中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 201-209 DOI: 10.7536/PC180415 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery

Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen**(), Gang Wang, Ruilin Wang**()   

  1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
  • Received: Revised: Online: Published:
  • Contact: Jinwei Chen, Ruilin Wang
  • About author:
    ** Corresponding author e-mail: (Jinwei Chen);
    (Ruilin Wang)
  • Supported by:
    The work was supported by the Key R&D Project of Sichuan Province(No.2017GZ0397)(2017GZ0397); The Science and Technology Project of Chengdu City(2015-HM01-00531-SF)
Richhtml ( 49 ) PDF ( 1695 ) Cited
Export

EndNote

Ris

BibTeX

Silicon is expected to replace graphite as the next-generation anode material for lithium-ion batteries because of its high theoretical specific capacity. But the huge volume expansion (~300%) of silicon during lithiation/delithiation process will cause active substance pulverization and loss contact with current collector, and continuous formation of solid electrolyte layer will further result in irreversible capacity fading. It has been demonstrated that nanocrystallization and carbon coating are effective ways to overcome these problems. In this paper, the mechanism of capacity fading of silicon is introduced, and the latest research on the synthesis of Si nanoparticles and carbon composites is reviewed, mainly including coating, core-shell and embeded silicon/carbon anode materials. The core-shell and embedded type are specifically reviewed. Finally the problems of the Si nanoparticles/carbon composites are analyzed and the prospects for research are prospected.

