中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 438-449 DOI: 10.7536/PC150940 Previous Articles   Next Articles

• Review and comments •

Carbon Materials Modified Bismuth Based Photocatalysts and Their Applications

Zhang Xia, Fan Jing*   

  1. Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
  • Received: Revised: Online: Published:
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(No. 21377036)and Henan Provincal Science and Technology Innovation Excellent Talent Program(No. 144200510004).
PDF ( 1113 ) Cited
Export

EndNote

Ris

BibTeX

Visible light responsive semiconductor photocatalysts have attracted considerable attention due to their capacity of efficient use of sunlight to solve energy and environmental problems. Most of bismuth based photocatalysts have narrow bandgap and can absorb abundant visible light in natural solar spectrum. Moreover,the unique layered structure and deeper valance band of the bismuth based photocatalysts make them to have excellent photocatalytic activity and become the focus of research in photocatalysis field. Carbonaceous materials have been widely studied because of their unique physicochemical properties such as large surface area, high thermal and chemical stability and outstanding electron conductivity. Combining bismuth-based photocatalysts with carbonaceous materials, the synergistic effects between them endow the composites with increased surface adsorption capacity, extended light absorption thresholds, and enhanced separation of photogenerated electron/hole pairs. All of these are beneficial to the improvement of photocatalytic activities. In addition, it is easier to separate and recover the composite photocatalysts for recycling utilization, thereby reducing the cost in practical application. Therefore, bismuth based photocatalysts modified with diverse carbonaceous materials are expected to have promising application in future. In this article, the researches on the type, preparation methods, structure, performance, mechanism of action, and application of these carbonaceous materials modified bismuth photocatalysts have been reviewed in detail. The main problems in design, mechanism research and application are presented, and the future development directions have been suggested.

Contents
1 Introduction
1.1 Bismuth based photocatalysts
1.2 Construction of bismuth based composite photocatalysts
2 Carbon loading bismuth based photocatalysts
2.1 Activated carbon supporter
2.2 Graphene supporter
2.3 Carbon nanotubes supporter
2.4 Fullerence and other nanocarbon supporter
3 Carbon coating bismuth-based photocatalysts
4 Carbon doping bismuth-based photocatalysts
5 Conclusion and outlook

CLC Number: 

