中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1701-1721 DOI: 10.7536/PC180132 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Application of Electrochemical Quartz Crystal Microbalance

Xiaoyan Wei, Gang Wang*, Anfeng Li, Yizhou Quan, Jinwei Chen, Ruilin Wang*   

  1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51602209), the Provincial Natural Science Foundation of Sichuan (No.2016GZ0423),and the Fundamental Research Funds for the Central Universities(No.YJ201746, 2018SCUH0025).
PDF ( 1044 ) Cited
Export

EndNote

Ris

BibTeX

Electrochemical Quartz Crystal Microbalance (EQCM) is a testing technique that combines quartz crystal microbalance (QCM) and electrochemical detection. EQCM is one of effective methods to study the surface reaction due to its simplicity, rapidness, and the ability to dynamically detect the deposition, adsorption, or dissolution of an active material on a quartz crystal at nanogram level. At the same time, because the EQCM testing technology is an in-situ testing method, online real-time monitoring can be realized. With its high precision and high sensitivity, it is possible to further analyze the reaction process and deep-level mechanism at the surface interface. This paper summarizes the application of EQCM in the fields of electrochemical, biomedical and oil field chemistry, as well as research mechanism and dynamics, and puts forward the new research direction of EQCM and the problems in its development.
Contents
1 Introduction
2 Application of EQCM in electrochemistry
2.1 Application of EQCM in electro-synthesis
2.2 Application of EQCM in electrode-position and dissolution
2.3 Application of EQCM in adsorption and desorption
2.4 Application of EQCM in polymer modified electrode
2.5 Membrane ionic, charge conduction movement and determination
2.6 EQCM in energy conversion and storage applications
3 Application of EQCM in biomedical and oilfield chemistry
4 Application of EQCM in other areas
4.1 Gas detection
4.2 Structural characterization
5 Application of EQCM in study of the reaction process of kinetics and mechanism
5.1 Study of reaction mechanism by EQCM
5.2 Study on thermodynamics and kinetics of reaction process by EQCM
6 Conclusion

CLC Number: 

[1] Hung C C, Lim P Y, Chen J R, Shih H C. Journal of Power Sources, 2011, 196:140.
[2] 徐竹(Xu Z), 刘晓静(Liu X J). 化工新型材料(New Chemical Materials), 2015:38.
[3] Baker C K, Qiu Y J, Reynolds J R. Journal of Physical Chemistry, 1991, 95:4446.
[4] Bose C S C, Basak S, Rajeshwar K. Journal of Physical Chemistry, 1992, 96:9899.
[5] Chung S M, Paik W K, Yeo I H. Synthetic Metals, 1997, 84:155.
[6] Xie Q J, Kuwabata S, Yoneyama H. Journal of Electroanalytical Chemistry, 1997, 420:219.
[7] Kontturi K, Murtomaki L, Pentti P, Sundholm G. Synthetic Metals, 1998, 92:179.
[8] Hwang B J, Shieh D T, Chieh W C, Liaw D J, Li L J. Thin Solid Films, 1997, 301:175.
[9] Plausinaitis D, Sinkevicius L, Mikoliunaite L, Plausinaitiene V, Ramanaviciene A, Ramanavicius A. Physical Chemistry Chemical Physics, 2017, 19:1029.
[10] Daprano G, Leclerc M, Zotti G, Schiavon G. Chemistry of Materials, 1995, 7:33.
[11] Baba A, Tian S J, Stefani F, Xia C J, Wang Z H, Advincula R C, Johannsmann D, Knoll W. Journal of Electroanalytical Chemistry, 2004, 562:95.
[12] Shimazu K, Yagi I, Sato Y, Uosaki K. Langmuir, 1992, 8:1385.
[13] Naoi K, Oura Y, Iwamizu Y, Oyama N. Journal of the Electrochemical Society, 1995, 142:354.
[14] Bacskai J, Martinusz K, Czirok E, Inzelt G, Kulesza P J, Malik M A. Journal of Electroanalytical Chemistry, 1995, 385:241.
[15] Kvarnstrom C, Neugebauer H, Blomquist S, Ahonen H J, Kankare J, Ivaska A. Electrochimica Acta, 1999, 44:2739.