Fig.1 Failure mechanism of silicon electrode[20]
Fig.2 The critical dimension of silicon pulverization[21]
Fig.3 The production of nSi@rGS composites[45]
Fig.4 The production of CVS nano beads[56]
Fig.5 Diagram of Si-MCS[69]
Fig.6 The production of Si-rGO/NCT composites[81]
[1]
Li M, Cong L, Zhao J, Zheng T, Tian R, Sha J, Su Z, Wang X . Journal of Materials Chemistry A, 2017,5:3371.
[2]
Shobana MK, Kim Y . Journal of Alloys And Compounds, 2017,729:463.
[3]
Chen M, Qi M, Yin J, Chen Q, Xia X . Materials Research Bulletin, 2017,95:414.
[4]
Li B, Niu G, Yi Y, Zhou X W, Liu X D, Sun L X, Wang C Y . Superlattices and Microstructures, 2017,111:57.
[5]
Liu X H, Huang J Y . Energy & Environmental Science, 2011,4:3844.
[6]
Li W, Song B, Manthiram A . Chemical Society Reviews, 2017,46:3006.
[7]
Rosenqvist T, Tuset J K . Metallurgical Transactions B-Process Metallurgy, 1987,18:471.
[8]
Zhao J, Li J, Ying P, Zhang W, Meng L, Li C . Chemical Communications, 2013,49:4477.
[9]
Yoon T, Bok T, Kim C, Na Y, Park S, Kim K S . ACS Nano, 2017,11:4808.
[10]
Liang K, Yang H, Guo W, Du J, Tian L, Wen X . Journal of Alloys and Compounds, 2018,735:441.
[11]
Ma T, Yu X, Li H, Zhang W, Cheng X, Zhu W, Qiu X . Nano Letters, 2017,17:3959.
[12]
Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee S T, He Y . Journal of the American Chemical Society, 2013,135:8350.
[13]
Liang J, Wei D, Lin N, Zhu Y, Li X, Zhang J, Fan L, Qian Y . Chemical Communications, 2014,50:6856.
[14]
Yang C S, Bley R A, Kauzlarich S M, Lee H W H, Delgado G R . Journal of the American Chemical Society, 1999,121:5191.
[15]
Beaulieu L Y, Hatchard T D, Bonakdarpour A, Fleischauer M D, Dahn J R . Journal of the Electrochemical Society, 2003,150:A1457.
[16]
Luo F, Chu G, Xia X, Liu B, Zheng J, Li J, Li H, Gu C, Chen L . Nanoscale, 2015,7:7651.
[17]
Ashuri M, He Q, Shaw LL . Nanoscale, 2016,8:74.
[18]
Obrovac M N, Christensen L . Electrochemical and Solid State Letters, 2004,7:A93.
[19]
Park C M, Kim J H, Kim H, Sohn H J . Chemical Society Reviews, 2010,39:3115.
[20]
Zuo X, Zhu J, Mueller-Buschbaum P, Cheng Y J . Nano Energy, 2017,31:113.
[21]
Liu X H, Zhong L, Huang S, Mao S X, Zhu T, Huang J Y . ACS Nano, 2012,6:1522.
[22]
Jeong S, Li X, Zheng J, Yan P, Cao R, Jung H J, Wang C, Liu J, Zhang J G . Journal of Power Sources, 2016,329:323.
[23]
Kim I S, Kumta P N . Journal of Power Sources, 2004,136:145.
[24]
Guo Z P, Milin E, Wang J Z, Chen J, Liu H K . Journal of the Electrochemical Society, 2005,152:A2211.
[25]
Liu Y, Hanai K, Yang J, Imanishi N, Hirano A, Takeda Y . Electrochemical and Solid State Letters, 2004,7:A369.
[26]
Liu Y, Wen Z Y, Wang X Y, Hirano A, Imanishi N, Takeda Y . Journal of Power Sources, 2009,189:733.
[27]
Ng S H, Wang J, Wexler D, Konstantinov K, Guo Z P, Liu H K . Angewandte Chemie-International Edition, 2006,45:6896.
[28]
He Y, Xu G, Wang C, Xu L, Zhang K . Electrochimica Acta 2018,264:173.
[29]
Kim B, Ahn J, Oh Y, Tan J, Lee D, Lee JK, Moon J . Journal of Materials Chemistry A, 2018,6:3028.
[30]
Wang G X, Ahn J H, Yao J, Bewlay S, Liu H K . Electrochemistry Communications, 2004,6:689.
[31]
Su M, Wan H, Liu Y, Xiao W, Dou A, Wang Z, Guo H . Powder Technology, 2018,323:294.
[32]
Tang X, Wen G, Song Y . Journal of Alloys and Compounds, 2018,739:510.
[33]
Xiao K, Tang Q, Liu Z, Hu A, Zhang S, Deng W, Chen X . Ceramics International, 2018,44:3548.
[34]
Kim T, Mo Y H, Nahm K S, Oh S M . Journal of Power Sources, 2006,162:1275.
[35]
Shu J, Li H, Yang R Z, Shi Y, Huang X J . Electrochemistry Communications, 2006,8:51.
[36]
Gao P, Nuli Y, He Y S, Wang J, Minett A I, Yang J, Chen J . Chemical Communications, 2010,46:9149.
[37]
Epur R, Ramanathan M, Datta M K, Hong D H, Jampani P H, Gattu B, Kumta P N . Nanoscale, 2015,7:3504.
[38]
Zhong L, Guo J, Mangolini L . Journal of Power Sources, 2015,273:638.
[39]
Wang Z L, Xu D, Huang Y, Wu Z, Wang L M, Zhang X B . Chemical Communications, 2012,48:976.
[40]
Du Y, Zhu G, Wang K, Wang Y, Wang C, Xia Y . Electrochemistry Communications, 2013,36:107.
[41]
Ji J, Ji H, Zhang L L, Zhao X, Bai X, Fan X, Zhang F, Ruoff R S . Advanced Materials, 2013,25:4673.
[42]
Tang X, Wen G, Song Y . Applied Surface Science, 2018,436:398.
[43]
Zhang C, Kang T H, Yu J S . Nano Research, 2018,11:233.
[44]
Yao W, Cui Y, Zhan L, Chen F, Zhang Y, Wang Y, Song Y . Applied Surface Science, 2017,425:614.
[45]
Yu Y, Li G, Zhou S, Chen X, Lee H W, Yang W . Carbon, 2017,120:397.
[46]
Qin J, Wu M, Feng T, Chen C, Tu C, Li X, Duan C, Xia D, Wang D . Electrochimica Acta, 2017,256:259.
[47]
Kim J M, Ko D, Oh J, Lee J, Hwang T, Jeon Y, Antink W H, Piao Y . Nanoscale, 2017,9:15582.
[48]
Li X, Meduri P, Chen X, Qi W, Engelhard M H, Xu W, Din F, Xiao J, Wang W, Wang C, Zhang J G, Liu J . Journal of Materials Chemistry, 2012,22:11014.
[49]
Liu N, Wu H, McDowell M T, Yao Y, Wang C, Cui Y . Nano Letters, 2012,12:3315.
[50]
Ma Y, Tang H, Zhang Y, Li Z, Zhang X, Tang Z . Journal of Alloys and Compounds, 2017,704:599.
[51]