[1] Osterloh F E. Chem. Mater., 2008, 20: 35.
[2] 龙明策(Long M C), 蔡俊(Cai J), 蔡伟民(Cai W M), 陈恒(Chen H), 柴歆烨(Chai X Y). 化学进展(Progress in Chemistry), 2006, 18(9): 1065.
[3] Sun S M, Wang W Z, Zhang L, Zhou L, Yin W Z, Shang M. Environ. Sci. Technol., 2009, 43(6): 2005.
[4] Yu C L, Cao F F, Li G, Wei R F, Yu G C, Jin R C, Fan Q Z, Wang C Y. Sep. Purif. Technol., 2013, 120: 110.
[5] Wang W Z, Serp P, Kalck P, Luís Faria J. J. Mol. Catal. A: Chemical, 2005, 235: 194.
[6] Saison T, Chemin N, Chanéac C, Durupthy O, Ruaux V, Mariey Maugé F, Beaunier P, Jolivet J P. J. Phys. Chem. C, 2011, 115(13): 5657.
[7] Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112: 747.
[8] Kusainova A M, Zhou W Z, Irvine J T S, Lightfoot P. J. Solid State Chem., 2002, 166: 148.
[9] Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D. Appl. Catal. B, 2006, 68: 125.
[10] Li J, Yu Y, Zhang L Z. Nanoscale, 2014, 6: 8473.
[11] Cheng H F, Huang B B, Dai Y. Nanoscale, 2014, 6: 2009.
[12] Wang W J, Huang B B, Ma X C, Wang Z Y, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. Chem. Eur. J., 2013, 19: 14777.
[13] Zhang R, Dai Y, Lou Z Z, Li Z J, Wang Z Y, Yang Y M, Qin X Y, Zhang X Y, Huang B B. Cryst. Eng. Comm., 2014, 16: 4631.
[14] Zhang L S, Wang W Z, Yang J O, Chen Z G, Zhang W Q, Zhou L, Liu S W. Appl. Catal. A: Gen., 2006, 308: 105.
[15] Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P. Mater. Lett., 2011, 65(9): 1344.
[16] Shi R, Lin J, Wang Y J, Xu J, Zhu Y F. J. Phys. Chem. C, 2010, 114(14): 6472.
[17] Rullens F, Laschewsky A, Devillers M. Chem. Mater., 2006, 18(3): 771.
[18] Zhang S C, Zhang C, Man Y, Zhu Y F. J. Solid State Chem., 2006, 179(1): 62.
[19] Zhang Z J, Wang W Z, Shang M, Yin W Z. J. Hazard. Mater., 2010, 177: 1013.
[20] Zhao X, Liu H J, Shen Y L, Qu J H. App. Catal. B: Environ., 2011, 106(1/2): 63.
[21] Guo C S, Xu J, Wang S F, Zhang Y, He Y, Li X C. Catal. Sci. Technol., 2013, 3: 1603.
[22] Pan C S, Zhu Y F. Environ. Sci. Technol., 2010, 44(14): 5570.
[23] Zhang S M, Zhang G K, Yu S J, Chen X G, Zhang X Y. J. Phys. Chem. C, 2009, 113(46): 20029.
[24] Bhat S S M, Sundaram N G. RSC Adv., 2013, 3: 14371.
[25] Lin X P, Huang T, Huang F Q, Wang W D, Shi J L. J. Mater. Chem., 2007, 17: 2145.
[26] Shenawi-Khalil S, Uvarov V, Kritsman Y, Menes E, Popov I, Sasson Y. Catal. Commun., 2011, 12: 1136.
[27] Jin X L, Ye L Q, Wang H, Su Y R, Xie H Q, Zhong Z G, Zhang H. Appl. Catal. B: Environ., 2015, 165: 668.
[28] Wang G Z, Sun Q L, Liu Y Y, Huang B B, Dai Y, Zhang X Y, Qin X Y. Chem. Eur. J., 2015, 21: 2364.
[29] Fan J, Hu X Y, Xie Z G, Zhang K L, Wang J J. Chem. Eng. J., 2012, 179: 44.
[30] Zhang K L, Xie Z G, Fan J, Hu X H, Wang J J. J. Environ. Eng., 2012, 138(3): 259.
[31] Hu X Y, Fan J, Zhang K L, Wang J J. Chemosphere, 2012, 87(10): 1155.
[32] Hu X X, Fan J, Zhang K L, Yu N, Wang J J. Ind. Eng. Chem. Res, 2014, 53: 14623.
[33] Saison T, Gras P, Chemin N, Chaneac C, Durupthy O, Brezova V, Colbeau-Justin C, Jolivet J P. J. Phys. Chem. C, 2013, 117: 22656.
[34] Tian G H, Chen Y J, Zhou W, Pan K, Dong Y Z, Tian C G, Fu H G. J. Mater. Chem., 2011, 21: 887.
[35] 段芳(Duan F), 张琴(Zhang Q),魏取福(Wei Q F),施冬健(Shi D J), 陈明清(Chen M Q). 化学进展(Progress in Chemistry), 2014, 26(1): 30.
[36] Adams L K, Lyon D Y, Alvarez P J J. Water Res., 2006, 40(19): 3527.
[37] Li Y Y, Wang J S, Yao H C, Dang L Y, Li Z J. Catal. Commu., 2011, 12: 660.
[38] Cao J, Xu B, Lin H, Chen S. Chem. Eng. J., 2013, 228: 482.
[39] Elahifard M R, Rahimnejad S, Haghighi S, Gholami M R. J.Am. Chem. Soc., 2007, 129: 9552.
