中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (5): 880-892 Previous Articles   Next Articles

• Review •

Preparation of Noble Metallic Nanoclusters and Its Application in Biological Detection

Yang Qunfeng, Liu Jianyun, Chen Huaping, Wang Xianxiang, Huang Qianming, Shan Zhi   

  1. College of Life and Science, Sichuan Agricultural University, Ya'an 625014, China
  • Received: Revised: Online: Published:
PDF ( 2021 ) Cited
Export

EndNote

Ris

BibTeX

As a new kind of fluorescent material,noble metallic nanoclusters (NMNCs) has recently received increasing attention due to its unique characteristics, which make it good candidate for biological application especially in the field of biological detection. This review first addresses the typical characteristics of NMNCs, and then summarizes the recent developments of preparation methods of NMNCs (i.e. template method, monolayer protected method and ligand etching method) and its applications in the area of biological sensors, biological probes, cell labeling and imaging. Finally, the trends and future perspectives in this research area are outlined.

CLC Number: 

[1] 林章碧(Lin Z B), 苏星光(Su X G), 张家骅(Zhang J H), 金钦汉(Jin Q H). 分析化学(Chinese Journal of Analytical Chemistry), 2002, 2: 237-241
[2] Vosch T, Antoku Y, Hsiang J C, Richards C I, Gonzalez J I, Dickson R M. Proc. Natl. Acad. Sci. USA, 2007, 104: 12616-12621
[3] Somers R C, Bawendi M G, Nocera D G. Chem. Soc. Rev., 2007, 36: 579-591
[4] Liu W, Howarth M, Greytak A B, Zheng Y, Nocera D G, Ting A Y, Bawendi M G. J. Am. Chem. Soc., 2008, 130: 1274-1284
[5] Boeneman K, Delehanty J B, Susumu K, Stewart M H, Medintz I L. J. Am. Chem. Soc., 2010, 132: 5975-5977
[6] 刘建云(Liu J Y), 黄乾明(Huang Q M), 王显祥(Wang X X), 杨群峰(Yang Q F), 陈华萍(Chen H P). 化学进展(Progress in Chemistry), 2010, 22: 1068-1076
[7] Verberk R, Van Oijen A M, Orrit M. Phys. Rev. B, 2002, 66: art. no. 233202
[8] Derfus A M, Chan W C W, Bhatia S N. Nano Lett., 2004, 4: 11-18
[9] Zheng J, Zhang C, Dickson R M. Phys. Rev. Lett., 2004, 93: art. no. 077402
[10] Zheng J, Nicovich P R, Dickson R M. Annu. Rev. Phys. Chem., 2007, 58: 409-431
[11] Richards C I, Choi S, Hsiang J C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y L, Dickson R M. J. Am. Chem. Soc., 2008, 130: 5038-5039
[12] Zheng J, Dickson R M. J. Am. Chem. Soc., 2002, 124: 13982-13983
[13] Triulzi R C, Micic M, Giordani S, Serry M, Chiou W A, Leblanc R M. Chem. Commun., 2006, 5068-5070
[14] Chen W, Tu X, Guo X. Chem. Commun., 2009, 1736-1738
[15] Lin S Y, Chen N T, Sum S P, Lo L W, Yang C S. Chem. Commun. (Camb), 2008, 4762-4764
[16] Yu J, Choi S, Richards C I, Antoku Y, Dickson R M. Photochem. Photobiol., 2008, 84: 1435-1439
[17] Guo W, Yuan J, Dong Q, Wang E. J. Am. Chem. Soc., 2010, 132: 932-934
[18] Chen S, Ingram R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G, Khoury J T, Alvarez M M, Whetten R L. Science, 1998, 280: 2098-2101
[19] Lee D, Donkers R L, Wang G, Harper A S, Murray R W. J. Am. Chem. Soc., 2004, 126: 6193-6199
[20] Crespo P, Litran R, Rojas T C, Multigner M, de la Fuente J M, Sanchez-Lopez J C, Garcia M A, Hernando A, Penades S, Fernandez A. Phys. Rev. Lett., 2004, 93: art. no. 087204
[21] Petty J T, Zheng J, Hud N V, Dickson R M. J. Am. Chem. Soc., 2004, 126: 5207-5212
[22] Lin C A J, Lee C H, Hsieh J T, Wang H H, Li J K, Shen J L, Chan W H, Yeh H I, W H Chang. J. Med. Biol. Eng., 2009, 6: 276-283
[23] Garcia-Martinez J C, Crooks R M. J. Am. Chem. Soc., 2004, 126: 16170-16178
[24] Zhang J G, Xu S Q, Kumacheva E. Adv. Mater., 2005, 17: 2336-2340
[25] Duan H, Nie S. J. Am. Chem. Soc., 2007, 129: 2412-2413
[26] Shang L, Dong S. Chem. Commun. (Camb), 2008, 1088-1090
