中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 1093-1114 DOI: 10.7536/PC170563 Previous Articles   Next Articles

• Review •

Natural Origins, Concentration Levels, and Formation Mechanisms of Organohalogens in the Environment

Lijuan Jin, Baoliang Chen*   

  1. Department of Environmental Science, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21425730, 21621005).
PDF ( 738 ) Cited
Export

EndNote

Ris

BibTeX

Organohalogens are one of the most important pollutants in the environment, of which the environmental chemical behavior, control methods and health effects have aroused great concern around the world, but they are always considered as anthropogenic compounds, such as polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), chlorophenols (CPs) and bromophenols (BPs). Currently, however more and more organohalogens are known to be produced naturally in the environment, and they are widely distributed in the environment, including marine, terrestrial, desert and polar region. Because of their high toxicity, persistence, bioaccumulation potential, and carcinogenicity, and sometimes even acting as environmental hormone substances, the majority of which have a bad effect on human causing mental and psychological harm, most of these pollutants are regulated in many countries. Moreover, natural organohalogens' origin, concentration level, formation mechanism and fate in environment are critical to correctly assess its environmental risk, as well as to set proper environmental standards and safe concentration threshold. As research of natural organohalogens is emerging rapidly all over the world, this review summarizes the marine, terrestrial and other sources of natural organohalogens, their physical and chemical properties, and concentration levels of some typical compounds. The formation mechanisms of biotic and abiotic pathways are highlighted. The transport and fate of natural organohalogens in the environment are discussed. Some general analytical methods are also mentioned in this review.The currently research trends and existing questions are prospected, and the formation molecular mechanisms and environmental transport behaviors of natural organohalogens are worthwhile studying.
Contents
1 Introduction
2 Natural origin of organohalogens
2.1 Marine source
2.2 Terrestrial source
2.3 Other source
3 Formation mechanism of natural organohalogens
3.1 Biotic mechanism
3.2 Abiotic mechanism
3.3 Influential factors
4 Concentration level of some typical natural organohalogens
5 Fate of transport and transformation in environment
6 General analytical methods
7 Conclusion

CLC Number: 

[1] Zhao L, Hou H, Zhou Y, Xue N, Li H, Li F. Chemosphere,2010, 78:1285.
[2] Covaci A, Gheorghe A, Voorspoels S, Maervoet J, Redeker E S, Blust R, Schepens P. Environ. Int., 2005, 31:367.
[3] Kim D G, Choi K I, Lee D H. Atmos. Res., 2011, 101:386.
[4] Fromme H, Becher G, Hilger B, Volkel W. Int. J. Hyg. Environ. Heal., 2016, 219:1.
[5] Dorneles P R, Lailson-Brito J, Secchi E R, Dirtu A C, Weijs L, Dalla Rosa L, Bassoi M, Cunha H A, Azevedo A F, Covaci A. Environ. Res., 2015, 138:49.
[6] Yu L H, Luo X J, Zheng X B, Zeng Y H, Chen D, Wu J P, Mai B X. Chemosphere, 2013, 93:506.
[7] Katsoyiannis A, Samara C. Environ. Res., 2005, 97:245.
[8] Bigot M, Hawker D W, Cropp R, Muir D C, Jensen B, Bossi R, Bengtson Nash S. Environ. Sci. Technol., 2017, DOI:10.1021/acs.est.7b02481
[9] Vuorinen P J, Roots O, Keinanen M. J. Marine Syst., 2017, 171:141.
[10] Airaksinen R, Hallikainen A, Rantakokko P, Ruokojarvi P, Vuorinen P J, Parmanne R, Verta M, Mannio J, Kiviranta H. Chemosphere, 2014, 114:165.
[11] Routti H, Andersen M S, Fuglei E, Polder A, Yoccoz N G. Environ. Pollut., 2016, 216:264.
[12] Colabuono F I, Vander Pol S S, Huncik K M, Taniguchi S, Petry M V, Kucklick J R, Montone R C. Environ. Pollut., 2016, 216:38.