[40] Liu Y Y, Wang Z Y, Huang B B, Zhang X Y, Qin X Y, Dai Y. J.Colloid Interf. Sci., 2010, 348(1): 211.
[41] Shenawi-Khalil S, Uvarov V, Fronton S, Popov I, Sasson Y. J. Phys. Chem. C, 2012, 116 (20): 11004.
[42] Wang P, Huang B B, Dai Y, Whangbo M H. Phys. Chem. Chem. Phys., 2012, 14: 9813.
[43] Pan C S, Zhu Y F. Catal. Sci. Technol., 2015, 5: 3071.
[44] Li Y Q, Wang Z Y, Huang B B, Dai Y, Zhang X Y, Qin X Y. Appl. Surf. Sci., 2015, 347: 258.
[45] Murcia-Lopez S, Navio J A, Hidalgo M C. Appl. Catal. A: Gen., 2013, 466: 51.
[46] Jiang Z Y, Huang B B, Lou Z Z, Wang Z Y, Meng X D, Liu Y Y, Qin X Y, Zhang X Y, Dai Y. Dalton Trans., 2014, 43: 8170.
[47] Moniz S J A, Shevlin S A, Martin D J, Guo Z X, Tang J W. Energy Environ. Sci., 2015, 8: 731.
[48] Germain V, Brioude A, Ingert D, Pileni M P. J. Chem. Phys., 2005, 122: 124707.
[49] Zhang H, Zong R L, Zhao J C, Zhu Y F. Environ. Sci. Technol., 2008, 42(10): 3803.
[50] Liu Y F, Yao W Q, Liu D, Zong R L, Zhang M, Ma X G, Zhu Y F. Appl. Catal. B: Environ., 2015, 163: 547.
[51] Shenawi-Khalil S, Uvarov V, Menesa E, Popov I, Sasson Y. Appl. Catal. A: General., 2012, 413/414: 1.
[52] Liu H, Su Y, Chen Z, Jin Z T, Wang Y. J. Hazard. Mater., 2014, 266: 75.
[53] Sun H Q,Liu S Z,Liu X M, Wang S B. Appl. Catal. B: Environ., 2014, 146: 162.
[54] Ng Y H, Iwase A, Kudo A, Amal R. J. Phys. Chem. Lett., 2010, 1(17): 2607.
[55] Sun Y F, Qu B Y, Liu Q, Gao S, Yan Z X, Yan W S, Pan B C, Wei S Q, Xie Y. Nanoscale, 2012, 4: 3761.
[56] Morawski A W, Janus M, Tryba B, Toyoda M, Tsumura T, Inagaki M. Pol. J. Chem. Technol., 2009, 11(2): 46.
[57] Liu S X, Chen X Y. Chem. Technol. Biotechnol., 2007, 82: 453.
[58] Zhang X, Zhou M, Lei L. Carbon, 2005, 43(8): 1700.
[59] Leary R, Westwood A. Carbon, 2011, 49(3): 741.
[60] Zhao W, Bai Z, Ren A, Guo B, Wu C. Appl. Surf. Sci., 2010, 256: 3493.
[61] Ouzzine M, Romero-Anaya A J, Lillo-Ródenas M A, Linares-Solano A. Carbon, 2014, 67: 104.
[62] Chen S H, Yin Z, Luo S L, Li X J, Yang L H, Deng F. Appl. Surf. Sci., 2012, 259: 7.
[63] Li J L, Chen B B, Zhang W, Wang L J.J. Inorg. Mater., 2014, 29(3): 225.
[64] Tian G H, Chen Y J, Zhou J, Tian C G, Li R, Wang C J, Fu H G. Cryst. Eng. Comm., 2014, 16: 842.
[65] Zhang J, Huang Z H, Xu Y, Kang F Y. J. Am. Ceram. Soc., 2013, 96(5): 1562.
[66] Paricha R, Gupta S, Srivastava A K. Small, 2009, 5: 2253.
[67] Seger B, Kamat P V. J. Phys. Chem. C, 2009, 113: 7990.
[68] Zhang J T, Xiong Z G, Zhao X S. J. Mater. Chem., 2011, 21(11): 3634.
[69] Gao E, Wang W Z, Shang M, Xu J H. Phys. Chem. Chem. Phys., 2011, 13: 2887.
[70] Bai H, Li C, Shi G Q. Adv. Mater., 2011, 23: 1089.
[71] An X Q, Yu J C. RSC Advance, 2011, 1: 1426.
[72] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2(7): 1487.
[73] Yan Y, Sun S F, Song Y, Yan X, Guan W, Liu X, Shi W. J. Hazard. Mater., 2013, 250: 106.
[74] Fu Y S, Sun X Q, Wang X. Mater. Chem. Phys., 2011, 131: 325.
[75] Ma H W, Shen J F, Shi M, Lu X, Li Z Q, Long Y, Li N, Ye M X. Appl. Catal. B: Environ., 2012, 121: 198.
[76] Xu J J, Ao Y H, Chen M D. Mater. Lett., 2013, 92: 126.
[77] Min Y L, Zhang K, Chen Y C, Zhang Y G. Sep. Purif. Technol., 2012, 86: 98.
[78] Liu X J, Pan L K, Lv T, Sun Z, Sun C Q. J. Colloid Interf. Sci., 2013, 408: 145.
[79] Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S. Phys. Chem. Chem. Phys., 2012, 14: 10572.
[80] Ai Z H, Ho W K, Lee S C. J. Phys. Chem. C, 2011, 115: 25330.
[81] Tu X M, Luo S L, Chen G X, Li J H. Chem. Eur. J., 2012, 18: 14359.
