中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC130413 Previous Articles   Next Articles

• Review •

Hierarchical Molecular Sieves:Synthesis and Catalytic Applications

Peng Peng1, Zhang Zhanquan1, Wang Youhe1,2, Fazle Subhan1,3, Yan Zifeng*1   

  1. 1. State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, CNPC, China University of Petroleum, Qingdao 266580, China;
    2. School of Science, China University of Petroleum (East China), Qingdao 266580, China;
    3. Department of Chemistry, Abdul Wali Khan University Mardan, K.P.K, Pakistan
  • Received: Revised: Online: Published:
PDF ( 1336 ) Cited
Export

EndNote

Ris

BibTeX

Improving the diffusional performance of traditional microporous zeolites has become of interest to the fields of catalysis, adsorption and separation. The development of hierarchical molecular sieves has occurred to solve the aforementioned issues. This review includes the theoretical analyses about how to improve the efficiency and diffusional performance of molecular sieves during catalytic reactions by recent approaches to synthesize hierarchical molecular sieves. Different hierarchical molecular sieves synthesized via constructive and destructive methods are reported, with emphasis on their strengths and weaknesses, regarding hydrothermal stability, acidity, operational constraints and scalability. This review also summarizes recent catalytic applications, in particular, the applications in catalytic cracking and hydrogenation. It is shown that the incorporation of mesopores to traditional microporous zeolites can improve the activity and selectivity of catalytic cracking and hydrogenation. However, development of hierarchical molecular sieves needs to consider cost, production of high purity products while reducing the production of unwanted by-products, and to provide readily scalable materials. These hierarchical molecular sieves should be able to withstand acidic conditions and have high hydrothermal stability. Development of such materials with the properties described above and structure-property-function relationships of hierarchical molecular sieves should be emphasized in the future.

Contents
1 Introduction
1.1 Background
1.2 Theoretical analyses
2 Methods of preparation of hierarchical molecular sieves
2.1 Destructive strategies
2.2 Constructive strategies
3 Catalytic applications of hierarchical molecular sieves
3.1 Fluidized catalytic cracking
3.2 Hydrogenation reactions
4 Conclusion and outlook

CLC Number: 