[27] Shen Z, Duan H W, Frey H. Adv. Mater., 2007, 19: 349-352
[28] Braun E, Eichen Y, Sivan U, Ben-Yoseph G. Nature, 1998, 391: 775-778
[29] Yu J, Patel S A, Dickson R M. Angew. Chem. Int. Ed. Engl., 2007, 46: 2028-2030
[30] Neill P R O, Velazquez L R, Dunn D G, Gwinn E G, Fygenson D K. J. Phys. Chem. C, 2009, 113: 4229-4233
[31] Xie J, Zheng Y, Ying J Y. J. Am. Chem. Soc., 2009, 131: 888-889
[32] Linnert T, Mulvaney P, Henglein A, Weller H. J. Am. Chem. Soc., 1990, 112: 4657-4664
[33] Hatchett D W, Josowicz M, Janata J, Baer D R. Chem. Mater., 1999, 11: 2989-2994
[34] Wei H, Wang Z, Yang L, Tian S, Hou C, Lu Y. Analyst, 2010, 135: 1406-1410
[35] Yamane T, Davidson N. Biochimica et Biophysica Acta, 1962, 55: 609-621
[36] Daune M, Dekker C A, Schachman H K. Biopolymers, 1966, 4: 51 - 76
[37] Eichhorn G L, Butzow J J, Clark P, Tarien E. Biopolymers, 1967, 5: 283-296
[38] Ritchie C M, Johnsen K R, Kiser J R, Antoku Y, Dickson R M, Petty J T. J. Phys. Chem. C, 2007, 111: 175-181
[39] Sengupta B, Ritchie C M, Buckman J G, Johnsen K R, Goodwin P M, Petty J T. J. Phys. Chem. C, 2008, 112: 18776-18782
[40] Antoku Y. Doctoral Dissertation of Georgia Institute of Technology, 2007
[41] Gwinn E G, O'Neill P R, Guerrero A J, Bouwmeester D, Fygenson D K. Adv. Mater., 2008, 20: 279-283
[42] Gibson D W, Beer M, Barrnett R J. Biochemistry, 1971, 10: 3669-3679
[43] Ackerson C J, Jadzinsky P D, Kornberg R D. J. Am. Chem. Soc., 2005, 127: 6550-6551
[44] Gentilini C, Evangelista F, Rudolf P, Franchi P, Lucarini M, Pasquato L. J. Am. Chem. Soc., 2008, 130: 15678-15682
[45] Branham M R, Douglas A D, Mills A J, Tracy J B, White P S, Murray R W. Langmuir, 2006, 22: 11376-11383
[46] Cha S H, Kim J U, Kim K H, Lee J C. Chem. Mater., 2007, 19: 6297-6303
[47] Hou W, Dasog M, Scott R W J. Langmuir, 2009, 25: 12954-12961
[48] Porta F, Krpetic Z, Prati L, Gaiassi A, Scari G. Langmuir, 2008, 24: 7061-7064
[49] Stefanescu D M, Glueck D S, Siegel R, Wasylishen R E. Langmuir, 2004, 20: 10379-10381
[50] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J. Chem. Soc. Chem. Commun., 1994, 801-802
[51] Jana N R, Peng X. J. Am. Chem. Soc., 2003, 125: 14280-14281
[52] Lin C A, Yang T Y, Lee C H, Huang S H, Sperling R A, Zanella M, Li J K, Shen J L, Wang H H, Yeh H I, Parak W J, Chang W H. ACS Nano, 2009, 3: 395-401
[53] Huang C C, Yang Z, Lee K H, Chang H T. Angew. Chem. Int. Ed. Engl., 2007, 46: 6824-6828
[54] Huang C C, Liao H Y, Shiang Y C, Lin Z H, Yanga Z, Chang H T. J. Mater. Chem., 2009, 19: 755-759
[55] Negishi Y, Nobusada K, Tsukuda T. J. Am. Chem. Soc., 2005, 127: 5261-5270
[56] Aryal S, Remant B K C, Dharmaraj N, Bhattarai N, Kim C H, Kim H Y. Spectrochim. Acta A, 2006, 63: 160-163
[57] Templeton A C, Cliffel D E, Murray R W. J. Am. Chem. Soc., 1999, 121: 7081-7089
[58] Wang G, Huang T, Murray R W, Menard L, Nuzzo R G. J. Am. Chem. Soc., 2005, 127: 812-813
[59] Wang G, Guo R, Kalyuzhny G, Choi J P, Murray R W. J. Phys. Chem. B, 2006, 110: 20282-20289
[60] Yang Y, Chen S. Nano Lett., 2003, 3: 75-79
[61] Negishi Y, Tsukuda T. Chem. Phys. Lett., 2004, 383: 161-165
[62] Donkers R L, Lee D, Murray R W. Langmuir, 2004, 20: 1945-1952
[63] Kim J, Lema K, Ukaigwe M, Lee D. Langmuir, 2007, 23: 7853-7858
[64] Devadas M S, Kwak K, Park J W, Choi J H, Jun C H, Sinn E, Ramakrishna G, Lee D. J. Phys. Chem. Lett., 2010, 1: 1497-1503
[65] Shichibu Y, Negishi Y, Tsunoyama H, Kanehara M, Teranishi T, Tsukuda T. Small, 2007, 3: 835-839
[66] Woehrle G H, Warner M G, Hutchison J E. J. Phys. Chem. B, 2002, 106: 9979-9981
[67] Shichibu Y, Negishi Y, Tsukuda T, Teranishi T. J. Am. Chem. Soc., 2005, 127: 13464-13465
[68] Zhu M, Aikens C M, Hollander F J, Schatz G C, Jin R. J. Am. Chem. Soc., 2008, 130: 5883-5885
