中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Ⅰ-Ⅲ-Ⅵ Semiconductor Nanocrystals

Chen Bingkun, Zhong Haizheng, Zou Bingsuo   

  1. Lab of Nanophotonics Materials and Technology, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received: Revised: Online: Published:
  • Contact: Haizheng Zhong E-mail:hzzhong@bit.edu.cn
PDF ( 1336 ) Cited
Export

EndNote

Ris

BibTeX

Semiconductor nanocrystals have received considerable attention due to their size-tunable spectroscopic properties and their applications in solar cells, light-emitting diodes, photodetector, biolabeling and nonlinear optical devices. Among various materials, nanocrystals of Ⅰ-Ⅲ-Ⅵ compounds (CuInS2, AgInS2,CuInSe2 and CuInxGa1-xSe2, etc.) have been treated as not only alternative low toxic luminescent materials for bio-imaging, and light-emitting diodes, but also suitable ink materials for solution process solar cells due to their unique properties such as tunable bandgaps, high absorption coefficient, large Stokes shifts. Recently, synthesis of Ⅰ-Ⅲ-Ⅵ nanocrystals has been extensively studied, resulting in various methods including precursor decomposition, hot injection and solvothermal methods. The developments of synthetic chemistry also provide high quality materials with controlled size, shape and compositions. This opens up the possibility to investigate their optical properties and explore their functional applications. The physical properties, especially their photoluminescence and electrochemical properties have been investigated to elucidate their size-dependent quantum confinement. Several specific characteristics were observed and demonstrated, providing important information for their applications. Recent works also reported several initial results of functionalization and devices applications, which are promising for future study. In this review, we provide an in-depth discussion of current progress and problems of colloidal Ⅰ-Ⅲ-Ⅵ semiconductor nanocrystals with an emphasis on the developing Ⅰ-Ⅲ-Ⅵ nanocrystals such as materials preparations, spectroscopic study and application explorations.

Contents
1 Introduction
2 Synthetic chemistry
2.1 Synthetic methods
2.2 Phase control
2.3 Composition control
2.4 Core/shell nanocrystals
3 Quantum-confinement effects and optical properties
3.1 Size-dependent quantum confinement effects
3.2 Optical properties
4 Applications
4.1 Biolabeling and biosensing
4.2 Opt-electronic devices
5 Summary and perspective

CLC Number: 