[13] Vetter W, Gall V, Skirnisson K. Sci. Total Environ., 2015, 533:290.
[14] Gribble G.Naturally Occurring Organohalogen Compounds® A Comprehensive Update in Progress in the Chemistry of Organic Natural Products. Ed. by Kinghorn A D, Falk H, Kobayashi J. New York:Springer-Verlag/Vienna, 2010.
[15] Gribble G W. Chemosphere, 2003, 52:289.
[16] Gribble G W. Environ. Chem., 2015, 12:396.
[17] Drechsel E. Zeitschrift fur Biologie, 1896, 33:85.
[18] Wang L S, Zhou X F, Fredimoses M, Liao S R, Liu Y H. RSC Adv., 2014, 4:57350.
[19] Leri A C, Myneni S C. Glob. Biogeochem. Cycle, 2010, 24:1.
[20] Myneni S C B. Science, 2002, 295:1039.
[21] Butler A, Sandy M. Nature, 2009, 460:848.
[22] Wagner C, El Omari M, König G M. J. Nat. Prod., 2009, 72:540.
[23] Gribble G W. Mar. Drugs, 2015, 13:4044.
[24] Gribble G W. Pure. Appl. Chem., 1996, 68:1699.
[25] Gribble G W. Chem. Soc. Rev., 1999, 28:335.
[26] Gribble G J. Environ. Sci. Pollut. Res., 2000, 7:37.
[27] Gribble G W, Blank D H, Jasinski J P. Chem. Commun., 1999, 21:2195.
[28] Gribble G W. J. Nat. Prod., 1992, 55:1353.
[29] Muller G, Nkusi G, Scholer H F. J. Prakt. Chem.-Chem. Ztg., 1996, 338:23.
[30] Vetter W, Haase-Aschoff P, Rosenfelder N, Komarova T, Mueller J F. Environ. Sci. Technol., 2009, 43:6131.
[31] Sim W J, Lee S H, Lee I S, Choi S D, Oh J E. Chemosphere, 2009, 77:552.
[32] 阴永光(Yin Y G), 刘景富(Liu J F), 江桂斌(Jiang G B). 化学进展(Progress in Chemistry), 2011, 23:254.
[33] Flodin C, Whitfield F. Water Sci. Technol., 1999, 40:53.
[34] Wang X, Duggan B M, Moinski T F. J. Am. Chem.Soc., 2015, 137:12343.
[35] Faulkner D J, Stallard M O, Fayos J, Clardy J. J. Am. Chem. Soc., 1973, 95:3413.
[36] Erickson K L, Beutler J A, Gray G N, Cardellina J H, Boyd M R. J. Nat. Prod., 1995, 58:1848.
[37] Scarratt M, Moore R. Mar. Chem., 1996, 54:263.
[38] Wu J, Vetter W, Gribble G W, Schneekloth Jr J S, Blank D H, Görls H. Angewandte Chemie International Edition, 2002, 41:1740.
[39] Nomiyama K, Murata S, Kunisue T, Yamada T K, Mizukawa H, Takahashi S, Tanabe S. Environ. Sci. Technol., 2010, 44:3732.
[40] Marsh G, Athanasiadou M, Bergman A, Asplund L. Environ. Sci. Technol., 2004, 38:10.
[41] Bidleman T F, Agosta K, Andersson A, Haglund P, Liljelind P, Hegmans A, Jantunen L M, Nygren O, Poole J, Ripszam M. Marine Pollution Bulletin, 2016, 112:58.
[42] Winid B. Pol. J. Environ. Stud., 2015, 24:47.
[43] Ueno D, Darling C, Alaee M, Pacepavicius G, Teixeira C, Campbell L, Letcher R J, Bergman A, Marsh G, Muir D. Environ. Sci. Technol., 2008, 42:1657.
[44] Zhang K, Wan Y, Jones P D, Wiseman S, Giesy J P, Hu J Y. Environ. Sci. Technol., 2012, 46:2148.