[69] Zhu M, Lanni E, Garg N, Bier M E, Jin R. J. Am. Chem. Soc., 2008, 130: 1138-1139
[70] Wu Z, Suhan J, Jin R. J. Mater. Chem., 2009, 19: 622-626
[71] Wu Z, Lanni E, Chen W, Bier M E, Ly D, Jin R. J. Am. Chem. Soc., 2009, 131: 16672-16674
[72] Zhu M, Qian H, Jin R. J. Am. Chem. Soc., 2009, 131: 7220-7221
[73] Zhu M, Qian H, Jin R. J. Phys. Chem. Lett., 2010, 1: 1003-1007
[74] Tracy J B, Kalyuzhny G, Crowe M C, Balasubramanian R, Choi J P, Murray R W. J. Am. Chem. Soc., 2007, 129: 6706-6707
[75] Huang C C, Chen C T, Shiang Y C, Lin Z H, Chang H T. Anal. Chem., 2009, 81: 875-882
[76] Kawasaki H, Yamamoto H, Fujimori H, Arakawa R, Inadab M, Iwasakia Y. Chem. Commun., 2010, 46: 3759-3761
[77] Edinger K, Golzhauser A, Demota K, Woll C, Grunze M. Langmuir, 1993, 9: 4-8
[78] Schaaff T, Whetten R. J. Phys. Chem. B, 1999, 103: 9394-9396
[79] Warner M G, Reed S M, Hutchison J E. Chem. Mater., 2000, 12: 3316-3320
[80] Woehrle G H, Hutchison J E. Inorg. Chem., 2005, 44: 6149-6158
[81] Jin R, Egusa S, Scherer N F. J. Am. Chem. Soc., 2004, 126: 9900-9901
[82] Woehrle G H, Brown L O, Hutchison J E. J. Am. Chem. Soc., 2005, 127: 2172-2183
[83] Tsunoyama H, Nickut P, Negishi Y, Al-Shamery K, Matsumoto Y, Tsukuda T. J. Phys. Chem. C, 2007, 111: 4153-4158
[84] Muhammed M A, Ramesh S, Sinha S S, Pal S K, Pradeep T. Nano Res., 2008, 1: 333-340
[85] Muhammed M A, Verma P K, Pal S K, Kumar R C, Paul S, Omkumar R V, Pradeep T. Chemistry, 2009, 15: 10110-10120
[86] Shibu E S, Radha B, Verma P K, Bhyrappa P, Kulkarni G U, Pal S K, Pradeep T. ACS Appl. Mater. Interfaces, 2009, 1: 2199-2210
[87] Zhou R J, Shi M M, Chen X Q, Wang M, Chen H Z. Chem. Eur. J., 2009, 15: 4944-4951
[88] Rao T, Pradeep T. Angew. Chem. Int. Ed., 2010, 49: 3925-3929
[89] Gazit V, Ben-Abraham R, Coleman R, Weizman A, Katz Y. Amino Acids, 2004, 26: 163-168
[90] Wang W, Rusin O, Xu X, Kim K K, Escobedo J O, Fakayode S O, Fletcher K A, Lowry M, Schowalter C M, Lawrence C M, Fronczek F R, Warner I M, Strongin R M. J. Am. Chem. Soc., 2005, 127: 15949-15958
[91] Shang L, Dong S. Biosens. Bioelectron., 2009, 24: 1569-1573
[92] Shang L, Qin C, Wang T, Wang M, Wang L, Dong S. J. Phys. Chem. C, 2007, 111: 13414-13417
[93] Tanaka F, Mase N, Barbas C F. Chem. Commun., 2004, 1762-1763
[94] Huang C C, Chiang C K, Lin Z H, Lee K H, Chang H T. Anal. Chem., 2008, 80: 1497-1504
[95] Sun X L, Cui W, Haller C, Chaikof E L. Chem. Bio. Chem., 2004, 5: 1593-1596
[96] Babu P, Sinha S, Surolia A. Bioconjug. Chem., 2007, 18: 146-151
[97] Yu J, Choi S, Dickson R M. Angew. Chem. Int. Ed., 2009, 48: 318-320
[98] Horky M, Kotala V, Anton M, Wesierska-Gadek J. Ann. N. Y. Acad. Sci., 2002, 973: 258-264
[99] Lin C A J, Lee C H, Hsieh J T, Yu W C, Yang H Z, Li J K, Sperling R, Wang H H, Yeh H I, Parak W J, Chang W H. Proc. SPIE-Int. Soc. Opt. Eng., 2010, 7575: 7575061-7575069
[100] Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H, Pradeep T, Nair S, Koyakutty M. Nanotechnology, 2009, 21: art. no. 055103
[101] Antoku Y, Hotta J, Mizuno H, Dickson R M, Hofkens J, Vosch T. Photochem. Photobiol. Sci., 2010, 9: 716-721
[102] Frangioni J V. Curr. Opin. Chem. Biol., 2003, 7: 626-634
[103] Xing Y, Rao J H. Cancer Biomarkers, 2008, 4: 307-319
[104] Zheng Y, Gao S, Ying J Y. Adv. Mater., 2007, 19: 376-380
[105] Schipper M L, Iyer G, Koh A L, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila L A, Li J Q, Rao J H, Chen X Y, Banin U, Wu A M, Sinclair R, Weiss S, Gambhir S S. Small, 2009, 5: 126-134
[106] Wu X, He X X, Wang K M, Xie C, Zhou B, Qing Z H. Nanoscale, 2010, 2: 2244-2249
[107] Yeh H C, Sharma J, Han J J, Martinez J S, Werner J H. Nano Lett., 2010, 10: 3106-3110