[16] Aurbach D, Moshkovich M, Cohen Y, Schechter A. Langmuir, 1999, 15:2947.
[17] Cheng L, Niu L, Gong J, Dong S J. Chemistry of Materials, 1999, 11:1465.
[18] Ferreira M, Varela H, Torresi R M, Tremiliosi-Filho G. Electrochimica Acta, 2006, 52:434.
[19] Vrubel H, Hu X. ACS Catalysis, 2013, 3:2002.
[20] Alhedabi T, Cattey H, Roussel C, Blondeau-Patissier V, Gharbi T, Herlem G. Materials Chemistry and Physics, 2017, 185:183.
[21] Uosaki K, Ye S, Naohara H, Oda Y, Haba T, Kondo T. Journal of Physical Chemistry B, 1997, 101:7566.
[22] Bohannan E W, Huang L Y, Miller F S, Shumsky M G, Switzer J A. Langmuir, 1999, 15:813.
[23] Chen S M. Journal of Electroanalytical Chemistry, 2002, 521:29.
[24] 李云龙(Li Y L), 谢青季(Xie Q J), 姚守拙(Yao S Z). 应用化学(Applied Chemistry), 2007:628.
[25] 蒋雪琴(Jiang X Q), 曹志军(Cao Z J), 谢青季(Xie Q J), 姚守拙(Yao S Z). 物理化学学报(Journal of Physical Chemistry), 2008:230.
[26] Abbott A P, El Ttaib K, Frisch G, McKenzie K J, Ryder K S. Physical Chemistry Chemical Physics, 2009, 11:4269.
[27] Thomas S, Kowalski D, Molinari M, Mallet J. Electrochimica Acta, 2018, 265:166.
[28] Aurbach D, Moshkovich M. Journal of the Electrochemical Society, 1998, 145:2629.
[29] Aurbach D, Moshkovich M, Schechter A, Turgeman R. Electrochemical and Solid State Letters, 2000, 3:31.
[30] Lu Z, Schechter A, Moshkovich M, Aurbach D. Journal of Electroanalytical Chemistry, 1999, 466:203.
[31] 陈国良(Chen G L), 卢江红(Lu J H), 董小玉(Dong X Y), 李芳启(Li F Q), 方敏敏(Fang M M), 洪苏敏(Hong S M), 罗志英(Luo Z Y), 潘佳妹(Pan J M). 漳州师范学院学报(自然科学版)(Journal of Zhangzhou Normal University (Natural Science Edition)), 2005:50.
[32] 郭艺容(Guo Y R), 林珩(Lin Y), 李凯(Li K), 林燕美(Lin Y M), 林华(Lin H), 陈碧桑(Chen B S), 汪庆祥(Wang Q X), 陈国良(Chen G L).第十一届全国电分析化学会议(The Eleventh National Conference on Electroanalytical Chemistry). 2011. 2.
[33] Scendo M. Corrosion Science, 2007, 49:373.
[34] Joiret S, Keddam M, Novoa X R, Perez M C, Rangel C, Takenouti H. Cement & Concrete Composites, 2002, 24:7.
[35] Escudero-Escribano M, Pedersen A F, Paoli E A, Frydendal R, Friebel D, Malacrida P, Rossmeisl J, Stephens I E L, Chorkendorff I. The Journal of Physical Chemistry B, 2017.
[36] Schneider T W, Buttry D A. Journal of the American Chemical Society, 1993, 115:12391.
[37] Naohara H, Ye S, Uosaki K. Journal of Physical Chemistry B, 1998, 102:4366.
[38] Jusys Z, Massong H, Baltruschat H. Journal of the Electrochemical Society, 1999, 146:1093.
[39] Santos M C, Miwa D W, Machado S A S. Electrochemistry Communications, 2000, 2:692.
[40] Kawaguchi T, Yasuda H, Shimazu K, Porter M D. Langmuir, 2000, 16:9830.
[41] Levi M D, Levy N, Sigalov S, Salitra G, Aurbach D, Maier J. Journal of the American Chemical Society, 2010, 132:13220.
[42] Levi M D, Sigalov S, Salitra G, Aurbach D, Maier J. Chemphyschem, 2011, 12:854.
