中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (1): 42-51 DOI: 10.7536/PC201117 Previous Articles   Next Articles

• Review •

Efficient Design Strategies for Nanozymes

Jiangjiexing Wu1, Hui Wei1,2,*()   

  1. 1 Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University,Nanjing 210023, China
    2 State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center(ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Hui Wei
  • Supported by:
    the National Natural Science Foundation of China(21874067); the National Natural Science Foundation of China(21722503); the National Key R&D Program of China(2019YFA0709200); the CAS Interdisciplinary Innovation Team(JCTD-2020-08); the PAPD program, and the Fundamental Research Funds for the Central Universities(14380145)
Richhtml ( 175 ) PDF ( 2031 ) Cited
Export

EndNote

Ris

BibTeX

The enzyme-like activity of nanozymes is an emerging effect of nanomaterials. Due to the excellent physicochemical properties and unique enzyme-like activities, nanozymes have become promising functional nanomaterials. Till now nanozymes have been used in biomedical sensing, diagnosis and therapeutics, as well as environment protection. Despite of the great success achieved in the past several decades, how to efficiently design nanozymes is still one of the bottlenecks in the field, which is originated from the complicated composition and ambiguity in the active sites of nanomaterials. To tackle these challenges, this insight first summarizes the current efficient design strategies of nanozymes, such as computation-aided high throughput screening, rational design, and biomimetic design. And then, the development of bio-inspired metal-organic framework(MOF) nanozymes, particularly the structure-activity relationship study, is highlighted. At the end, combined with current research trend, several directions and inspirations for the future study are suggested to advance the nanozymes research.

Contents

1 An emerging effect of nanomaterials: enzyme-like activity of nanozymes

2 One of the bottlenecks: how to efficiently design nanozymes

2.1 Computation-aided high throughput screening

2.2 Rational design

2.3 Biomimetic design

3 Bio-inspired design of MOF nanozyme and its structure-activity relationship

4 Conclusions and outlook

Fig. 1 Enzyme-like activity of nanozymes is an emerging property of nanomaterials besides their unique optical, electric, magnetic, and mechanical properties
Fig. 2 Number of published (a) and cited(b) papers on nanozymes. Data are from the web of science and Google scholar
Fig. 3 The kinetic data of peroxidase-mimicking nanozymes in the literature
Fig. 4 Computation-aided design of nanomaterials-based peroxidase mimics[13]. Copyright 2020, American Chemical Society
Fig. 5 Evaluation of eg occupancy as an effective descriptor for catalytic activity of perovskite transition metal oxides-based peroxidase mimics[17]. Copyright 2019, Nature Publishing Group
Fig. 6 Mimicking the active site of natural enzymes to improve the peroxidase-like activity of Fe3O4 nanoparticles[18]. Copyright 2017, Royal Society of Chemistry
Fig. 7 Similar properties between metalloenzyme active sites and metal sites in metal-organic frameworks[25]. Copyright 2020, Royal Society of Chemistry
Fig. 8 Network topology of peroxidase-mimicking PCN-222(Fe)[28]. Copyright 2012, John Wiley and Sons
Fig. 9 Schematic of the synthesis and hydrolysis of phosphotriesterase-mimicking MOFs[23]. Copyright 2016, Royal Society of Chemistry
Fig. 10 Protein engineering-inspired MOF nanozyme modulation[55]. Copyright 2021, John Wiley and Sons
Fig. 11 Illustration of the synthesis of rationally designed GPx-mimicking MIL-47(Ⅴ)-X MOF nanozymes for anti-inflammation therapy[56]. Copyright 2021, John Wiley and Sons
Fig. 12 Efficient design strategies for nanozymes
[1]
Frontiera R R, Haynes C L. Proc. Natl. Acad. Sci. U. S. A., 2019, 116: 22891.
[2]
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P. Nature , 2018, 556: 43.

doi: 10.1038/nature26160
[3]
Sun S, Zeng H. J. Am. Chem. Soc., 2002, 124: 8204.

doi: 10.1021/ja026501x
[4]
Banerjee A, Bernoulli D, Zhang H, Yuen M F, Liu J, Dong J, Ding F, Lu J, Dao M, Zhang W, Lu Y, Suresh S. Science , 2018, 360: 300.
[5]
Manea F, Houillon F B, Pasquato L, Scrimin P. Angew. Chem. Int. Ed., 2004, 43: 6165.