[45] Teuten E L, Xu L, Reddy C M. Science, 2005, 308:1413.
[46] Malmvärn A, Zebühr Y, Kautsky L, Bergman Å, Asplund L. Chemosphere, 2008, 72:910.
[47] Malmvärn A, Marsh G, Kautsky L, Athanasiadou M, Bergman Å, Asplund L. Environ. Sci. Technol., 2005, 39:2990.
[48] Guerra P, Eljarrat E, Barcelo D. J. Hydrol., 2010, 383:39.
[49] Gorga M, Martinez E, Ginebreda A, Eljarrat E, Barcelo D. Sci. Total Environ., 2013, 444:51.
[50] Moller A, Xie Z Y, Cai M H, Sturm R, Ebinghaus R. Environ. Sci. Technol., 2012, 46:3141.
[51] Baron E, Rudolph I, Chiang G, Barra R, Eljarrat E, Barcelo D. Sci. Total Environ., 2013, 461:258.
[52] Guerra P, Alaee M, Jimenez B, Pacepavicius G, Marvin C, MacInnis G, Eljarrat E, Barcelo D, Champoux L, Fernie K. Environ. Int., 2012, 40:179.
[53] Alonso M B, Azevedo A, Torres J P M, Dorneles P R, Eljarrat E, Barcelo D, Lailson-Brito J, Maim O. Sci. Total Environ., 2014, 481:619.
[54] Siddique S, Xian Q M, Abdelouahab N, Takser L, Phillips S P, Feng Y L, Wang B, Zhu J P. Environ. Int., 2012, 39:50.
[55] Agarwal V, Li J, Rahman I, Borgen M, Aluwihare L I, Biggs J S, Paul V J, Moore B S. Environ. Sci. Technol., 2015, 49:1339.
[56] Agarwal V, El Gamal A A, Yamanaka K, Poth D, Kersten R D, Schorn M, Allen E E, Moore B S. Nature Chemical Biology,2014, 10:640.
[57] Barón E, Hauler C, Gallistl C, Giménez J, Gauffier P, Castillo J, Fernández-Maldonado C, de Stephanis R, Vetter W, Eljarrat E. Environ. Sci. Technol., 2015, 49:9073.
[58] Albers C N, Hansen P E, Jacobsen O S. Sci. Total Environ., 2010, 408:6223.
[59] Dimmer C H, Simmonds P G, Nickless G, Bassford M R. Atmos. Environ., 2001, 35:321.
[60] Haselmann K F, Ketola R A, Laturnus F, Lauritsen F R, Grøn C. Atmos. Environ., 2000, 34:187.
[61] Hoekstra E J, de Leer E W, Udo A T. Chemosphere, 1999, 38:551.
[62] McCulloch A. Chemosphere, 2003, 50:1291.
[63] Peters R J. J. Environ. Monit., 2003, 5:275.
[64] Hellén H, Hakola H, Pystynen K H, Rinne J, Haapanala S. Biogeosciences, 2006, 3:167.
[65] Rhew R C, Teh Y A, Abel T, Atwood A, Mazéas O. Geophys. Res. Lett., 2008, 35:1.
[66] Kotte K, Löw F, Huber S, Krause T, Mulder I, Schöler H. Biogeosciences, 2012, 9:1225.
[67] Rhew R C, Miller B R, Weiss R F. Atmos. Environ., 2008, 42:7135.
[68] Khalil M, Rasmussen R, Wang M X, Ren L. Chemosphere, 1990, 20:207.
[69] Chen A, Park J S, Linderholm L, Rhee A, Petreas M, DeFranco E A, Dietrich K N, Ho S M. Environ. Sci. Technol., 2013, 47:3902.
[70] Wan Y, Choi K, Kim S, Ji K, Chang H, Wiseman S, Jones P D, Khim J S, Park S, Park J. Environ. Sci. Technol., 2010, 44:5233.
