中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Design Strategy , Processing and Applications of Organic Micro- and Nano-Materials

Yang Liu1, Lei Ting2, Pei Jian*1,2, Liu Chenjiang* 1   

  1. 1. Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China;
    2. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
PDF ( 918 ) Cited
Export

EndNote

Ris

BibTeX

Organic micro- and nano-materials is a kind of novel material system, possessing a good many features of traditional bulk organic materials, and exhibiting unique physicochemical characteristics due to size effect. Thus they have attracted more and more attentions in recent years. In comparison with traditional inorganic micro- and nano-materials, organic micro- and nano-materials possesses some merits such as unlimited choice of building blocks, low-cost, ease for large-area fabrication, and they have been applied in organic field-effect transistors, organic photovoltaic solar cells and so on. In this paper, we summarizes recent development of organic micro- and nano-materials. Using the concept of supramolecular chemistry, we discusses molecule design strategy and growth mechanism of organic micro- and nano-materials, and their applications. Contents
1 Introduction
2 Molecular design strategy and synthesis
2.1 π-π interaction
2.2 S-S interaction
2.3 Donor-acceptor interaction
2.4 Hydrophobic interaction
2.5 Hydrogen-bonding interaction
3 Controlled growth and growth mechanism of organic micro- and nano-materials
3.1 Internal factors of the organic micro- and nano-materials growth
3.2 External actors of the organic micro- and nano-materials growth
4 The applications of organic micro- and nano-materials
4.1 Organic field-effect transistors
4.2 Organic photovoltaic solar cells
5 Conclusion and Outlook

CLC Number: 