doi: 10.1002/(ISSN)1521-3773
[6]
Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, Yan X Y. Nat. Nanotechnol., 2007, 2: 577.

doi: 10.1038/nnano.2007.260
[7]
Wei H, Wang E K. Chem. Soc. Rev., 2013, 42: 6060.

doi: 10.1039/c3cs35486e
[8]
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Chem. Soc. Rev., 2019, 48: 1004.

doi: 10.1039/C8CS00457A
[9]
Huang Y, Ren J, Qu X. Chem. Rev., 2019, 119: 4357.

doi: 10.1021/acs.chemrev.8b00672
[10]
Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W. Chem. Soc. Rev., 2019, 48: 3683.

doi: 10.1039/C8CS00718G
[11]
Wang Z, Zhang R, Yan X, Fan K. Mater. Today , 2020, 41: 81.
[12]
Esterhuizen J A, Goldsmith B R, Linic S. Chem , 2020, 6: 3100.

doi: 10.1016/j.chempr.2020.09.001
[13]
Shen X, Wang Z, Gao X, Zhao Y. ACS Catal., 2020, 10: 12657.

doi: 10.1021/acscatal.0c03426
[14]
Sabatier P. La Catalyse en Chimie Organique . Paris et Liège: Librairie Polytechnique , 1920.
[15]
Medford A J, Vojvodic A, Hummelshøj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov J K. J. Catal., 2015, 328: 36.

doi: 10.1016/j.jcat.2014.12.033
[16]
Zhao Z J, Liu S, Zha S, Cheng D, Studt F, Henkelman G, Gong J. Nat. Rev. Mater. , 2019, 4: 792.

doi: 10.1038/s41578-019-0152-x
[17]
Wang X, Gao X J, Qin L, Wang C, Song L, Zhou Y N, Zhu G, Cao W, Lin S, Zhou L, Wang K, Zhang H, Jin Z, Wang P, Gao X, Wei H. Nat. Commun., 2019, 10: 704.

doi: 10.1038/s41467-019-08657-5
[18]
Fan K L, Wang H, Xi J Q, Liu Q, Meng X Q, Duan D M, Gao L Z, Yan X Y. Chem. Commun., 2017, 53: 424.
[19]
Zhang Z J, Zhang X H, Liu B W, Liu J W. J. Am. Chem. Soc., 2017, 139: 5412.

doi: 10.1021/jacs.7b00601
[20]
Chen T M, Tian X M, Huang L, Xiao J, Yang G W. Nanoscale , 2017, 9: 15673.

doi: 10.1039/C7NR05629J
[21]
Dong J L, Song L N, Yin J J, He W W, Wu Y H, Gu N, Zhang Y. ACS Appl. Mater. Interfaces , 2014, 6: 1959.

doi: 10.1021/am405009f
[22]
Li J N, Liu W Q, Wu X C, Gao X F. Biomaterials , 2015, 48: 37.

doi: 10.1016/j.biomaterials.2015.01.012
[23]
Nath I, Chakraborty J, Verpoort F. Chem. Soc. Rev., 2016, 45: 4127.

doi: 10.1039/C6CS00047A
[24]
Zhang M, Gu Z Y, Bosch M, Perry Z, Zhou H C. Coordin. Chem. Rev., 2015, 293/294: 327.
[25]
Bour J R, Wright A M, He X, Dincă M. Chem. Sci., 2020, 11: 1728.

doi: 10.1039/C9SC06418D
[26]
Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Chem. Commun., 2020, 56: 11338.

doi: 10.1039/D0CC04890A
[27]
Ma L, Jiang F, Fan X, Wang L, He C, Zhou M, Li S, Luo H, Cheng C, Qiu L. Adv. Mater., 2020, 32: 2003065.

doi: 10.1002/adma.v32.49
[28]
Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Angew. Chem. Int. Ed. , 2012, 51: 10307.

doi: 10.1002/anie.201204475
[29]
Wang K C, Feng D W, Liu T F, Su J, Yuan S, Chen Y P, Bosch M, Zou X D, Zhou H C. J. Am. Chem. Soc., 2014, 136: 13983.

doi: 10.1021/ja507269n
[30]
Cheng H J, Liu Y F, Hu Y H, Ding Y B, Lin S C, Cao W, Wang Q, Wu J J X, Muhammad F, Zhao X Z, Zhao D, Li Z, Xing H, Wei H. Anal. Chem., 2017, 89: 11552.