[1] Scholes G D. Adv. Funct. Mater, 2008, 18 : 1157-1172
[2] Rogach A L. Semiconductor Nanocrystal Quantum Dots. Synthesis, Assembly, Spectroscopy and Applications, New York: Springer, 2008. 1-73
[3] Bera D, Qian L, Tseng T K, Holloway P H. Materials, 2010, 3 : 2260-2345
[4] Zhong H Z, Mirkovic T, Scholes G D. Comprehsive Nanoscience and Technology, Elsevier, Volume 5, Chapter 5.06, 2011. 153-201
[5] Deng Z T, Cao L, Tang F G, Zou B S. J. Phys. Chem. B, 2005, 109 : 16671-16675
[6] Li Y C, Zhong H Z, Li R, Zhou Y, Yang C H, Li Y F. Adv. Funct. Mater., 2006, 16 : 1705-1716
[7] Zhong H Z, Zhou Y, Yang Y, Yang C H, Li Y F. J. Phys. Chem. C, 2007, 111 : 6538-6543
[8] Zeng R S, Zhang T T, Liu J C, Hu S, Wan Q, Liu X M, Peng Z W, Zou B S. Nanotechnology, 2009, 20: art. no. 095102
[9] Zhong H Z, Nagy M, Jones M, Scholes G D. J. Phys. Chem. C, 2009, 113: 10465-10470
[10] He J, Zhong H Z, Scholes G D. Phys. Rev. Lett., 2010, 105: art. no. 046601
[11] Zhong H Z, Scholes G D. J. Am. Chem. Soc., 2009, 131 : 9170-9171
[12] Zeng R S, Rutherford M, Xie R G, Zou B S, Peng X G. Chem. Mater., 2010, 22 : 2017-2113
[13] Jaffe J E, Zunger A. Physical Review B, 1984, 29 : 1882-1906
[14] 周少雄(Zhou X X), 方玲(Fang L). 太阳能热电池及其应用专题(Solar Thermal Cell and Its Application Project), 2007, 36 : 849-852
[15] Persson C, Zunger A. Phys. Rev. Lett., 2003, 91: art. no. 266401
[16] Hetzer M J, Strzhemechny Y M, Gao M, Contreras M A, Zunger A, Brillson L J. Appl. Phys. Lett., 2005, 86: art. no. 162105
[17] Omata T, Nose K, Soma Y, Otsuka-Yao-Matsuo S. J. Appl. Phys., 2009, 105 : art. no. 073106
[18] Castro S L, Bailey S G, Raffaelle R P, Banger K K, Hepp A F. Chem. Mater., 2003, 15 : 3142-3147
[19] Castro S L, Bailey S G, Raffaelle R P, Banger K K, Hepp A F. J. Phys. Chem. B, 2004, 108 : 12429-12435
[20] Ng M T, Boothroyd C B, Vittal J J. J. Am. Chem. Soc., 2006, 128 : 7118-7119
[21] Tian L, Elim H I, Ji W, Vittal J J. Chem. Commun., 2006, 4276-4278
[22] Zhong H Z, Zhou Y, Ye M F, He Y J, Ye J P, He C, Yang C H, Li Y F. Chem. Mater., 2008, 20 : 6434-6443
[23] Zhong H Z, Lo S S, Mirkovic T, Li Y C, Ding Y Q, Li Y F, Scholes G D. ACS Nano, 2010, 4 : 5253-5262
[24] Nairn J J, Shapiro P J, Twamley B, Pounds T, Wandruszka R, Fletcher R, Williams M, Wang C, Norton M G. Nano Lett., 2006, 6 : 1218-1223
[25] Gardner J S, Shurdha E, Wang C M, Lau L D, Rodriguez R G, Pak J J. J. Nanopart. Res., 2008, 10 : 633-641
[26] Li B, Xie Y, Huang J X, Qian Y T. Adv. Mater., 1999, 11 : 1456-1459
[27] Xiao J P, Xie Y, Xiong Y J, Tang R, Qian Y T. J. Mater. Chem., 2001, 11 : 1417-1420
[28] Du W M, Qian X F, Yin J, Gong Q. Chem. Eur. J., 2007, 13 : 8840-8846
[29] Li T L, Teng H. J. Mater. Chem., 2010, 20 : 3656-3664
[30] Malik M A, O'Brien P, Revaprasadu N. Adv. Mater., 1999, 11 : 1441-1444
[31] Xie R G, Rutherford M, Peng X G. J. Am. Chem. Soc., 2009, 131 : 5691-5697
[32] Pan D C, An L J, Sun Z M, Hou W, Yang Yang Y, Yang Z Z, Lu Y F. J. Am. Chem. Soc., 2008, 130 : 5620-5621
[33] Koo B, Patel R N, Korgel B A. Chem. Mater., 2009, 21 : 1962-1966
[34] Allen P M, Bawendi M G. J. Am. Chem. Soc., 2008, 130 : 9240-9241
[35] Guo Q J, Kim S J, Kar M, Shafarman W N, Birkmire R W, Stach E A, Agrawal R, Hillhouse H W. Nano Lett., 2008, 8 : 2982-2987
[36] Tang J, Hinds S, Kelley S O, Sargent E H. Chem. Mater., 2008, 20 : 6906-6910
[37] Panthani M G, Akhavan V, Goodfellow B, Schmidtke J P, Dunn L, Dodabalapur A, Barbara P F, Korgel B A. J. Am. Chem. Soc., 2008, 130 : 16770-16777
[38] Koo B, Patel R N, Korgel B A. J. Am. Chem. Soc., 2009, 131 : 3134-3135
[39] Connor S T, Hsu C M, Weil B D, Aloni S, Cui Y. J. Am. Chem. Soc., 2009, 131 : 4962-4966
[40] Choi S H, Kim E G, Hyeon T. J. Am. Chem. Soc., 2006, 128 : 2520-2521
