中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Adsorption Mechanism of Macroporous Adsorption Resins

Lou Song1,2, Liu Yongfeng1,2, Bai Qingqing4, Di Duolong1,3,4   

  1. 1.Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Centre of Resource Chemistry and New Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao 266100, China;
    4. Key Laboratory of Chemistry and Quality for Traditional Chinese Medicines of the College of Gansu Province, Department of Pharmacy, Gansu College of Traditional Chinese Medicine, Lanzhou 730000, China
  • Received: Revised: Online: Published:
PDF ( 2748 ) Cited
Export

EndNote

Ris

BibTeX

Macroporous adsorption resins (MARs), which are synthetic porous crosslinked polymer beads, have been developed into a kind of novel functional materials since 1950’. They have widely been used in the fields such as pharmaceutical, chemical, food industries, and wastewater treatment. Besides the traditional research on applications of the commercial MARs in the enrichment process of target compound, some theoretical researches on the adsorption features of MARs are also introduced in this article, including adsorption isotherms, kinetics, driving forces, and interaction models. First, the adsorption isotherm patterns of target compound on MARs are discussed. Second, the diffusion patterns of targets on the surface and internal MARs are illustrated. The relationship between properties of MARs and structures of target compound effects the law of adsorption selection, and the investigation of this relationship is the key problem of theoretical research on separation and adsorption. Moreover, the ultimate purpose of theoretical research on MARs is the establishment and evaluation of adsorption model which could explain the adsorption process objective with a wide range of applications. At last, some suggestions for considering multi-layer adsorption process, adsorption and desorption rates, features of adsorption solution, and physical parameters of MARs into the derivation of model are put forward. Contents 1 Introduction
2 Adsorption isotherms
3 Adsorption kinetcis
4 Interaction forces of adsorption
5 Adsorption model
6 Outlook

CLC Number: 