[43] Antonio J L, Hofler L, Lindfors T, de Torresi S I C. Chemelectrochem, 2016, 3:2146.
[44] Zotti G, Schiavon G, Zecchin S. Synthetic Metals, 1995, 72:275.
[45] Naoi K, Oura Y, Maeda M, Nakamura S. Journal of the Electrochemical Society, 1995, 142:417.
[46] Zotti G, Zecchin S, Schiavon G, Groenendaal L. Chemistry of Materials, 2000, 12:2996.
[47] Thiagarajan S, Chen S M. Talanta, 2007, 74:212.
[48] Neubert T J, Rosicke F, Sun G G, Janietz S, Gluba M A, Hinrichs K, Nickel N H, Rappich J. Applied Surface Science, 2017, 392:975.
[49] Delong H C, Donohue J J, Buttry D A. Langmuir, 1991, 7:2196.
[50] Naoi K, Oyama N. Proceeding of the Symposium on High Power, Ambient Temperature Lithium Batteries, 1992. 187.
[51] Demoustierchampagne S, Reynolds J R, Pomerantz M. Chemistry of Materials, 1995, 7:277.
[52] Snyder S R, White H S. Journal of Physical Chemistry, 1995, 99:5626.
[53] Shouji E, Okamoto Y, Ozaki F, Naoi K. Polymers for Advanced Technologies, 1996, 7:177.
[54] Barbero C, Miras M C, Haas O, Kotz R. Journal of the Electrochemical Society, 1997, 144:4170.
[55] Rahman A, Won M S, Shim Y B. Analytical Chemistry, 2003, 75:1123.
[56] Pralong V, Leriche J B, Beaudoin B, Naudin E, Morcrette M, Tarascon J M. Solid State Ionics, 2004, 166:295.
[57] Weidlich C, Mangold K M, Juttner K. Electrochimica Acta, 2005, 50:1547.
[58] 李慧(Li H), 李越(Li Y), 郝晓刚(Hao X G), 张忠林(Zhang Z L), 刘世斌(Liu S B). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011:1645.
[59] 马旭莉(Ma X L), 张权(Zhang Q), 杜晓(Du X), 郝晓刚(Hao X G), 李修敏(Li X M), 乔文磊(Qiao W L), 李莎莎(Li S S). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2016:2139.
[60] Singh A K, Singh M. Journal of Molecular Recognition, 2017.
[61] Manna B, Raj C R. ACS Sustainable Chemistry & Engineering, 2017, 5:9412.
[62] Medina-Ramos J, Lee S S, Fister T T, Hubaud A A, Sacci R L, Mullins D R, DiMeglio J L, Pupillo R C, Velardo S M, Lutterman D A, Rosenthal J, Fenter P. ACS Catalysis, 2017, 7:7285.
[63] Wilde C P, Zhang M J. Electrochimica Acta, 1994, 39:347.
[64] Hepel M, Chen M Y, Stimming U.Proceedings of New Materials for Fuel Cell Systems,Montreal:Ecole Polytech, 1995.738.
[65] Chen G L, Chen S P, Zhen C H, Zhou Z Y, Sun S G. Acta Chimica Sinica, 2001, 59:1253.
[66] 陈国良(Chen G L), 陈声培(Chen S P), 林珩(Lin Y), 郑杏红(Zheng X H), 孙世刚(Sun S G). 电化学(Electrochemical), 2001:452.
[67] 陈国良(Chen G L), 陈声培(Chen S P), 周志有(Zhou Z Y), 甄春花(Zhen C H), 孙世刚(Sun S G). 电化学(Electrochemical), 2001:96.
[68] 陈国良(Chen G L), 林珩(Lin Y), 林进妹(Lin J M), 林洵(Lin X), 许振芳(Xu Z F), 朱则善(Zhu Z S). 福建师范大学学报(自然科学版)(Journal of Fujian Normal University (Natural Science Edition)), 2002:46.
[69] 陈国良(Chen G L), 陈声培(Chen S P), 林珩(Lin Y), 许振芳(Xu Z F), 林洵(Lin X), 孙世刚(Sun S G). 厦门大学学报(自然科学版)(Journal of Xiamen University(Natural Science Edition)), 2002:211.
