中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Gelation of Polyacrylonitrile Solution

Wan Ajun*, Tan Lianjiang   

  1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
PDF ( 2067 ) Cited
Export

EndNote

Ris

BibTeX

Polyacrylonitrile (PAN) is one of the most widely used polymers. PAN solutions using suitable solvents are the precursors for fabrication of PAN fibers, osmotic membranes and other PAN-related materials. The physical and chemical properties of PAN solutions have great effect on the performance of the resultant materials. In this article, the gelation characteristics of polymer solution and the characteristics of polymer gels as well as the characteristics of PAN and PAN gels are introduced. Suitable characterization methods for the gelation of PAN solutions are proposed according to the properties of concentrated polymer solution systems. The recent research findings and latest progress of gelation of PAN solutions are summarized in the following respects: influences of concentration and temperature on gelation behavior of PAN solutions, influences of aging and non-solvent on gelation behavior of PAN solutions, thermoreversibility of gelation of PAN solutions, fractal characteristics of gelation of PAN solutions, and crosslinking mechanism of polyacrylonitrile gels. The gelation behavior of PAN solutions and the state of PAN gels have been found to be greatly affected by external environment and the composition of the gels. Finally the research prospect of the gelation of PAN solutions and PAN gels is expected. Contents
1 Introduction
2 Gelation of polymer solutions
3 Gelation behavior of polyacrylonitrile solutions
3.1 Influences of concentration and temperature on gelation behavior of polyacrylonitrile solutions
3.2 Influences of aging and non-solvent on gelation behavior of polyacrylonitrile solutions
3.3 Thermoreversibility of gelation of polyacrylonitrile solutions
3.4 Fractal characteristics of gelation of polyacrylonitrile solutions
3.5 Crosslinking mechanism of polyacrylonitrile gels
4 Conclusions and outlook

CLC Number: 