[1] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[2] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[3] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[4] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[5] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[6] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[7] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[8] Yang Wang, Po Hu, Shuai Zhou, Jiajun Fu. Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2021, 33(7): 1221-1237.
[9] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[10] Shijia Li, Ernan Pang, Caihong Hao, Tingting Cai, Shengliang Hu. Preparation of Solid-State Fluorescent Carbon Dots [J]. Progress in Chemistry, 2020, 32(5): 548-561.
[11] Yuehua Yuan, Yongjun Zhu, Wei Hu, Jun Qin, Maozhong Tian, Feng Feng. Double Recognition Fluorescence Probes for Copper and Mercury Ions Based on Small Molecules [J]. Progress in Chemistry, 2019, 31(4): 550-560.
[12] Yang Shen, Jiwen Hu, Tingting Liu, Hongwen Gao, Zhangjun Hu. Colorimetric and Fluorogenic Chemosensors for Mercury Ion Based on Nanomaterials [J]. Progress in Chemistry, 2019, 31(4): 536-549.
[13] Xiaofu Wu, Hui Tong, Lixiang Wang. Fluorescent Polymer Materials for Detection of Explosives [J]. Progress in Chemistry, 2019, 31(11): 1509-1527.
[14] Daiwen Pang, Zhiliang Chen, Shasha Lv, Yi Lin*, Zhiling Zhang, Daiwen Pang. Metal-Enhanced Fluorescence from Quantum Dots [J]. Progress in Chemistry, 2017, 29(8): 814-823.
[15] Chibao Huang*, Shaoying Chen. Two-Photon Fluorescence Probe [J]. Progress in Chemistry, 2017, 29(10): 1215-1227.