[41] Hirpo W, Dhingra S, Sutorik A C, Kanatzidis M G. J. Am. Chem. Soc., 1993, 115 : 1597-1599
[42] Tian L, Ng M T, Venkatram N, Ji W, Vittal J J. Crystal Growth & Design, 2010, 10 : 1237-1242
[43] Sun C, Gardner J S, Long G, Bajracharya C, Thurber A, Punnoose A, Rodriguez R G, Pak J J. Chem. Mater., 2010, 22 : 2699
[44] Torimoto T, Adachi T, Okazaki K, Sakuraoka M, Shibayama T, Ohtani B, Kudo A, Kuwabata S. J. Am. Chem. Soc., 2007, 129 : 12388-12389
[45] Ogawa T, Kuzuya T, Hamanaka, Y, Sumiyama K, Sumiyama K. J. Mater. Chem., 2010, 20 : 2226-2231
[46] Jin Y, Tang K B, An C H, Huang L Y. Journal of Crystal Growth, 2003, 253 : 429-434
[47] Liu Q C, Tang K B. Chin. J. Chem. Phys., 2006, 19 : 335-340
[48] Qi Y X, Tang K B, Zeng S Y, Zhou W W. Micro. Meso. Mater., 2008, 114 : 395-400
[49] Gou X L, Cheng F Y, Shi Y H, Zhang L, Peng S G, Chen J, Shen P. J. Am. Chem. Soc., 2006, 128 : 7222-7229
[50] Yang Y H, Chen Y T. J. Phys. Chem. B, 2006, 110 : 17370-17374
[51] Wang D S, Zheng W, Hao C H, Peng Q, Li Y D. Chem. Commun., 2008, 2556-2558
[52] Wu C C, Shiau C Y, Ayele D W, Su W N, Cheng M Y, Chiu C Y, Hwang B J. Chem. Mater., 2010, 22 : 4185-4190
[53] Murray C B, Noms D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115 : 8706-8715
[54] Zhong H Z, Li Y C, Ye M F, Zhu Z Z, Zhou Y, Yang C H, Li Y F. Nanotechnology, 2007, 18 : art. no. 025602
[55] Zhong H Z, Wang Z B, Borico E, Lu Z H, van Veggel F, Scholes G D. J. Phys. Chem. C, 2011, 115: 12396-12402
[56] Wooten A J, Werder D J, Williams D J, Casson J L, Hollingsworth J A. J. Am. Chem. Soc., 2009, 131 : 16177-16188
[57] Kruszynska M, Borchert H, Parisi J, Kolny-Olesiak J. J. Am. Chem. Soc., 2010, 132 : 15976-15986
[58] Peng H, Schoen D T, Meister S, Zhang X F, Cui Y. J. Am. Chem. Soc., 2007, 129 : 34-35
[59] Xu J, Lee C S, Tang Y B, Chen X, Chen Z H, Zhang W J, Lee S T, Zhang W, Yang Z. ACS Nano, 2010, 4 : 1845-1850
[60] Xu J, Luan C Y, Tang Y B, Chen X, Zapien J A, Zhang W J, Kwong H L, Meng X M, Lee S T, Lee C S. ACS Nano, 2010, 4 : 6064-6070
[61] Binsma J J M, Giling L J, Bloem J. J. Cryst. Growth, 1980, 50 : 429
[62] Batabyal S K, Tian L, Venkatram N, Ji W, Vittal J J. J. Phys. Chem. C, 2009, 113 : 15037-15042
[63] Nose K, Soma Y, Omata T, Otsuka-Yao-Matsuo S. Chem. Mater., 2009, 21 : 2607-2613
[64] Qi Y X, Liu Q C, Tang K B, Liang Z H, Ren ZB, Liu X M. J. Phys. Chem. C, 2009, 113 : 3939-3944
[65] Norako M E, Brutchey R L. Chem. Mater., 2010, 22 : 1613-1615
[66] Wang J J, Wang Y Q, Cao F F, Guo Y G, Wan L J. J. Am. Chem. Soc., 2010, 132 : 12218-12221
[67] Feng Z Y, Dai P C, Ma X C, Zhan J H, Lin Z J. Appl. Phys. Lett., 2010, 96 : art. no. 013104
[68] 雷永泉(Lei Y C), 万群(Wan Q), 石永康(Shi Y K). 新能源材料(New Energy Materials). 天津. 天津大学出版社(Tianjin. Tianjin University Press ), 2000. 307-310
[69] Pan D C, Wang X L, Zhou Z H, Chen W, Xu C L, Lu Y F. Chem. Mater., 2009, 21 : 2489-2493
[70] Pan D C, Wang D, Wang X L, Xiao Q F, Chen W, Xu C L, Yang Z Z, Lu Y F. Chem. Commun., 2009, 4221-4223
[71] Wang X L, Pan D C, Wang D, Low C Y, Rice L, Han J Y, Lu Y F. J. Phys. Chem. C, 2010, 114 : 17293-17297
[72] Chiang M Y, Chang, S H, Chen C Y, Yuan F W, Tuan H Y. J. Phys. Chem. C, 2011, 115 : 1592-1599
[73] Uematsu T, Doi T, Torimoto T, Kuwabata S. J. Phys. Chem. Lett., 2010, 1 : 3283-3287
[74] Chen L J, Liao J D, Chuang Y J, Fu Y S. J. Am. Chem. Soc., 2011, 133 : 3704-3707
[75] Nakamura H, Kato W, Uehara M, Nose K, Omata T, Otsuka-Yao-Matsuo S, Miyazaki M, Maeda H. Chem. Mater., 2006, 18 : 3330-3335
[76] Li L, Daou T J, Texier I, Chi T T K, Liem N Q, Reiss P. Chem. Mater., 2009, 21 : 2422-2429
[77] Li L, Pandey A, Werder D J, Khanal B P, Pietryga J M, Klimov V I. J. Am. Chem. Soc., 2011, 133 : 1176-1179