[71] Zhang K, Wan Y, Giesy J P, Lam M H, Wiseman S, Jones P D, Hu J. Environ. Sci. Technol., 2010, 44:5781.
[72] Zota A R, Park J S, Wang Y, Petreas M, Zoeller R T, Woodruff T J. Environ. Sci. Technol., 2011, 45:7896.
[73] Cantón R F, Scholten D E, Marsh G, de Jong P C, van den Berg M. Toxicol. Appl. Pharmacol., 2008, 227:68.
[74] Dingemans M M, de Groot A, van Kleef R G, Bergman Å, van den Berg M, Vijverberg H P, Westerink R H. Environ. Health Perspect., 2008, 116:637.
[75] Meerts I, Letcher R J, Hoving S, Marsh G, Bergman A, Lemmen J G, van der Burg B, Brouwer A. Environ. Health Perspect., 2001, 109:399.
[76] Monde K, Satoh H, Nakamura M, Tamura M, Takasugi M. J. Nat. Prod., 1998, 61:913.
[77] Gribble G W. J. Chem. Educ., 2004, 81:1441.
[78] Miles D H, Tunsuwan K, Chittawong V, Hedin P A, Kokpol U, Ni C Z, Clardy J. J. Nat. Prod., 1993, 56:1590.
[79] Wang H, Dai H F, Heering C, Janiak C, Lin W H, Orfali R S, Muller W E G, Liu Z, Proksch P. RSC Adv., 2016, 6:81685.
[80] Aldemir H l, Kohlhepp S V, Gulder T, Gulder T A. Journal of Natural Products, 2014, 77:2331.
[81] Weigold P, Ruecker A, Jochmann M, Barajas X L O, Lege S, Zwiener C, Kappler A, Behrens S. Lett. Appl. Microbiol., 2015, 61:346.
[82] Hoekstra E J, de Weerd H, de Leer E W, Brinkman U A T. Environ. Sci. Technol., 1999, 33:2543.
[83] Rhew R C, Miller B R, Weiss R F. Nature, 2000, 403:292.
[84] Rhew R, Mazeas O. Geophys. Res. Lett., 2010, 37:L18813.
[85] Rhew R C, Whelan M E, Min D H. Biogeosciences, 2014, 11:6427.
[86] Ruecker A, Weigold P, Behrens S, Jochmann M, Barajas X L O, Kappler A. Environ. Chem., 2015, 12:406.
[87] Jordan A, Harnisch J, Borchers R, Le Guern F, Shinohara H. Environ. Sci. Technol., 2000, 34:1122.
[88] Laturnus F, Haselmann K F, Borch T, Grøn C. Biogeochemistry, 2002, 60:121.
[89] 陈德翼(Chen D Y), 彭平安(Peng P A),胡建芳(Hu J F), 任曼(Ren M), 陈佩(Chen P). 环境化学(Environmental Chemistry), 2011, 30:1271.
[90] Xhrouet C,Pirard C, Pauw E. Environ. Sci. Technol., 2001, 35:1616.
[91] Gribble G.Naturally Occuring Organohalogen Compounds-A Comprehensive Survery. In Progress in the Chemistry of Organic Natural Products. NY:Springer, 1996. 1.
[92] Keppler F, Fischer J, Sattler T, Polag D, Jaeger N, Schöler H F, Greule M. Sci. Total Environ., 2017, 605:405.
[93] Blanchet L, Smolinska A, Baranska A, Tigchelaar E, Swertz M, Zhernakova A, Dallinga J W, Wijmenga C, van Schooten F J. J. Breath Res., 2017, 11:1.
[94] Breider F, Albers C N. Chemosphere, 2015, 119:145.
[95] Aeppli C, Bastviken D, Andersson P. Gustafsson O. Environ. Sci. Technol., 2013, 47:6864.
[96] Liu Y N, Thornton D C O, Bianchi T S, Arnold W A, Shields M R, Chen J, Yvon-Lewis S A. Environ. Sci. Technol., 2015, 49:3366.