[1] 高滋(Gao Z). 沸石催化与分离技术(Zeolite Catalysis and Separation Technology). 北京: 中国石化出版社(Beijing: China Petrochemical Press), 1999. 3—5
[2] 徐如人(Xu R R), 庞文琴(Pang W Q). 分子筛与多孔材料化学(Chemistry——Zeolites and Porous Materials). 北京: 科学出版社(Beijing: Science Press), 2004. 34—53
[3] Na K, Choi M, Ryoo R. Micropor. Mesopor. Mater., 2013, 166: 3—19
[4] Pérez-Ramírez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37: 2530—2542
[5] Levenspiel O. Chemical Reaction Engineering. 3rd ed. NY: John Wiley & Sons, 1999. 381—385
[6] 甄开吉(Zhen K J), 王国甲(Wang G J), 毕颖丽(Bi Y L), 李荣生(Li R S), 阚秋斌(Kan Q B). 催化作用基础(An Introduction to Catalysis). 北京: 科学出版社(Beijing: Science Press), 2005. 89—93
[7] Corma A, Diaz-Cabañas M J, Martinez-Triguero J, Rey F, Rius J. Nature, 2002, 418: 514—517
[8] Corma A, Diaz-Cabañas M J, Rey F, Nicolopoulus S, Boulahya K. Chem. Commun., 2004, 1356—1357
[9] Corma A, Diaz-Cabañas M J, Jord J L, Martínez C, Moliner M. Nature, 2006, 443: 842—845
[10] Jiang J, Yu J, Corma A. Angew. Chem. In. Ed., 2010, 49: 3120—3145
[11] Chen L H, Li X Y, Rooke J C, Yang X Y, Tang Y, Zhang Y H, Xiao F S, Su B L. J. Mater. Chem., 2012, 22: 17381—17403
[12] Van Grieken R, Sotelo J, Menendez J, Melero J. Micropor. Mesopor. Mater., 2000, 39: 135—147
[13] Aguado J, Serrano D P, Escola J M, Rodríguez J M. Micropor. Mesopor. Mater., 2004, 75: 41—49
[14] 刘欣梅(Liu X M), 梁海宁(Liang H N), 李亮(Li L), 杨婷婷(Yang T T), 阎子峰(Yan Z F). 催化学报(Chinese Journal of Catalysis), 2010, 31(7): 833—838
[15] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359: 710—712
[16] ye G, Sjöblom J, Stöcker M. Adv. Colloid Interface Sci., 2001, 89/90: 439—466
[17] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548—552
[18] 张磊(Zhang L). 中国石油大学(华东)博士论文(Doctoral Dissertation of China University of Petroleum, East China), 2008
[19] Chal R, Gérardin C, Bulut M, van Donk S. ChemCatChem, 2011, 3: 67—81
[20] Chang X, He L, Liang H, Liu X, Yan Z. Catal. Today, 2010, 158: 198—204
[21] 昌兴文(Chang X W). 中国石油大学(华东)硕士论文(Master Dissertation of China University of Petroleum, East China), 2010
[22] 何丽凤(He L F). 中国石油大学(华东)硕士论文(Master Dissertation of China University of Petroleum, East China), 2012
[23] Janssen A H, Koster A J, de Jong K P. J. Phys. Chem. B, 2002, 106: 11905—11909
[24] Verboekend D, Pérez-Ramírez J. Catal. Sci. Technol., 2011, 1: 879—890
[25] Verboekend D, Pérez-Ramírez J. Chem. Eur. J., 2011, 17: 1137—1147
[26] Verboekend D, Mitchell S, Milina M, Groen J C, Pérez-Ramírez J. J. Phys. Chem. C, 2011, 115: 14193—14203
[27] Ogura M, Shinomiya S, Tateno J, Nara Y, Kikuchi E, Matsukata M. Chem. Lett., 2000, 29: 882—883
[28] Groen J C, Jansen J C, Moulijn J A, Pérez-Ramírez J. J. Phys. Chem. B, 2004, 108: 13062—13065
[29] Van Mao R L, Ramsaran A, Xiao S, Yaot J, Semme V. J. Mater. Chem., 1995, 5: 533—535
[30] Groen J, Moulijn J A, Pérez-Ramírez J. Ind. Eng. Chem. Res., 2007, 46: 4193—4201
[31] Holm M S, Hansen M K, Christensen C H. Eur. J. Inorg. Chem., 2009, 9: 1194—1198
[32] Abelló S, Bonilla A, Pérez-Ramírez J. Appl. Catal. A, 2009, 364: 191—198
[33] Vennestrøm P N R, Grill M, Kustova M, Egeblad K, Lundegaard L F, Joensen F, Christensen C H, Beato P. Catal. Today, 2011, 168: 71—79
[34] Pérez-Ramírez J, Verboekend D, Bonilla A, Abelló S. Adv. Funct. Mater., 2009, 19: 3972—3979
[35] Pérez-Ramírez J, Abelló S, Bonilla A, Groen J C. Adv. Funct. Mater., 2009, 19: 164—172
[36] Zhao L, Xu C, Gao S, Shen B. J. Mater. Sci., 2010, 45: 5406—5411
[37] 宋春敏(Song C M). 中国石油大学(华东)博士论文(Doctoral Dissertation of China University of Petroleum, East China), 2006
[38] Verboekend D, Chabaneix A M, Thomas K, Gilson J P, Pérez-Ramírez J. CrystEngComm., 2011, 13: 3408—3416
[39] Svelle S, Sommer L, Barbera K, Vennestrøm P N R, Olsbye U, Lillerud K P, Bordiga S, Pan Y H, Beato P. Catal. Today, 2011, 168: 38—47
[40] Groen J C, Moulijn J A, Pérez-Ramírez J. J. Mater. Chem., 2006, 16: 2121—2131
[41] Pérez-Ramírez J, Mitchell S, Verboekend D, Milina M, Michels N L, Krumeich F, Marti N, Erdmann M. ChemCatChem, 2011, 3: 1731—1734
[42] 陈芳(Chen F), 孟祥举(Meng X J), 肖丰收(Xiao F S). 科学通报(Chinese Science Bulletin), 2010, 55(29): 2785—2793
