Lu M, Huser N, Taccardi N, Boccaccini A R . Collid.Surface. B, 2017,150:159. https://www.ncbi.nlm.nih.gov/pubmed/29522035

doi: 10.1364/AO.57.00B150 pmid: 29522035
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Jingshi Liang, Jiaming Zeng, Junjie Li, Jueqin She, Ruixuan Tan, Bo Liu. Cationic Antimicrobial Polymers [J]. Progress in Chemistry, 2019, 31(9): 1263-1282.
[3] Tianxi He, Qionglin Liang, Jiu Wang, Guoan Luo. Microfluidic Fabrication of Liposomes as Drug Carriers [J]. Progress in Chemistry, 2018, 30(11): 1734-1748.
[4] Han Donglin, Qi Hongzhao, Zhao Jin, Long Lixia, Ren Yu, Yuan Xubo. Enhancement of Intra-Tumor Penetration and Distribution of Nano-Drug Carriers [J]. Progress in Chemistry, 2016, 28(9): 1397-1405.
[5] Zeng Feng, Pan Zhenzhen, Zhang Meng, Huang Yongzhuo, Cui Yanna, Xu Qin. Preparation and Application of Ordered Mesoporous Silica Nanoparticles in the Therapy and Diagnosis of Tumor [J]. Progress in Chemistry, 2015, 27(10): 1356-1373.
[6] Liao Rongqiang, Liu Manshuo, Liao Xiali, Yang Bo. Cyclodextrin-Based Smart Stimuli-Responsive Drug Carriers [J]. Progress in Chemistry, 2015, 27(1): 79-90.
[7] Du Juan, Lu Ying, Wang Yilong, Guo Guiping, Pan Yingjie. Properties and Applications of Janus Nanomaterials [J]. Progress in Chemistry, 2014, 26(12): 2019-2026.
[8] Chen Yangjun, Liu Xiangsheng, Wang Haibo, Wang Yin, Jin Qiao, Ji Jian. Zwitterions in Surface Engineering of Biomedical Nanoparticles [J]. Progress in Chemistry, 2014, 26(11): 1849-1858.
[9] Xu Lina, Ma Peipei, Chen Qiang, Lin Sicong, Shen Jian. Biological Application of Sulfobetaine Methacrylate Polymers [J]. Progress in Chemistry, 2014, 26(0203): 366-374.
[10] Liu Peng, Shao Xueguang, Cai Wensheng*. Application of Pesudorotaxanes/Rotaxanes in Drug Carriers [J]. Progress in Chemistry, 2013, 25(05): 692-697.
[11] Zhang Jianjun, Gao Yuan, Sun Wanjin. Albumin as Drug Carriers [J]. Progress in Chemistry, 2011, 23(8): 1747-1754.
[12] . Anticoagulant Biomaterials [J]. Progress in Chemistry, 2010, 22(04): 760-772.
[13] Hu Shengliang Bai Peikang Sun Jing Cao Shirui. Fluorescent Carbon Nanoparticles: Recent Achievements and Technical Challenges [J]. Progress in Chemistry, 2010, 22(0203): 345-351.
[14] Wang Yujiang Tang Liming Yu Jian. Supramolecular Hydrogel Based on Low-Molecular-Weight Gelators: From Structure to Function [J]. Progress in Chemistry, 2009, 21(6): 1312-1324.
[15] Liu Qiong Yang Tingting Gao Qing Yuan Jianjun Cheng Shiyuan. Polymer-Silica Hybrid Materials and Their Applications for Controlled Drug Release [J]. Progress in Chemistry, 2009, 21(12): 2689-2695.