[1] 张安杰(Zhang A J). 兰州理工大学硕士论文(Master Dissertation of Lanzhou University of Technology), 2010
[2] 何炳林(He B L). 石油化工(Petrochemical Technology), 1977, (3): 263-283
[3] 张爱丽(Zhang A L), 周集体(Zhou J T), 金若菲(Jin R F), 杨松(Yang S). 化工进展(Chemical Industry and Engineering Progress), 2005, 24(7): 780-782
[4] Zhou J C, Feng D W, Zheng G S. J. Food Eng., 2010, 100: 289-293
[5] Wang Y, Lu Z X, Bie X M. Eur. Food Res. Technol., 2010, 231: 189-196
[6] Fu Y J, Zu Y G, Liu W, Hou C L, Chen L Y, Li S M, Shi X G, Tong M H. J. Chromatogr. A, 2007, 1139: 206-213
[7] 李辰(Li C), 袁健(Yuan J), 邸多隆(Di D L), 蒋生祥(Jiang S X), 张伯崇(Zhang B C). 精细化工(Fine Chemicals), 2007, 24(7): 657-661
[8] 段秋燕(Duan Q Y), 黄新异(Huang X Y), 李辰(Li C), 倪京满(Ni J M), 邸多隆(Di D L). 分析测试技术与仪器(Analysis and Testing Technology and Instruments), 2010, 16(1): 6-10
[9] Chen L, Zheng Y Y, Wang X F, Feng S L, Di D L. J. Sci. Food Agric., 2011, 91(15): 2826-2834
[10] 王建忠(Wang J Z). 天津大学硕士论文(Master Dissertation of Tianjin University), 2007
[11] 秦学功(Qin X G), 元英进(Yuan Y J). 中国中药杂志(China Journal of Chinese Materia Medica), 2002, 27(6): 428-470
[12] 王小梅(Wang X M). 应用化学(Chinese Journal of Applied Chemistry), 2007, 24(11): 1322-1326
[13] Zhang Y, Qu R J, Sun C M, Wang C H, Ji C N, Chen H, Yin P. Appl. Surf. Sci., 2009, 255: 5818-5826
[14] Shi R F, Xu M C, Shi Z Q, Fan Y G, Gao X Z, Liu Y N, Wang C H, He B L. React. Funct. Polym., 2002, 50: 107-116
[15] Jin Q Z, Yue J H, Shan L, Tao G J, Wang X G, Qiu A Y. Sep. Purif. Technol., 2008, 63: 370-375
[16] Maria H L, Ribeiro D S, Suzana F D. Eur. Food Res. Technol., 2002, 215: 462-471
[17] Guerra D L, Leidens V L, Viana R R, Airoldi C. J. Solid State Chem., 2010, 183: 1141-1149
[18] Fu Y J, Zu Y G, Liu W, Efferth T, Zhang N J, Liu X N, Kong Y. J. Chromatogr. A, 2006, 1137: 145-152
[19] Zeng X W, Yao H J, Ma N, Fan Y G, Wang C H, Shi R F. J. Colloid Interface Sci., 2011, 354: 353-358
[20] Liu Y F, Liu J X, Chen X F, Liu Y W, Di D L. Food Chem., 2010, 123: 1027-1034
[21] Zhang X, Li A M, Jiang Z M, Zhang Q X. J. Hazard. Mater., 2006, 137: 1115-1122
[22] Ahmad H B, Mohammad S H, Masoud S G, Somayye Z, Esmat H, Horiyye H B. Chem. Eng. J., 2010, 160: 190-198
[23] Wang J N, Li A M, Xu L, Zhou Y. J. Hazard. Mater., 2009, 169: 794-800
[24] Aksakal O, Ucun H. J. Hazard. Mater., 2010, 181: 666-672
[25] Kim M R, Kim W C, Lee D Y, Kim C W. J. Food Eng., 2007, 78: 27-32
[26] Gao M, Huang W, Liu C Z. J. Chromatogr. B, 2007, 858: 22-26
[27] Valderrama C, Barios J I, Caetano M, Farran A, Cortina J L. React. Funct. Polym., 2010, 70: 142-150
[28] Zhao R Y, Yan Y, Li M X, Yan H S. React. Funct. Polym., 2008, 68: 768-774
[29] Huang H H, Huang K L, Liu S Q, Luo Q. J. Colloid Interface Sci., 2008, 317: 434-441
[30] Yoon S Y, Choi W J, Park J M, Yang J W. Biotechnol. Tech., 1997, 11: 553-556
[31] Liu G D, Yu H F, Yan H S, Shi Z Q, He B L. J. Chromatogr. A, 2002, 952: 71-78
[32] Chen Z B, Liu Y F, Huang X Y, Fu J F, Di D L. J. Polym. Mater., 2011, 28: 75-92
[33] Geng X T, Ren P, Pi G P, Shi R F, Yuan Z, Wang C H. J. Chromatogr. A, 2009, 1216: 8331-8338
[34] Fu B Q, Liu J, Li H, Li L, Lee F S C, Wang X R. J. Chromatogr. A, 2005, 1089: 18-24
[35] Cheng S L, Tang H Y, Yan H S. J. Appl. Polym. Sci., 2006, 102: 4652-4658
[36] Cheng S L, Yan H S, Zhao C Q. J. Chromatogr. A, 2006, 1108: 43-49
[37] Chen Z B, Zhang A J, Li J, Dong F, Di D L, Wu Y Z. J. Phys. Chem. B, 2010, 114: 4841-4853
[38] Yuan X H, Li X H, Zhu E B, Hu J, Sheng W C, Cao S S. Carbohydr. Polym., 2008, 74: 468-473
[39] Huang H H, Zhou Y, Huang K L, Liu S Q, Luo Q, Xu M C. J. Colloid Interface Sci., 2007, 316: 10-18
[40] Ren P, Zhao X L, Zhang J, Shi R F, Yuan Z, Wang C H. Rea. Funct. Polym., 2008, 68: 899-909
[41] Abrams I M. Ind. Eng. Chem., 1975, 14: 108-112
[42] Brusseau M L, Rao P S C. Chemosphere, 1989, 18: 1691-1706
[43] Ball W P, Roberts P V. Environ. Sci. Technol., 1991, 25: 1237-1249
[44] Helmstetter M F, Alden R W. Arch. Environ. Contam. Toxicol., 1994, 26: 282-291
[45] Fu G, Kan A T, Tomson M. Environ. Toxicol. Chem., 1994, 13: 1559-1567
[46] Raman S. Toxicol. Environ. Chem., 1995, 49: 217-222
[47] Berens A R. Polymer, 1977, 18: 697-704
[48] Karickhoff S W, Brown D S. Water Res., 1979, 13: 241-248
[49] Berens A R, Huvard G S. J. Dispersion Sci. Technol., 1981, 2: 359-378
[50] Connaughton D F, Stedinger J R, Lion L W, Shuler M L. Environ. Toxicol. Chem., 1993, 27: 2397-2403
[51] Nikolla P Q, John M Z, Chongxuan L, Paul L G, Odeta S Q, Steven C S. Environ. Sci. Technol., 2005, 39: 3157-3165
[52] Grathwohl P, Reinhard M. Environ. Toxicol. Chem., 1993, 27: 2360-2366
[53] Harmon T C, Roberts P V. Environ. Prog., 1994, 13: 1-8
[54] Thomas C H, Paul V R. Environ. Sci. Technol., 1994, 28: 1650-1660
[55] Lou S, Chen Z B, Liu Y F, Ye H L, Di D L. Langmuir, 2011, 27: 9314-9326
[1] Kunlun Yang, Jiasheng Zhou, Dan Lv, Yue Sun, Zimo Lou, Xinhua Xu*. Preparation and Application of Iron-Based Composite Materials for the Removal of Antimony from Aqueous Solution [J]. Progress in Chemistry, 2017, 29(11): 1407-1421.
[2] ZHANG Jing-Cheng. Advances in the Adsorptive Desulfurization Technologies for Ultra-clean Oil Production [J]. Progress in Chemistry, 2008, 20(11): 1834-1845.
[3] Liu Ruixia,Tang Hongxiao,Lo Waihung. Advances in Biosorption Mechanism and Equilibrium Modeling for Heavy Metals on Biomaterials [J]. Progress in Chemistry, 2002, 14(02): 87-.