[70] 陈国良(Chen G L), 林珩(Lin Y), 林洵(Lin X), 许振芳(Xu Z F), 陈声培(Chen S P). 催化学报(Journal of Catalysis), 2002:157.
[71] 卢江红(Lu J H), 林进妹(Lin J M), 林爱兰(Lin A L), 李鲤燕(Li L Y), 黄如莺(Huang R Y), 陈国良(Chen G L). 福州大学学报(自然科学版)(Journal of Fuzhou University (Natural Science Edition)), 2003:747.
[72] 陈国良(Chen G L), 黄明苍(Huang M C), 林秀梅(Lin X M), 黄如莺(Huang R Y), 胡杰华(Hu J H), 郑子山(Zheng Z S). 漳州师范学院学报(自然科学版) (Journal of Zhangzhou Normal University (Natural Science Edition)),2003:53.
[73] Baranton S, Coutanceau C, Garnier E, Leger J M. Journal of Electroanalytical Chemistry, 2006, 590:100.
[74] Umeda M, Maruta T, Inoue M, Nakazawa A. Journal of Physical Chemistry C, 2008, 112:18098.
[75] Argirusis C, Matic S, Schneider O. Physica Status Solidi A-Applications And Materials Science, 2008, 205:2400.
[76] 黄素清(Huang S Q), 黄钊(Huang Z), 谷铁安(Gu T A), 谢青季(Xie Q J), 姚守拙(Yao S Z). 分析化学(Analytical Chemistry), 2011:978.
[77] 黄钊(Huang Z), 刘艳(Liu Y), 谢青季(Xie Q J), 孟越(Meng Y), 谢芳云(Xie F Y), 马铭(Ma M), 姚守拙(Yao S Z). 第十一届全国电分析化学会议(The Eleventh National Conference on Electroanalytical Chemistry). 2011. 1.
[78] John J, Hugar K M, Rivera-Melendez J, Kostalik H A, Rus E D, Wang H, Coates G W, Abruna H D. Journal of the American Chemical Society, 2014, 136:5309.
[79] Soliman A B, Abdel-Samad H S, Rehim S S A, Ahmed M A, Hassan H H. Journal of Power Sources, 2016, 325:653.
[80] Aurbach D, Zaban A. Journal of the Electrochemical Society, 1995, 142:L108.
[81] Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E. Journal of Power Sources, 1997, 68:91.
[82] Aurbach D. Journal of Power Sources, 2000, 89:206.
[83] Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. Electrochimica Acta, 2002, 47:1423.
[84] Moshkovich M, Cojocaru M, Gottlieb HE, Aurbach D. Journal of Electroanalytical Chemistry, 2001, 497:84.
[85] Morita M, Shibata T, Yoshimoto N, Ishikawa M. Electrochimica Acta, 2002, 47:2787.
[86] Cohen YS, Aurbach D. Electrochemistry Communications, 2004, 6:536.
[87] Larush-Asraf L, Biton A, Teller H, Zinigrad E, Aurbach D. Journal of Power Sources, 2007, 174:400.
[88] Sharon D, Etacheri V, Garsuch A, Afri M, Frimer A A, Aurbach D. Journal of Physical Chemistry Letters, 2013, 4:127.
[89] Sharon D, Hirsberg D, Afri M, Gorsuch A, Frimer A A, Aurbach D. Journal of Physical Chemistry C, 2014, 118:15207.
[90] Sharon D, Hirsberg D, Afri M, Chesneau F, Lavi R, Frimer A A, Sun Y K, Aurbach D. ACS Applied Materials & Interfaces, 2015, 7:16590.
[91] Sharon D, Hirsberg D, Salama M, Afri M, Frimer A A, Noked M, Kwak W, Sun Y K, Aurbach D. ACS Applied Materials & Interfaces, 2016, 8:5300.
[92] Rosenman A, Elazari R, Salitra G, Markevich E, Aurbach D, Garsuch A. Journal of the Electrochemical Society, 2015, 162:A470.
[93] Jimenez P, Levillain E, Aleveque O, Guyomard D, Lestriez B, Gaubicher J. Angewandte Chemie-International Edition, 2017, 56:1553.