[1] Pan Y S, Xiong D S, Chen X L. J. Mater. Sci., 2007, 42: 5129-5134
[2] Takegami K, Kaneko Y, Watanabe T, Maruyama T, Matsumoto Y, Nagawa H. Med. Biol., 2009, 30: 1419-1422
[3] Tanaka Y. Macromol. Symp., 2003, 200: 265-270
[4] Chiu H T, Wang J H. J. Appl. Polym. Sci., 1998, 70: 1009-1018
[5] Te Nijenhuis K, Dijkstra H. Rheol. Acta, 1975, 14: 71-84
[6] Michon C, Cuvelier G, Launay B. Rheol. Acta, 1993, 32: 94-103
[7] Madbouly S A, Otaigbe J U. Macromolecules, 2005, 38: 10178-10184
[8] Lue A, Zhang L. J. Phys. Chem. B, 2008, 112: 4488-4495
[9] Appaw C, Gilbert R D, Khan S A, Kadla J F. Biomacromolecules, 2007, 8: 1541-1547
[10] Sugimoto M, Hida H, Taniguchi T, Koyama K, Aoki Y. Rheol. Acta, 2007, 46: 957-964
[11] Russo P S. Reversible Polymeric Gels and Related Systems. ACS Symposium Series 350. Washington DC: American Chemical Society, 1987. 11-25
[12] Nijenhuis K. Adv. Polym. Sci., 1997, 130: 96-105
[13] Gerasimov V I, Chvalun S N, Kazarin L A, Goponenko A A, Mashchenko V I, Filyyakin A M. Fiber. Chem., 2001, 33(3): 183-188
[14] Labudzinska A, Ziabicki A. Kolloid Z. Z. Polym., 1971, 243: 21-27
[15] Beckmann J, Zenke D. Colloid. Polym. Sci., 1993, 271: 436-445
[16] Flodin P. Macromol. Chem. Macromol. Symp., 1988, 22: 253-257
[17] Bisschops J. J. Polym. Sci., 1955, 17: 89-98
[18] Bashir Z. J. Polym. Sci. Polym. Phys., 1992, 30: 1299-1304
[19] Bashir Z. Polymer, 1992, 33(30): 4304-4313
[20] Bashir Z, Atureliya S K. J. Mater. Sci., 1993, 28: 2721-2732
[21] Smith P, Lemstra P J, Booij H C. J. Polym. Sci. Polym. Phys., 1981, 19: 877-885
[22] Krik H, Sourirajan S. J. Appl. Polym. Sci., 1973, 17: 3717-3726
[23] Payro E R, Llacuna J L. J. Non-Cryst. Solids, 2006, 352: 2220-2225
[24] Li Y Q, Shi T F, An L J, Lee J, Wang X Y, Huang Q R. J. Phys. Chem. B, 2007, 111: 12081-12087
[25] Zhang R, Shi T F, An L J, Sun Z Y, Tong Z. J. Phys. Chem. B, 2010, 114: 3449-3456
[26] Mellema M, van Vliet T, van Opheudsen J H J. J. Rheol., 2002, 46: 11-29
[27] Ikeda S, Foegeding E A, Hagiwara T. Langmuir, 1999, 15: 8584-8589
[28] Muller R, Gerard E, Dugand P, Rempp P, Gnanou Y. Macromolecules, 1991, 24: 1321-1326
[29] Takahashi M, Yokoyama K, Masuda T, Takigawa T. J. Chem. Phys., 1994, 101: 798-804
[30] Muthukumar M. Macromolecules, 1989, 22: 4656-4658
[31] Martin J E, Adolf D, Wilcoxon J P. Phys. Rev. A, 1989, 39: 1325-1332
[32] Winter H H, Chambon F. J. Rheol., 1986, 30: 367-382
[33] Kobayashi K, Huang C I, Lodge T P. Macromolecules, 1999, 32: 7070-7077
[34] Muthukumar M, Winter H H. Macromolecules, 1986, 19: 1284-1285
[35] Zhao Y, Cao Y, Yang Y, Wu C. Macromolecules, 2003, 36: 855-859
[36] Madbouly S A, Otaigbe J U, Nanda A K, Wicks D A. Polymer, 2005, 46: 10897-10907
[37] Te Nijenhuis K, Winter H H. Macromolecules, 1989, 22: 411-414
[38] Michon C, Cuvelier G, Launay B. Rheol. Acta, 1993, 32: 94-103
[39] Chambon F, Winter H H. J. Rheol., 1987, 31: 683-697
[40] Chambon F, Winter H H. Polym. Bull., 1985, 13: 499-503
[41] Kakiuchi M, Aoki Y, Watanabe H, Osaki K. Macromolecules, 2001, 34: 2987-2991
[42] Izuka A, Winter H H. Macromolecules, 1992, 25: 2422-2428
[43] Lue A, Zhang L. J. Phys. Chem., 2008, 112: 4488-4495
[44] Masataka S, Hirokazu H, Takashi T. Rheol. Acta, 2007, 46: 957-964
[45] Winter H H, Morganelli P, Chambon F. Macromolecules, 1988, 21: 532-535
[46] Kjoniksen A L, Nystrom B. Macromolecules, 1996, 29: 5252-5258
[47] Madbouly S A, Ougizawa T. J. Macromol. Sci. Phys., 2004, B43: 471-487
[48] Tan L, Liu S, Pan D. J. Phys. Chem. B, 2009, 113(3): 603-609
[49] Tan L, Pan D, Pan N. Polymer, 2008, 49: 5676-5682
[50] Bisschops J. J. Polym. Sci., 1955, 17: 89-98
[51] Tan L, Liu S, Pan D. Colloid. Surf. A, 2009, 340: 168-173