[97] Weigold P, El-Hadidi M, Ruecker A, Huson D H, Scholten T, Jochmann M, Kappler A, Behrens S. Sci. Rep., 2016, 6:1.
[98] 耿召良(Geng Z L), 王浩鑫(Wang H X), 赵沛基(Zhao P J),郝小江(Hao X J), 曾英(Zeng Y). 云南植物研究(Acta Botanica Yunnanica), 2009, 31:269.
[99] Hager L P, Morris D R, Brown F S, Eberwein H. J. Biol. Chem., 1966, 241:1769.
[100] Manthey J A, Hager L P. J. Biol. Chem., 1985, 260:9654.
[101] Manthey J A, Hager L P. Biochemistry, 1989, 28:3052.
[102] Roach M P, Chen Y P, Woodin S A, Lincoln D E, Lovell C R, Dawson J H. Biochemistry, 1997, 36:2197.
[103] Vilter H. Bot. Marina, 1983, 26:429.
[104] Vilter H. Phytochemistry, 1984, 23:1387.
[105] Wever R, Plat H, de Boer E. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1985, 830:181.
[106] Vaillancourt F H, Yin J, Walsh C T. Proc. Natl. Acad. Sci. U. S. A., 2005, 102:10111.
[107] Chen X, Pée V. Acta Biochim. Biophys. Sin., 2008, 40:183.
[108] Deng H, O'Hagan D. Curr. Opin. Chem. Biol., 2008, 12:582.
[109] Wuosmaa A M, Hager L P. Science, 1990, 249:160.
[110] Dong C, Huang F, Deng H, Schaffrath C, Spencer J B, O'hagan D, Naismith J H. Nature, 2004, 427:561.
[111] Blasiak L C, Drennan C L. Acc. Chem. Res., 2008, 42:147.
[112] 张丽华(Zhang L H). 山西大同大学学报.自然科学版(Shanxi Datong University Journal(Natural Science Edition)), 2014, 30:42.
[113] Morris D R, Hager L P. J. Biol. Chem., 1966, 241:1763.
[114] Taurog A, Howells E M. J. Biol. Chem., 1966, 241:1329.
[115] Hofrichter M, Ullrich R. Appl. Microbiol. Biotechnol., 2006, 71:276.
[116] Zederbauer M, Furtmüller P G, Brogioni S, Jakopitsch C, Smulevich G, Obinger C. Nat. Prod. Rep., 2007, 24:571.
[117] Welinder K G. Curr. Opin. Struct. Biol., 1992, 2:388.
[118] Kimura S, Ikeda-Saito M. Proteins:Structure, Function, and Bioinformatics, 1988, 3:113.
[119] Kühnel K, Blankenfeldt W, Terner J, Schlichting I. J. Biol. Chem., 2006, 281:23990.
[120] Libby R D, Beachy T M, Phipps A K. J. Biol. Chem., 1996, 271:21820.
[121] Sundaramoorthy M, Terner J, Poulos T L. Chem. Biol., 1998, 5:461.
[122] Van Pee K H, Unversucht S. Chemosphere, 2003, 52:299.
[123] Wagenknecht H A, Woggon W D. Chem. Biol., 1997, 4:367.
[124] Almeida M, Filipe S, Humanes M, Maia M, Melo R, Severino N, da Silva J, da Silva J F, Wever R. Phytochemistry, 2001, 57:633.
[125] Butler A, Carter-Franklin J N. Nat. Prod. Rep., 2004, 21:180.
[126] Littlechild J, Garcia-Rodriguez E, Dalby A, Isupov M. J. Mol. Recognit., 2002, 15:291.
[127] Winter J M, Moffitt M C, Zazopoulos E, McAlpine J B, Dorrestein P C, Moore B S. J. Biol. Chem., 2007, 282:16362.
[128] Ortiz-Bermudez P, Hirth K C, Srebotnik E, Hammel K E. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:3895.
[129] Chen X P, Huang M F, Wang B. Chin. J. Chem., 2008, 26:1486.