[1] Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C. Chem. Rev., 2010, 110: 6873-6890
[2] Hu J T, Odom T W, Lieber C M. Acc. Chem. Res., 1999, 32: 435-445
[3] Sun T L, Feng L, Gao X F, Jiang L. Acc. Chem. Res., 2005, 38: 644-652
[4] Zhao Y S, Fu H, Peng A, Ma Y, Liao Q, Yao J. Acc. Chem. Res., 2010, 43: 409-418
[5] Lei T, Pei J. J. Mater. Chem., 2012, 22: 785-798
[6] Tang Q, Li H, Liu Y, Hu W. J. Am. Chem. Soc., 2006, 128: 14634-14639
[7] Zhang Y, Dong H, Tang Q, Ferdous S, Liu F, Mannsfeld S C B, Hu W, Briseno A L. J. Am. Chem. Soc., 2010, 132: 11580-11584
[8] Zang L, Che Y, Moore J S. Acc. Chem. Res., 2008, 41: 1596-1600
[9] Clar E, Ironside C T. Proc. Chem. Soc., 1958, 150-152
[10] Müller M, Kubel C, Müllen K. Chem. Eur. J., 1998, 4: 2099-2109
[11] Ito S, Wehmeier M, Brand J D, Brand J D, Kübel C, Epsch R, Rabe J P, Müllen K. Chem. Eur. J., 2000, 6: 4327-4342
[12] Fechtenkōtter A, Tchebotareva N, Watson M, Müllen K. Tetrahedron, 2001, 57: 3769-3783
[13] Wu J, Pisula W, Müllen K. Chem. Rev., 2007, 107: 718-747
[14] Grimsdale A C, Müllen K. Angew. Chem. Int. Ed., 2005, 44: 5592-5629
[15] Wu J, Tomovic Z, Enkelmann V, Müllen K. J. Org. Chem., 2004, 69: 5179-5186
[16] Tomovic Z, Watson M D, Müllen K. Angew. Chem. Int. Ed., 2004, 43: 755-758
[17] Simpson C D, Brand J D, Berresheim A J, Przybilla L, Rāder H J, Müllen K. Chem. Eur. J., 2002, 8: 1424-1429
[18] Kelley T W, Muyres D V, Baude P F, Smith T P, Jones T D. Mater. Res. Soc. Symp. Proc., 2003, 771: 169-179
[19] Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C. J. Am. Chem. Soc., 2004, 126: 984-985
[20] Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T. J. Am. Chem. Soc., 2007, 129: 15732-15733
[21] Wang J Y, Zhou Y, Yan J, Ding L, Ma Y, Cao Y, Wang J, Pei J. Chem. Mater., 2009, 21: 2595-2597
[22] Brusso J L, Hirst O D, Dadvand A, Ganesan S, Cicoira F, Robertson C M, Oakley R T, Rosei F, Perepichka D F. Chem. Mater., 2008, 20: 2484-2494
[23] Sun Y M, Tan L, Jiang S D, Qian H L, Wang Z H, Yan D W, Di C G, Wang Y, Wu W P, Yu G, Yan S K, Wang C R, Hu W P, Liu Y Q, Zhu D B. J. Am. Chem. Soc., 2007, 129: 1882-1883
[24] Jiang W, Zhou Y, Geng H, Jiang S D, Yan S K, Hu W P, Wang Z H, Shuai Z G, Pei J. J. Am. Chem. Soc., 2011, 133: 1-3
[25] Park L Y, Hamilton D G, McGehee E A, McMenimen K A. J. Am. Chem. Soc., 2003, 125: 10586-10590
[26] Wang C, Yin S, Chen S, Xu H, Wang Z, Zhang X. Angew. Chem. Int. Ed., 2008, 47: 9049-9052
[27] Zhang W, Dichtel W R, Stieg A Z, Benítez D, Gimzewski J K, Heath J R, Stoddart J F. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 6514-6519
[28] Arikainen E O, Boden N, Bushby R J, Lozman O R, Vinter J G, Wood A. Angew. Chem. Int. Ed., 2000, 39: 2333-2336
[29] Clarke T M, Durrant J R. Chem. Rev., 2010, 110: 6736-6767
[30] Wang J Y, Yan J, Li Z, Han J M, Ma Y, Bian J, Pei J. Chem. Eur. J., 2008, 14: 7760-7764
[31] Wang J Y, Yan J, Ding L, Ma Y, Pei J. Adv. Funct. Mater., 2009, 19: 1746-1752
[32] Jin W, Yamamoto Y, Fukushima T, Ishii N, Kim J, Kato K, Takata M, Aida T. J. Am. Chem. Soc., 2008, 130: 9434-9440
[33] Yin J, Zhou Y, Lei T, Pei J. Angew. Chem. Int. Ed., 2011, 50: 6320-6323
[34] De Greef T F A, Smulders M M J, Wolffs M, Schenning A P H J, Sijbesma R P, Meijer E W. Chem. Rev., 2009, 109: 5687-5754
[35] Bong D T, Clark T D, Granja J R, Ghadiri M R. Angew. Chem. Int. Ed., 2001, 40: 988-1011
[36] Hameren R V, Schōn P, Buul A M V, Hoogboom J, Lazarenko S V, Gerritsen J W, Engelkamp H, Christianen P C M, Heus H A, Maan J C, Rasing T, Speller S, Rowan A E, Elemans J A A W, Nolte R J M. Science, 2006, 314: 1433-1436
[37] Luo J, Lei T, Wang L, Ma Y, Cao Y, Wang J, Pei J. J. Am. Chem. Soc., 2009, 131: 2076-2077