[52] Du W, Chen H, Xu H, Pan D, Pan N. J. Polym. Sci. Polym. Phys., 2009, 47: 1437-1442
[53] Tan L, Pan D. Proceedings of International Conference on Advanced Fibers and Polymer Materials. Shanghai: Chemical Engineering Press, 2009. 296-298
[54] Appaw C, Gilbert R D, Khan S A, Kadla J F. Biomacromolecules, 2007, 8: 1541-1547
[55] Bushell G C, Yan Y D, Woodfield D, Raper J, Amal R. Adv. Colloid. Interf. Sci., 2002, 95: 1-50
[56] Mellema M, Heesakkers J W M, van Opheusden J H J, van Vliet T. Langmuir, 2000, 16: 6847-6854
[57] Bremer L G B, Bijsterbosch B H, Schrijvers R, van Vliet T. Colloid. Surf., 1990, 51: 159-170
[58] Marangoni A G, Barbut S, McGauley S E, Marcone M, Narine S S. Food Hydrocolloid., 2000, 14: 61-74
[59] Mellema M, van Vliet T, van Opheudsen J H J. J. Rheol., 2002, 46: 11-29
[60] Ikeda S, Foegeding E A, Hagiwara T. Langmuir, 1999, 15: 8584-8589
[61] Eleya M M O, Ko S, Gunasekaran S. Food Hydrocolloid., 2004, 18: 315-323
[62] Shih W H, Shih W Y, Kim S I, Liu J, Aksay I A. Phys. Rev. A, 1990, 42: 4772-4779
[63] Tan L, Liu S, Pan D, Pan N. Soft Matter, 2009, 5: 4297-4304
[64] Tan L, Chen H, Pan D, Pan N. Euro. Polym. J., 2009, 45: 1617-1624
[65] Wu H, Morbidelli M. Langmuir, 2001, 17: 1030-1036
[1] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[2] Minqian Luo, Weili Heng, Juan Dai, Yuanfeng Wei, Yuan Gao, Jianjun Zhang. Crystallization of Amorphous Drugs and Inhibiting Strategies [J]. Progress in Chemistry, 2021, 33(11): 2116-2127.
[3] Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang, Yuezhong Meng. Immobilization Strategies of Organic Electrode Materials [J]. Progress in Chemistry, 2020, 32(1): 103-118.
[4] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[5] Saihui Zhan, Yue Wang, Kaipeng Liu, Jie Wang. Polyelectrolyte-Based Draw Solution in Forward Osmosis [J]. Progress in Chemistry, 2019, 31(7): 969-979.
[6] Jianxi Zhao, Panpan Gu, Hui Zeng, Shenglu Deng. Self-Assembly of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2019, 31(5): 643-653.
[7] Qinshan Cai, Shirong Wang, Yin Xiao, Xianggao Li. Application of Solution-Processed Multi-Layer Organic Light-Emitting Diodes Based on Cross-Linkable Small Molecular Hole-Transporting Materials [J]. Progress in Chemistry, 2018, 30(8): 1202-1221.
[8] Meiyao Tang, Yanyan Wang, He Shen, Guangbo Che. Solution-Based Preparation Techniques for Two-Dimensional Molybdenum Sulfide Nanosheet and Application of Its Composite Materials in Photocatalysis and Electrocatalysis [J]. Progress in Chemistry, 2018, 30(11): 1646-1659.
[9] Qianqian Wang, Liping Wu, Jing Wang, Liyuan Wang*. Directed Self-Assembly of Block Copolymers [J]. Progress in Chemistry, 2017, 29(4): 435-442.
[10] Yufu Chen, Xianggao Li, Yin Xiao, Shirong Wang. Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(4): 359-372.
[11] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.
[12] Liu Jingjing, Chu Huijuan, Wei Hongliang, Zhu Hongzheng, Zhu Jing, He Juan. Progress in Graphene-Based Hydrogels [J]. Progress in Chemistry, 2015, 27(11): 1591-1603.
[13] Kang Ding, Zhang Hongbin, Nishinari Katsuyoshi. Gellan Gum and Modified Gellan Gum Hydrogels as Biomedical Materials [J]. Progress in Chemistry, 2014, 26(07): 1172-1189.
[14] Liu Chuntao, Tong Guoquan, Chen Chaozhu, Tan Zifang, Quan Changyun, Zhang Chao. Polymeric Cryogel:Preparation, Properties and Biomedical Applications [J]. Progress in Chemistry, 2014, 26(07): 1190-1201.
[15] Li Kongzhai, Wang Hua, Wei Yonggang, Zhu Xing. Structural Features of Ce-Fe Mixed Oxide and Its Applications in Catalysis [J]. Progress in Chemistry, 2013, 25(10): 1691-1702.
Viewed
Full text


Abstract

Gelation of Polyacrylonitrile Solution