[78] Torimoto T, Ogawa S, Adachi T, Kameyama T, Okazaki K, Shibayama T, Kudoc A, Kuwabata S. Chem. Commun., 2010, 2082-2084
[79] Cassette E, Pons T, Boue C, Helle M, Bezdetnaya L, Marchal F, Dubertre B. Chem. Mater., 2010, 22 : 6117-6124
[80] Hamanaka Y, Kuzuya T, Sofue T, Kino T, Ito K, Sumiyama K. Chemical Physics Letters, 2008, 466 : 176-180
[81] Nose K, Fujita N, Omata T, Otsuka-Yao-Matsuo S. J. Phys. D, 2009, 165 : art. no. 012028
[82] Hamanaka Y, Ogawa T, Tsuzuki M. J. Phys. Chem. C, 2011, 115 : 1786-1792
[83] Elim H I, Ji W, Ng M T, Vital J J. Appl. Phys. Lett., 2007, 90 : art. no. 033106
[84] Venkatram N, Batabyal S, Tian L, Vital J J, Ji W. Appl. Phys. Lett., 2009, 95 : art. no. 201109
[85] Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, Marchal F, Dubertret B. ACS Nano, 2010, 4 : 2531-2538
[86] 齐翠茶(Qi C C), 何子剑(He Z J), 谢海燕(Xie H Y). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2010, 26 (6): 951-956
[87] Yong K T, Roy I, Hu R, Ding H, Cai H X, Zhu J, Zhang X H, Bergey E J, Prasad P N. Integr. Biol., 2010, 2 : 121-129
[88] Uematsu T, Taniguchi S, Torimotobc T, Kuwabata S. Chem. Commun., 2009, 7485-7487
[89] Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Chem. Rev., 2010, 110 : 389-458
[90] Hillhouse H W, Beard M C. Current Opinion in Colloid & Interface Science, 2009, 14 : 245-259
[91] Akhavan V A, Panthani, M G, Goodfellow B W, Reid D K, Korgel B A. Opt. Express, 2010, 18 : 411-420
[92] Akhavan V A, Goodfellow B W, Panthani M G, Reid D K, Hellebusch D J, Adachi T, Korgel B A. Enery Eviron. Sci., 2010, 3 : 1600-1606
[93] Guo Q J, Ford G M, Hillhouse H W, Agrawal R. Nano Lett., 2009, 9 : 3060-3065
[94] Li L, Coates N, Moses D. J. Am. Chem. Soc., 2010, 132 : 22-23
[95] Arici E, Sariciftci N S, Meissner D. Adv. Funct. Mater., 2003, 13 : 165-171
[96] Kuo K T, Liu D M, Chen S Y, Lin C C. J. Mater. Chem., 2009, 19 : 6780-6788
[97] Zhang Y, Xie C, Su H, Liu J, Pickering S, Wang Y Q, Yu W W, Wang J K, Wang Y, Dhahm J, Dellas N, Mohney S E, Xu J. Nano Lett., 2010, 11 : 329-332
[98] Tan Z A, Zhang Y, Xie C, Su H P , Liu J, Zhang C F,Dellas N, Mohney S E, Wang Y Q, Wang J K, Xu J.Adv. Mater.,2011, 23: 3553-3558
[99] Zhang J, Xie R G, Yang W S. Chem. Mater.,2011, 23: 3357-3361
[100] Feng J, Sun M, Yang F, Yang X R. Chem. Commun., 2011, 47: 6422-6424
[101] Sarkar S, Karan N S, Pradhan N. Angew. Chem. Int.Ed., 2011,50: 1-6
[102] Tang X S, Cheng W L, Choo E S G, Xue J M. Chem. Commun., 2011, 47: 5217-5219
[103] Tang X S, Yu K, Xu Q H, Choo E S G, Goh G K L, Xue J M. J. Mater. Chem., 2011, 21: 11239-11243
[104] Zhang W J, Zhong X H. Inorg. Chem., 2011, 50: 4065-4072

[1] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[2] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[3] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[4] Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao. Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints [J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
[5] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[6] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[7] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[8] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[9] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[10] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[11] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[12] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[13] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[14] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[15] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
Viewed
Full text


Abstract

Ⅰ-Ⅲ-Ⅵ Semiconductor Nanocrystals