[94] Levi M D, Salitra G, Levy N, Aurbach D, Maier J. Nature Materials, 2009, 8:872.
[95] Levi M D, Sigalov S, Salitra G, Elazari R, Aurbach D. Journal of Physical Chemistry Letters, 2011, 2:120.
[96] Levi M D, Sigalov S, Aurbach D, Daikhin L. Journal of Physical Chemistry C, 2013, 117:14876.
[97] Levi M D, Daikhin L, Aurbach D, Presser V. Electrochemistry Communications, 2016, 67:16.
[98] Ningsih P, Holdsworth C Z, Donne S W. Synthetic Metals, 2014, 196:8.
[99] Zhu J, Xu Y, Wang J, Lin J, Sun X, Mao S. Physical Chemistry Chemical Physics, 2015, 17:28666.
[100] Xing J, Wang Y, Zhu X. Electronic Components and Materials, 2016, 35:70.
[101] Krittayavathananon A, Iamprasertkun P, Sawangphruk M. Carbon, 2016, 109:314.
[102] Jadhav P R, Suryawanshi M P, Dalavi D S, Patil D S, Jo E A, Kolekar S S, Wali A A, Karanjkar M M, Kim J H, Patil P S. Electrochimica Acta, 2015, 176:523.
[103] Gao J, Tian S, Qi L, Yoshio M, Wan H. Journal of Power Sources, 2015, 297:121.
[104] Suktha P, Phattharasupakun N, Dittanet P, Sawangphruk M. RSC Advances, 2017, 7:9958.
[105] Asenjo B, Chaparro A M, Gutierrez M T, Herrero J. Thin Solid Films, 2006, 511:117.
[106] Venkatasamy V, Jayaraju N, Cox S M, Thambidurai C, Happek U, Stickney J L. Journal of Applied Electrochemistry, 2006, 36:1223.
[107] Irshad A, Munichandraiah N. Journal of Physical Chemistry C, 2013, 117:8001.
[108] Pacquette A L. Dissertations & Theses, Gradworks, 2015.
[109] Delong H C, Buttry D A. Langmuir, 1992, 8:2491.
[110] Wang B Q, Zhang J Z, Cheng G J, Dong S J. Analytica Chimica Acta, 2000, 407:111.
[111] Wang J, Jiang M. Langmuir, 2000, 16:2269.
[112] 李金花(Li J H), 胡劲波(Hu J B), 李启隆(Li Q L). 高等学校化学学报(Chemical Journal of Chinese Universities), 2005:1035.
[113] 梁金玲(Liang J L), 吴玲玲(Wu L L), 周剑章(Zhou J Z), 林仲华(Lin Z H). 第十三次全国电化学会议(The 13th National Electrochemical Conference). 2005. 2.
[114] 梁金玲(Liang J L), 周剑章(Zhou J Z), 陈巧琳(Chen Q L), 林玲玲(Lin L L), 林仲华(Lin Z H). 物理化学学报(Journal of Physical Chemistry), 2007:1421.
[115] 苏育华(Su Y H), 谢青季(Xie Q J), 姚守拙(Yao S Z). 第四届海峡两岸分析化学学术会议(The Fourth Cross-Strait Analytical Chemistry Conference). 中国湖北武汉Wuhan, Hubei, China, 2006. p.2.
[116] Shakkthivel P, Chen S M. Biosensors & Bioelectronics, 2007, 22:1680.
[117] Yogeswaran U, Thiagarajan S, Chen S M. Analytical Biochemistry, 2007, 365:122.
[118] Xie X H, Li E L, Tang Z K. Electrochemistry Communications, 2010, 12:600.
[119] 曾艳子(Zeng Y Z), 谢青季(Xie Q J), 周亚平(Zhou Y P), 黄毅(Huang Y), 秦聪(Qin C). 精细化工中间体(Fine chemical intermediates), 2011:48.
[120] 曾艳子(Zeng Y Z). 湖南师范大学博士论文(Doctoral Dissertation of Hunan Normal University), 2012.
[121] Zheng Q, Yang Y, Yan Y, Yu Y, Liu Y, Gao W, Ding K, Shao H. Electrochimica Acta, 2016, 207:135.