Guo S, Hu X, Hou Y, Wen Z . ACS Applied Materials & Interfaces, 2017,9:42084.
[52]
Chen S, Shen L, vanAken P A, Maier J, Yu Y . Advanced Materials, 2017,29:1605650.
[53]
Lu Z, Li B, Yang D, Lv H, Xue M, Zhang C . RSC Advances, 2018,8:3477.
[54]
Liu Y, Tai Z, Zhou T, Sencadas V, Zhang J, Zhang L, Konstantinov K, Guo Z, Liu H K . Advanced Materials, 2017,29:1703028.
[55]
Liu N, Lu Z, Zhao J, McDowell M T, Lee H W, Zhao W, Cui Y . Nature Nanotechnology, 2014,9:187.
[56]
Zhang L, Rajagopalan R, Guo H, Hu X, Dou S, Liu H . Advanced Functional Materials, 2016,26:440.
[57]
Lu Z, Liu N, Lee H W, Zhao J, Li W, Li Y, Cui Y . ACS Nano, 2015,9:2540.
[58]
Huang X, Sui X, Yang H, Ren R, Wu Y, Guo X, Chen J . Journal of Materials Chemistry A, 2018,6:2593.
[59]
Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee J Y . Angewandte Chemie-International Edition, 2012,51:2409.
[60]
Ashuri M, He Q, Zhang K, Emani S, Shaw L L . Journal of Sol-Gel Science and Technology, 2017,82:201.
[61]
Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y . Nano Letters, 2011,11:2949.
[62]
Mandal M, Kruk M . Chemistry of Materials, 2012,24:123.
[63]
Huang X, Yang J, Mao S, Chang J, Hallac P B, Fell C R, Metz B, Jiang J, Hurley P T, Chen J . Advanced Materials, 2014,26:4326.
[64]
Chen S, Chen Z, Luo Y, Xia M, Cao C . Nanotechnology, 2017,28:165404.
[65]
Tang J, Dysart A D, Kim D H, Saraswat R, Shaver G M, Pol V G . Electrochimica Acta, 2017,247:626.
[66]
Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J, Guo Y G . Advanced Energy Materials, 2017,7:1601481.
[67]
Shen T, Xie D, Tang W, Wang D, Zhang X, Xia X, Wang X, Tu J . Materials Research Bulletin, 2017,96:340.
[68]
Zhuang X, Zhang Y, He L, Zhu Y, Tian Q, Guo X, Chen J, Li L, Wang Q, Song G, Yan X . Electrochimica Acta, 2017,249:166.
[69]
Jeong M G, Du H L, Islam M, Lee J K, Sun Y K, Jung H G . Nano Letters, 2017,17:5600.
[70]
Kim H, Yun Y, Lee Y C, Lee M H, Saito N, Kang J . Japanese Journal of Applied Physics, 2018, 57: 0102B2.
[71]
Li X, Yang D, Hou X, Shi J, Peng Y, Yang H . Journal of Alloys and Compounds, 2017,728:1.
[72]
Liu H, Shan Z, Huang W, Wang D, Lin Z, Cao Z, Chen P, Meng S, Chen L . ACS Applied Materials & Interfaces, 2018,10:4715.
[73]
Chen H, Hou X, Chen F, Wang S, Wu B, Ru Q, Qin H, Xia Y . Carbon, 2018,130:433.
[74]
Liu W, Zhong Y, Yang S, Zhang S, Yu X, Wang H, Li Q, Li J, Cai X, Fang Y . Sustainable Energy & Fuels, 2018,2:679.
[75]
Shen D, Huang C, Gan L, Liu J, Gong Z, Long M . ACS Applied Materials & Interfaces, 2018,10:7946.
[76]
Yang Y, Sun G, Lin J, Chen D, Zhang Y, Zhao J . Journal of Alloys and Compounds, 2017,725:899.
[77]
Lee B, Liu T, Kim S K, Chang H, Eom K, Xie L, Chen S, Jang H D, Lee S W . Carbon, 2017,119:438.
[78]
Jiao M L, Qi J, Shi Z Q, Wang C Y . Journal of Materials Science, 2018,53:2149.
[79]
Huang R A, Guo Y, Chen Z, Zhang X, Wang J, Yang B . Ceramics International, 2018,44:4282.
[80]
Ababtain K, Babu G, Susarla S, Gullapalli H, Masurkar N, Ajayan P M, Arava L M R . Materials Research Express, 2018,5:025506.
[81]
Tang X, Wen G, Zhang Y, Wang D, Song Y . Applied Surface Science, 2017,425:742.
[82]
He Z, Wu X, Yi Z, Wang X, Xiang Y . Materials Letters, 2017,200:128.
[83]
Yang Y, Wang Z, Zhou Y, Guo H, Li X . Materials Letters, 2017,199:84.
[84]
An G H, Kim H, Ahn H J . ACS Applied Materials & Interfaces, 2018,10:6235.
[85]
Fang M, Wang Z, Chen X, Guan S . Applied sSurface Science, 2018,436:345.
[86]
Zhang Y C, You Y, Xin S, Yin Y X, Zhang J, Wang P, Zheng X S, Cao F F, Guo Y G . Nano Energy, 2016,25:120.
[87]
Park S W, Shim H W, Kim J C, Kim D W . Journal of Alloys and Compounds, 2017,728:490.
[88]
Bao W, Wang J, Chen S, Li W, Su Y, Wu F, Tan G, Lu J . Journal of Materials Chemistry A, 2017,5:24667.
[89]
Liang G, Qin X, Zou J, Luo L, Wang Y, Wu M, Zhu H, Chen G, Kang F, Li B . Carbon, 2018,127:424.
[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[3] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[4] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[5] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[6] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[7] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[8] Yanchen Liu, Bin Huang, Yijia Shao, Muyuan Shen, Li Du, Shijun Liao. Potassium-Ion Battery and Its Recent Research Progress [J]. Progress in Chemistry, 2019, 31(9): 1329-1340.
[9] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[10] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[11] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.
[12] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[13] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.
[14] Ming Hai, Ming Jun, Qiu Jingyi, Yu Zhongbao, Li Meng, ZhengJunwei. Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium [J]. Progress in Chemistry, 2016, 28(2/3): 204-218.
[15] Niu Jin, Zhang Su, Niu Yue, Song Huaihe, Chen Xiaohong, Zhou Jisheng. Silicon-Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(9): 1275-1290.