[130] Messerschmidt A, Prade L, Wever R. Biol. Chem., 1997, 378:309.
[131] Neumann C S, Fujimori D G, Walsh C T. Chem. Biol., 2008, 15:99.
[132] Wever R, van der Horst MA. Dalton Trans., 2013, 42:11778.
[133] Leblanc C, Vilter H, Fournier J B, Delage L, Potin P, Rebuffet E, Michel G, Solari P, Feiters M, Czjzek M. Coordination Chemistry Reviews, 2015, 301:134.
[134] Fournier J B, Rebuffet E, Delage L, Grijol R, Meslet-Cladière L, Rzonca J, Potin P, Michel G, Czjzek M, Leblanc C. Applied and Environmental Microbiology, 2014, 80:7561.
[135] Dairi T, Nakano T, Aisaka K, Katsumata R, Hasegawa M. Bioscience, Biotechnology, and Biochemistry, 1995, 59:1099.
[136] Hammer P E, Hill D S, Lam S T, Van Pée K H, Ligon J M. Appl. Environ. Microbiol., 1997, 63:2147.
[137] Keller S, Wage T, Hohaus K, Hölzer M, Eichhorn E, van Pée K H. Angewandte Chemie International Edition, 2000, 39:2300.
[138] Sánchez C, Butovich I A, Braña A F, Rohr J, Méndez C, Salas J A. Chem. Biol., 2002, 9:519.
[139] Zehner S, Kotzsch A, Bister B, Süssmuth R D, Méndez C, Salas J A, van Pée K H. Chem. Biol., 2005, 12:445.
[140] Seibold C, Schnerr H, Rumpf J, Kunzendorf A, Hatscher C, Wage T, Ernyei A J, Dong C, Naismith JH, Van Pée K H. Biocatal. Biotransform., 2006, 24:401.
[141] Dong C, Flecks S, Unversucht S, Haupt C, van Pee K H, Naismith J H. Science, 2005, 309:2216.
[142] Yeh E, Garneau S, Walsh C T. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:3960.
[143] Unversucht S, Hollmann F, Schmid A, van Pée K H. Adv. Synth. Catal., 2005, 347:1163.
[144] Van Pée K H, Patallo E P. Appl. Microbiol. Biotechnol., 2006, 70:631.
[145] Yeh E, Cole L J, Barr E W, Bollinger J M, Ballou D P, Walsh C T. Biochemistry, 2006, 45:7904.
[146] Vaillancourt F H, Yeh E, Vosburg D A, O'connor S E, Walsh C T. Nature, 2005, 436:1191.
[147] Galoni D? D P, Barr E W, Walsh C T, Bollinger J M, Krebs C. Nat. Chem. Biol., 2007, 3:113.
[148] Vaillancourt F H, Yeh E, Vosburg D A, Garneau-Tsodikova S, Walsh C T. Chem. Rev., 2006, 106:3364.
[149] Keppler F, Eiden R, Niedan V, Pracht J, Schöler H. Nature, 2000, 403:298.
[150] Bastviken D, Svensson T, Karlsson S, Sanden P, Oberg G. Environ. Sci. Technol., 2009, 43:3569.
[151] Comba P, Kerscher M, Krause T, Scholer H F. Environ. Chem., 2015, 12:381.
[152] Leri A C, Ravel B. Environ. Sci. Technol., 2015, 49:13350.
[153] Harper D B. Nat. Prod. Rep., 2000, 17:337.
[154] Hamilton J T, McRoberts W C, Keppler F, Kalin R M, Harper D B. Science, 2003, 301:206.
[155] Montzka S, Fraser P, Butler J, Cunnold D, Daniel J, Derwent R, Lal S, McCulloch A, Oram D, Reeves C. Controlled Substances and Other Source Gases, Chapter 1 of the Scientific Assessment of Ozone Depletion:2002. Scientific Assessment of Ozone Depletion:2002, 2003.