[122] 段明(Duan M), 王虎(Wang H), 谢娟(Xie J), 方申文(Fang S W), 郭海军(Guo H J). 油田化学(Oilfield Chemistry), 2009:398.
[123] 王虎(Wang H), 谢娟(Xie J), 段明(Duan M). 中国腐蚀电化学及测试方法专业委员会2012学术年会(Chinese Society of Corrosion Electrochemistry and Testing Methods 2012 Annual Conference). 2012. 1.
[124] 王虎(Wang H), 陈龙驹(Chen L J), 唐鋆磊(Tang Y L), 王小芳(Wang X F), 段明(Duan M). 油田化学(Oilfield Chemistry), 2016:345.
[125] Gupta N, Singh R S, Shah K, Prasad R, Singh M. Journal of Molecular Recognition:JMR, 2018:e2709.
[126] Li F B, Hillman A R, Lubetkin S D, Roberts D J. Journal of Electroanalytical Chemistry, 1992, 335:345.
[127] Dall'Antonia L H, Miyata M E V, de Torresi S I C.Chemical and Biological Sensors and Analytical Methods Ⅱ.San Francisco:Electrochemical Society, 2001-18.76.
[128] Dall'Antonia L H, Vidotti M E, de Torresi S I C, Torresi R M. Electroanalysis, 2002, 14:1577.
[129] Liu S Y, Kao Y H, Su Y O, Perng T P. Journal of Alloys and Compounds, 2001, 316:280.
[130] Pontie M, Gobin C, Pauporte T, Bedioui F, Devynck J. Analytica Chimica Acta, 2000, 411:175.
[131] Shpigel N, Levi MD, Sigalov S, Girshevitz O, Aurbach D, Daikhin L, Pikma P, Marandi M, Janes A, Lust E, Jaeckel N, Presser V. Nature Materials, 2016, 15:570.
[132] Teller H, Ohanona S, Kashyap D, Schechter A. Journal of Materials Science, 2016, 51:8471.
[133] Hillman AR, Swann MJ, Bruckenstein S. Journal of Physical Chemistry, 1991, 95:3271.
[134] Visy C, Lukkari J, Kankare J. Synthetic Metals, 1997, 87:81.
[135] Lyon L A, Hupp J T. Journal of Physical Chemistry B, 1999, 103:4623.
[136] Nam K W, Kim K B. Journal of the Electrochemical Society, 2002, 149:A346.
[137] Cohen Y S, Levi M D, Aurbach D. Langmuir, 2003, 19:9804.
[138] Kwabi D G, Tulodziecki M, Pour N, Itkis D M, Thompson C V, Shao-Horn Y. Journal of Physical Chemistry Letters, 2016, 7:1204.
[139] Kelly A J, Naoi K, Ohsaka T, Oyama N. Bunseki Kagaku, 1991, 40:835.
[140] Hillman A R, Loveday D C, Bruckenstein S. Journal of Electroanalytical Chemistry, 1991, 300:67.
[141] Maia G, Torresi R M, Ticianelli E A, Nart F C. Journal of Physical Chemistry, 1996, 100:15910.
[142] Hepel J, Bruckenstein S, Hepel M. Microchemical Journal, 1997, 55:179.
[143] Takada K, Diaz D J, Abruna H D, Cuadrado I, Casado C, Alonso B, Moran M, Losada J. Journal of the American Chemical Society, 1997, 119:10763.
[144] Finsgar M, Lesar A, Kokalj A, Milosev I. Electrochimica Acta, 2008, 53:8287.
[145] Sigalov S, Levi M D, Salitra G, Aurbach D, Maier J. Electrochemistry Communications, 2010, 12:1718.
[146] Tsai W Y, Taberna P L, Simon P. Journal of the American Chemical Society, 2014, 136:8722.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[4] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[5] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[6] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[7] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[8] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[9] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[10] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[11] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[12] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[13] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[14] Jun Jin, Ziheng Lin, Lei Shi. One-Dimensional New Carbon Allotrope: Carbon Chain [J]. Progress in Chemistry, 2021, 33(2): 188-198.
[15] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.