[43] Schmidt I, Madsen C, Jacobsen C J H. Inorg. Chem., 2000, 39: 2279—2283
[44] Yang Z X, Xia Y D, Mokaya R. Adv. Mater., 2004, 16: 727—732
[45] Tao Y, Kanoh H, Kaneko K. J. Am. Chem. Soc., 2003, 125: 6044—6045
[46] Kustova M Y, Hasselriis P, Christensen C H. Catal. Lett., 2004, 96: 205—211
[47] Wei X, Smirniotis P G. Micropor. Mesopor. Mater., 2006, 89: 170—178
[48] Egeblad K, Kustova M, Klitgaard S K, Zhu K, Christensen C H. Micropor. Mesopor. Mater., 2007, 101: 214—223
[49] Tao Y, Kanoh H, Kaneko K. J. Phys. Chem. B, 2003, 107: 10974—10976
[50] Tao Y, Kanoh H, Kaneko K. Langmuir, 2004, 21: 504—507
[51] Tao Y, Kanoh H, Abrams L, Kaneko K. Chem. Rev., 2006, 106: 896—910
[52] Wang L, Yin C, Shan Z, Liu S, Du Y, Xiao F S. Colloids Surf., A, 2009, 340: 126—130
[53] Meng X, Nawaz F, Xiao F S. Nano Today, 2009, 4: 292—301
[54] Sun C, Du J, Liu J, Yang Y, Ren N, Shen W, Xu H, Tang Y. Chem. Commun., 2010, 46: 2671—2673
[55] Zhu H, Liu Z, Wang Y, Kong D, Yuan X, Xie Z. Chem. Mater., 2007, 20: 1134—1139
[56] Ren L, Wu Q, Yang C, Zhu L, Li C, Zhang P, Zhang H, Meng X, Xiao F S. J. Am. Chem. Soc., 2012, 134: 15173—15176
[57] Zhu Y, Hua Z, Zhou J, Wang L, Zhao J, Gong Y, Wu W, Ruan M, Shi J. Chem. Eur. J., 2011, 17: 14618—14627
[58] Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Nat. Mater., 2006, 5: 718—723
[59] Xiao F S, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Angew. Chem. Int. Ed., 2006, 118: 3162—3165
[60] Liu S, Cao X, Li L, Li C, Ji Y, Xiao F S. Colloids Surf., A, 2008, 318: 269—274
[61] Wang L, Zhang Z, Yin C, Shan Z, Xiao F S. Micropor. Mesopor. Mater., 2010, 131: 58—67
[62] Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461: 246—249
[63] Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132: 4169—4177
[64] Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Science, 2011, 333: 328—332
[65] Liu Y, Zhang W, Pinnavaia T J. J. Am. Chem. Soc., 2000, 122: 8791—8792
[66] Zhang Z, Han Y, Xiao F S, Qiu S, Zhu L, Wang R, Yu Y, Zhang Z, Zou B, Wang Y. J. Am. Chem. Soc., 2001, 123: 5014—5021
[67] 韩宇(Han Y), 肖丰收(Xiao F S). 催化学报(Chinese Journal of Catalysis), 2003, 24: 149—158
[68] Ivanova I I, Knyazeva E E. Chem. Soc. Rev., 2013, 42: 3671—3688
[69] García-Martínez J, Johnson M, Valla J, Li K, Ying J Y. Catal. Sci. Technol., 2012, 2: 987—994
[70] Song C M, Jiang J, Yan Z F. J. Porous Mater., 2008, 15: 205—211
[71] Song C M, Yan Z F. Asia-Pac. J. Chem. Eng., 2008, 3: 275—283
[72] Zhang Z, Yan Z. J. Porous Mater., 2013, 20: 309—317
[73] García-Martínez J, Li K, Krishnaiah G. Chem. Commun., 2012, 48: 11841—11843
[74] Christensen C H, Johannsen K, Schmidt I, Christensen C H. J. Am. Chem. Soc., 2003, 125: 13370—13371
[75] van laak A N C, Gosselink R W, Sagala S L, Meeldijk J D, de Jongh P E, de Jong K P. Appl. Catal., A, 2010, 382: 65—72
[76] Sun Y, Prins R. Appl. Catal. A, 2008, 336: 11—16
[77] Bjørgen M, Joensen F, Spangsberg Holm M, Olsbye U, Lillerud K P, Svelle S. Appl. Catal., A, 2008, 345: 43—50
[78] Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z. J. Catal., 2008, 258: 243—249
[79] Li Y, Liu S, Zhang Z, Xie S, Zhu X, Xu L. Appl. Catal. A, 2008, 338: 100—113
[80] Chao P H, Tsai S T, Chang S L, Wang I, Tsai T C. Top. Catal., 2010, 53: 231—237
[81] Mokrzycki ?, Sulikowski B, Olejniczak Z. Catal. Lett., 2009, 127: 296—303
[82] Bari Siddiqui M, Aitani A, Saeed M, Al-Khattaf S. Top. Catal., 2010, 53: 1387—1393
[83] Zhu H, Liu Z, Kong D, Wang Y, Xie Z. J. Phy. Chem. C, 2008, 112: 17257—17264
[84] Park D H, Kim S S, Wang H, Pinnavaia T J, Papapetrou M C, Lappas A A, Triantafyllidis K S. Angew. Chem. Int. Ed., 2009, 48: 7645—7648
[85] Shetti V N, Kim J, Srivastava R, Choi M, Ryoo R. J. Catal., 2008, 254: 296—303
[86] Palkovits R, Schmidt W, Ilhan Y, Erdem-?natalar A, Schüth F. Micropor. Mesopor. Mater., 2009, 117: 228—232
[87] Tang T, Yin C, Wang L, Ji Y, Xiao F S. J. Catal., 2008, 257: 125—133
[88] Tang T, Yin C, Wang L, Ji Y, Xiao F S. J. Catal., 2007, 249: 111—115
[89] Zhang Z, Xiao J, Dai L, Wang Y, Wang D, Liu X, Yan Z. J. Porous Mater., 2012, 19: 473—479
[90] Holm M S, Taarning E, Egeblad K, Christensen C H. Catal. Today, 2011, 168: 3—16