[38] Lei T, Guo Z H, Zheng C, Cao Y, Liang D, Pei J. Chem. Sci., 2012, 3: 1162-1165
[39] Lei T, Cheng C Y, Guo Z H, Zheng C, Zhou Y, Liang D, Pei J. J. Mater. Chem., 2012, 22: 4306-4310
[40] Balakrishnan K, Datar A, Naddo T, Huang J, Oitker R, Yen M, Zhao J, Zang L. J. Am. Chem. Soc., 2006, 128: 7390-7398
[41] Li R J, Hu W P, Liu Y Q, Zhu D B. Acc. Chem. Res., 2010, 43: 529- 540
[42] Perce V, Glodde M, Bera T K, Miura Y, Shiyanovskaya I, Singer K D, Balagurusamy V S K, Heiney P A, Schnell I, Rapp A, Spiess H W, Hudson S D, Duan H. Nature, 2002, 419: 384-387
[43] Hill J P, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ishii N, Aida T. Science, 2004, 304: 1481-1483
[44] Chen H B, Zhou Y, Yin J, Yan J, Ma Y, Wang L, Cao Y, Wang J, Pei J. Langmuir, 2009, 25: 5459-5462
[45] Kloc C, Simpkins P G, Siegrist T, Laudise R A. J. Cryst. Growth, 1997, 182: 416-427
[46] Laudise R A, Kloc C, Simpkins P G, Siegrist T. J. Cryst. Growth, 1998, 187: 449-454
[47] Podzorov V, Sysoev S E, Loginova E, Pudalov V M, Gershenson M E. Appl. Phys. Lett., 2003, 83: 3504-3506
[48] Tong W Y, Djurisic A B, Xie M H, Ng A C M, Cheung K Y, Chan W K, Leung Y H, Lin H W, Gwo S. J. Phys. Chem. B, 2006, 110: 17406-17413
[49] Dodabalapur A. Mater. Today, 2006, 9: 24-30
[50] Zhou Y, Liu W J, Ma Y G, Wang H L, Qi L M, Cao Y, Wang J, Pei J. J. Am. Chem. Soc., 2007, 129: 12386-12387
[51] Zhou Y, Lei T, Wang L, Pei J, Cao Y, Wang J. Adv. Mater., 2010, 22: 1484-1487
[52] Xin H, Kim F S, Jenekhe S A. J. Am. Chem. Soc., 2008, 130: 5424-5425
[53] Li X C, Sirringhaus H, Garnier F, Holmes A B, Moratti S C, Feeder N, Clegg W, Teat S J, Friend R H. J. Am. Chem. Soc., 1998, 120: 2206-2207
[1] Qiang Pei, Aixiang Ding. The Design and Application of Quadruple Hydrogen Bonded Systems [J]. Progress in Chemistry, 2019, 31(2/3): 258-274.
[2] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[3] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[4] Yufu Chen, Xianggao Li, Yin Xiao, Shirong Wang. Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(4): 359-372.
[5] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[6] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[7] Qian Xiaohong, Jin Can, Zhang Xiaoning, Jiang Yan, Lin Chen, Wang Leyong. Squaramide Derivatives and Their Applications in Ion Recognition [J]. Progress in Chemistry, 2014, 26(10): 1701-1711.
[8] Yang Yong, Dou Dandan. Triply and Quadruply Hydrogen Bonded Systems:Design, Structure and Application [J]. Progress in Chemistry, 2014, 26(05): 706-726.
[9] Xu Liang, Li Yongjun, Li Yuliang. Preparation and Application of Supramolecular Functional Materials Based on π System [J]. Progress in Chemistry, 2014, 26(04): 487-501.
[10] Cai Xiaozhou, Jiang Lang, Dong Huanli, Li Jingze*, Hu Wenping* . Organic Circuits and Their Basic Elements [J]. Progress in Chemistry, 2012, 24(12): 2431-2442.
[11] Liu Zhicheng, Wang Hong, Yang Rui, Li Wei. Synthesis and Application of Phosphorous-Containing Calixarenes and Their Complexes [J]. Progress in Chemistry, 2011, 23(8): 1665-1682.
[12] Shen Xinghai, Zhang Jingjing, Gao Song, Fu Suzhen, Sun Taoxiang, Fu Jing, Zhang Hongjuan, Chen Qingde, Gao Hongcheng. Applications of Typical Supramolecular Systems in the Field of Radiochemistry [J]. Progress in Chemistry, 2011, 23(7): 1386-1399.
[13] Cao Jing, Jiang Yi, Chen Chuan-Feng. Advances on Synthesis and Applications of Iptycenes and Their Derivatives [J]. Progress in Chemistry, 2011, 23(11): 2200-2214.
[14] Wan Decheng, Jin Ming, Pu Hongting. Supramolecular Fuzzy Recognition [J]. Progress in Chemistry, 2011, 23(10): 2095-2102.
[15] Li Zhan ting. Hydrogen bonded arylamide foldamers: From conformational control to functional evolution [J]. Progress in Chemistry, 2011, 23(01): 1-12.