[156] Okey A B, Riddick D S, Harper P A. Toxicol. Lett., 1994, 70:1.
[157] Gu C, Liu C, Ding Y, Li H, Teppen B J, Johnston C T, Boyd S A. Environ. Sci. Technol., 2011, 45:3445.
[158] Freeman P K, Srinivasa R. J. Agric. Food Chem., 1983, 31:775.
[159] Huwe J K, Feil V J, Zaylskie R G, Tiernan T O. Chemosphere, 2000, 40:957.
[160] Czaplicka M. Sci. Total Environ., 2004, 322:21.
[161] Leuenberger C, Ligocki M P, Pankow J F. Environ. Sci. Technol., 1985, 19:1053.
[162] Lin K, Yan C, Gan J. Environ. Sci. Technol., 2013, 48:263.
[163] Méndez-Díaz J D, Shimabuku K K, Ma J, Enumah Z O, Pignatello J J, Mitch W A, Dodd M C. Environ. Sci. Technol., 2014, 48:7418.
[164] Kumar A, Borgen M, Aluwihare L I, Fenical W. Environ. Sci. Technol., 2017, 51:589.
[165] Gustavsson M, Karlsson S, Öberg G, Sandén P, Svensson T, Valinia S, Thiry Y, Bastviken D. Environ. Sci. Technol., 2012, 46:1504.
[166] Johansson E, Sandén P, Öberg G. Soil Sci., 2003, 168:347.
[167] Redon P O, Jolivet C, Saby N P, Abdelouas A, Thiry Y. Biogeochemistry, 2013, 114:413.
[168] Öberg G, Börjesson I, Samuelsson B. Water, Air, & Soil Pollution, 1996, 89:351.
[169] Baker J I, Hites R A. Environ. Sci. Technol., 2000, 34:2879.
[170] Redon P O, Abdelouas A, Bastviken D, Cecchini S, Nicolas M, Thiry Y. Environ. Sci. Technol., 2011, 45:7202.
[171] Haraguchi K, Kato Y, Ohta C, Koga N, Endo T. J. Agric. Food Chem., 2011, 59:13102.
[172] Ruecker A, Weigold P, Behrens S, Jochmann M, Laaks J, Kappler A. Environ. Sci. Technol., 2014, 48:9170.
[173] van Boxtel A L, Kamstra J H, Cenijn P H, Pieterse B, Wagner M J, Antink M, Krab K, van der Burg B, Marsh G, Brouwer A, Legler J. Environ. Sci. Technol., 2008, 42:1773.
[174] Nomiyama K, Kanbara C, Ochiai M, Eguchi A, Mizukawa H, Isobe T, Matsuishi T, Yamada T K, Tanabe S. Mar. Environ. Res., 2014, 93:15.
[175] Gribble G W. Acc. Chem. Res., 1998, 31:141.
[176] Ashby J. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 356:297.
[177] Dahlgren E, Lindqvist D, Dahlgren H, Asplund L, Lehtila K. Chemosphere, 2016, 144:1597.
[178] Hossaini R, Chipperfield M P, Montzka S A, Rap A, Dhomse S, Feng W. Nat. Geosci., 2015, 8:186.
[179] 方齐乐(Fang Q L), 陈宝梁(Chen B L). 化学进展(Progress in Chemistry), 2012, 24:2040.
[180] Keppler F, Biester H. Chemosphere, 2003, 52:451.
[181] Colmenero-Flores J M, Martínez G, Gamba G, Vázquez N, Iglesias D J, Brumós J, Talón M. The Plant Journal, 2007, 50:278.
[182] Kawakami K, Umena Y, Kamiya N, Shen J R. Proc. Natl. Acad. Sci.U.S.A, 2009, 106:8567.
[183] MacRobbie E. Philosophical Transactions of the Royal Society of London B:Biological Sciences, 1982, 299:469.
[184] Popelková H, Yocum C F. Photosynth. Res., 2007, 93:111.
[185] Raschke K, Fellows M P. Planta, 1971, 101:296.