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[3] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[4] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[5] Di Pan, Peng Liu, Hongbin Zhang, Yi Tang. Continuous Flow Synthesis of Zeolites [J]. Progress in Chemistry, 2020, 32(7): 873-881.
[6] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.
[7] Wei-Pin Huang, Ke-Feng Ren, Jian Ji. New Strategies for Regulating Polymer’s Surface Microstructure [J]. Progress in Chemistry, 2020, 32(10): 1494-1503.
[8] Xiuxiu Ni, He Ding, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*. Strategies for the Synthesis of b-Oriented MFI Zeolite Membranes and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 976-988.
[9] Bin Chi, Sanying Hou, Guangzhi Liu, Shijun Liao*. High Performance and High Power Density Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(2/3): 243-251.
[10] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[11] Xue Lijun, Zhang Di, Wei Jie, Liu Xinmei. Pore Confinement Effects of Catalysts [J]. Progress in Chemistry, 2016, 28(4): 450-458.
[12] Wang Yajun, Li Zexue, Yu Haiyang, Feng Changgen. Reaction Mechanism of Metastable Intermolecular Composite [J]. Progress in Chemistry, 2016, 28(11): 1689-1704.
[13] Min Yuanyuan, Shang Yunshan, Song Yu, Li Guodong, Gong Yanjun. The Synthesis of Nanosheets Zeolite and Its Catalytic Application [J]. Progress in Chemistry, 2015, 27(8): 1002-1013.
[14] Xu Jian, Fan Jianfen, Yan Xiliang, Yu Yi, Zhang Mingming. Transport and Diffusion of Water, Alcohols and Their Mixtures Through Nano-Pore Materials [J]. Progress in Chemistry, 2015, 27(5): 482-491.
[15] Li Yang, Sun Hongman, Wang Youhe, Xu Benjing, Yan Zifeng. Green Routes for Synthesis of Zeolites [J]. Progress in Chemistry, 2015, 27(5): 503-510.