[82] Song S Y, Wei G, Wang X, Li X Y, Liu D P, Xing Y, Zhang H J. Dalton Trans., 2012, 41: 10472.
[83] Di Paola A, García-López E, Marcì G, Palmisano L. J. Hazard. Mater., 2012, 211: 3.
[84] Maiti U N, Lee W J, Lee J M, Oh Y, Kim J Y, Kim J E, Shim J, Han T H, Kim S O. Adv. Mater., 2014, 26(1): 40.
[85] Luo Y S, Liu J P, Xia X H, Li X Q, Fang T, Li S Q, Ren Q F, Li J L, Jia Z. Mater. Lett., 2007, 61 (11/12): 2467.
[86] Woan K, Pyrgiotakis G, Sigmund W. Adv. Mater., 2009, 21(21): 2233.
[87] Wang W D, Serp P, Kalck P, Faria J L. J. Mol. Catal. A: Chem., 2005, 235(1/2): 194.
[88] Su M H, He C, Zhu L F, Sun Z J, Shan C, Zhang Q, Shu D, Qiu R L, Xiong Y. J. Hazard. Mater., 2012, 229/230: 72.
[89] Zhang Y, Yu J Q, Wang H W, Sun M M, Bu Y Y, Yu D S, Li W B. J. Nanotechnol., 2011, 2011: 702.
[90] Zhou X C, Yu J Q, Zhang Y, Yu D S, Lu W. Rare Metals, 2011, 30: 199.
[91] Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Environ. Sci. Technol., 2007, 41(17): 6234.
[92] Zhao X, Liu H J, Shen Y L, Qu J H. Appl. Catal. B: Environ., 2011, 106: 63.
[93] Li G S, Jiang B, Li X, Lian Z C, Xiao S N, Zhu J, Zhang D Q, Li H X. ACS Appl. Mater. Inter., 2013, 5(15): 7190.
[94] 程立强(Cheng L Q), 刘应亮(Liu Y L), 张静娴(Zhang J X), 袁定胜(Yuan D S), 徐常威(Xu C W), 孙广辉(Sun G H). 化学进展(Progress in Chemistry), 2006, 18(10): 1298.
[95] Chen Y L, Cao X X, Kuang J D, Chen Z, Chen J L, Lin B Z. Catal. Commun., 2010, 12(4): 247.
[96] Zhao W R, Wang Y, Yang Y, Tang J, Yang Y Y. Appl. Catal. B: Environ., 2012, 115: 90.
[97] Zhang M Y, Shao C L, Mu J B, Huang X M, Zhang Z Y, Guo Z C, Zhang P, Liu Y C. J. Mater. Chem., 2012, 22(2): 577.
[98] Zhang L, Wang W Z, Shang M, Sun S M, Xu J H. J. Hazard. Mater., 2009, 172(2/3): 1193.
[99] 张俊喜(Zhang J X), 曹小卫(Cao X W), 李雪(Li X), 徐娜(Xu N), 颜立成(Yan L C).上海电力学院学报(Journal of Shanghai University of Electric Power), 2008, 24(2): 172.
[100] Li Y Y, Liu J P, Huang X T, Yu J G. Dalton Trans., 2010, 39: 3420.
[101] Zhang M Y, Shao C L, Li X H, Zhang P, Sun Y Y, Su C Y, Zhang X, Ren J J, Liu Y C. Nanoscale, 2012, 4(23): 7501.
[102] Gawande S B, Thakare S R. Int. Nano. Lett., 2012, 2: 11.
[103] Di Valentin C, Pacchioni G, Selloni A. Chem. Mater., 2005, 17: 6656.
[104] Cui Y M, Li H Q, Hong W S, Fan S H, Zhu L J. Powder Technol., 2013, 247: 151.
[105] Duan F, Zheng Y, Chen M Q. Mater. Lett., 2011, 65(2): 191.
[106] Lee D K, Cho I S, Lee S W, Bae S T, Noh J H, Kim D W, Hong K S. Mater. Chem. Phys., 2010, 119(1/2): 106.
[107] Lu B, Ma X G, Pan C S, Zhu Y F. Appl. Catal. A: Gen., 2012, 435/436: 93.
[108] Yu J H, Wei B, Zhu L, Gao H, Sun W J, Xu L L. Appl. Surf. Sci., 2013, 284: 497.
[109] Dai G P, Liu S Q, Liang Y. J. Alloy Compd., 2014, 608: 44.
[110] Tang D, Zhang H C, Huang H, Liu R H, Han Y Z, Liu Y, Tong C Y, Kang Z H. Dalton Trans., 2013, 42: 6285.
[111] Yin C, Zhu S M, Chen Z X, Zhang W, Gu J J, Zhang D. J. Mater. Chem. A, 2013, 1(29): 8367.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[6] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[7] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[8] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[9] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[10] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[11] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[12] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[13] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[14] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
[15] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.