[186] Albers C N, Jacobsen O S, Flores E M M, Johnsen A R. Environ. Sci. Technol., 2017, 51:6131.
[187] Johnsen A R, Jacobsen O S, Gudmundsson L, Albers C N. Biogeochemistry, 2016, 130:53.
[188] 方齐乐(Fang Q L), 陈宝梁(Chen B L). 环境科学学报(Journal of Environmental Science), 2011, 31:1569.
[189] 方齐乐(Fang Q L), 陈宝梁(Chen B L). 科学通报(Chinese Science Bulletin), 2013, 58:2626.
[190] Bastviken D, Thomsen F, Svensson T, Karlsson S, Sandén P, Shaw G, Matucha M, Öberg G. Geochim. Cosmochim. Acta, 2007, 71:3182.
[191] Bracken A, Pocker A, Raistrick H. Biochem. J., 1954, 57:587.
[192] Hunkeler D, Laier T, Breider F, Jacobsen O S. Environ. Sci. Technol., 2012, 46:6096.
[193] Breider F, Hunkeler D. Geochimica Et Cosmochimica Acta,2014, 125:85.
[194] Breider F, Hunkeler D. Environ. Sci. Technol., 2014, 48:1592.
[195] Holt B D, Sturchio N C, Abrajano T A, Heraty L J. Anal. Chem., 1997, 69:2727.
[196] Hunkeler D, Aravena R. Environ. Sci. Technol., 2000, 34:2839.
[197] Jendrzejewski N, Eggenkamp H, Coleman M. Appl. Geochem., 2001, 16:1021.
[198] Dufour P, Pirard C, Charlier C. J. Chromatogr. B, 2016, 1036:66.
[199] Hauler C, Vetter W. Rapid Commun. Mass Spectrom., 2015, 29:619.
[200] Wang T, Rabe P, Citron C A, Dickschat J S. Beilstein J. Org. Chem., 2013, 9:2767.
[201] Leri A C, Hay M B, Lanzirotti A, Rao W, Myneni S C. Anal. Chem., 2006, 78:5711.
[202] Leri A C, Ravel B. Journal of Synchrotron Radiation, 2014, 21:623.
[1] Yongdong Xu, Zhidan Liu. Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass [J]. Progress in Chemistry, 2021, 33(11): 2150-2162.
[2] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[3] Yangrong Yao, Suyuan Xie. Structures and Progress of Carbon Clusters [J]. Progress in Chemistry, 2019, 31(1): 50-62.
[4] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[5] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[6] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[7] Guo Huihui, Miao Nana, Li Tengfei, Hao Jun, Gao Yuan, Zhang Jianjun. Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System [J]. Progress in Chemistry, 2014, 26(0203): 478-486.
[8] Zhu Xufei, Han Hua, Qi Weixing, Lu Chao, Jiang Longfei, Duan Wenqiang. Theoretical Foundation and Limitation of Two-Step Anodizing Technology [J]. Progress in Chemistry, 2012, 24(11): 2073-2086.
[9] Li Xiangzi, Wei Xianwen. Fabrication, Formation Mechanisms and Potential Applications of Magnetic Metal Nanotubes [J]. Progress in Chemistry, 2012, 24(11): 2143-2157.
[10] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[11] Fang Qile, Chen Baoliang*. Natural Origins, Formation Mechanisms, and Fate of Environmental Perchlorate [J]. Progress in Chemistry, 2012, (10): 2040-2053.
[12] Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie. Progress in Supported Phospholipid Bilayers [J]. Progress in Chemistry, 2012, 24(05): 852-862.
[13] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[14] Lei Jinhua Wang Honghua Li Dongliang Zhou Guangyuan. Development of Two-Staged Seeded Swelling Polymerization [J]. Progress in Chemistry, 2009, 21(6): 1287-1291.
[15] . Advances in the Mechanism of Secondary Fine Particulate Matters Formation [J]. Progress in Chemistry, 2009, 21(0203): 288-296.