doi: 10.1021/acs.analchem.7b02895
[31]
Huang Y, Zhao M T, Han S K, Lai Z C, Yang J, Tan C L, Ma Q L, Lu Q P, Chen J Z, Zhang X, Zhang Z C, Li B, Chen B, Zong Y, Zhang H. Adv. Mater., 2017, 29: 1700102.

doi: 10.1002/adma.201700102
[32]
Liu F F, He J, Zeng M L, Hao J, Guo Q H, Song Y H, Wang L. J. Nanopart. Res. , 2016, 18: 106.

doi: 10.1007/s11051-016-3416-z
[33]
Cui L, Wu J, Li J, Ju H X. Anal. Chem. , 2015, 87: 10635.

doi: 10.1021/acs.analchem.5b03287
[34]
Liu Y, Cheng Y, Zhang H, Zhou M, Yu Y, Lin S, Jiang B, Zhao X, Miao L, Wei C W, Liu Q, Lin Y W, Du Y, Butch C J, Wei H. Sci. Adv. , 2020, 6: eabb2695.

doi: 10.1126/sciadv.abb2695
[35]
Li P, Klet R C, Moon S Y, Wang T C, Deria P, Peters A W, Klahr B M, Park H J, Al-Juaid S S, Hupp J T, Farha O K. Chem. Commun., 2015, 51: 10925.

doi: 10.1039/C5CC03398E
[36]
Moon S Y, Wagner G W, Mondloch J E, Peterson G W, DeCoste J B, Hupp J T, Farha O K. Inorg. Chem., 2015, 54: 10829.

doi: 10.1021/acs.inorgchem.5b01813
[37]
Nunes P, Gomes A C, Pillinger M, Goncalves I S, Abrantes M. Micropor. Mesopor. Mat., 2015, 208: 21.

doi: 10.1016/j.micromeso.2015.01.016
[38]
LÓpez-Maya E, Montoro C, Rodríguez-Albelo L M, Aznar Cervantes S D, Lozano-PÉrez A A, Cenís J L, Barea E, Navarro J A R. Angew. Chem. Int. Ed., 2015, 54: 6790.

doi: 10.1002/anie.201502094
[39]
Lee D T, Zhao J, Peterson G W, Parsons G N. Chem. Mater., 2017, 29: 4894.

doi: 10.1021/acs.chemmater.7b00949
[40]
Katz M J, Mondloch J E, Totten R K, Park J K, Nguyen S T, Farha O K, Hupp J T. Angew. Chem. Int. Ed., 2014, 53: 497.

doi: 10.1002/anie.v53.2
[41]
Katz M J, Moon S Y, Mondloch J E, Beyzavi M H, Stephenson C J, Hupp J T, Farha O K. Chem. Sci. , 2015, 6: 2286.

doi: 10.1039/C4SC03613A
[42]
Mondloch J E, Katz M J, Isley Iii W C, Ghosh P, Liao P, Bury W, Wagner G W, Hall M G, DeCoste J B, Peterson G W, Snurr R Q, Cramer C J, Hupp J T, Farha O K. Nat. Mater., 2015, 14: 512.

doi: 10.1038/nmat4238
[43]
Moon S Y, Liu Y, Hupp J T, Farha O K. Angew. Chem. Int. Ed., 2015, 54: 6795.

doi: 10.1002/anie.201502155
[44]
Liu Y L, Zhao X J, Yang X X, Li Y F. Analyst , 2013, 138: 4526.

doi: 10.1039/c3an00560g
[45]
Zhang J W, Zhang H T, Du Z Y, Wang X Q, Yua S H, Jiang H L. Chem. Commun., 2014, 50: 1092.

doi: 10.1039/C3CC48398C
[46]
Wang Y, Zhu Y J, Binyam A, Liu M S, Wu Y N, Li F T. Biosens. Bioelectron., 2016, 86: 432.

doi: 10.1016/j.bios.2016.06.036
[47]
Lin T R, Qin Y M, Huang Y L, Yang R T, Hou L, Ye F G, Zhao S L. Chem. Commun., 2018, 54: 1762.

doi: 10.1039/C7CC09819G
[48]
Xu W, Kang Y, Jiao L, Wu Y, Yan H, Li J, Gu W, Song W, Zhu C. Nano-Micro Lett., 2020, 12: 184.

doi: 10.1007/s40820-020-00520-3
[49]
Tan H L, Li Q, Zhou Z C, Ma C J, Song Y H, Xu F G, Wang L. Anal. Chim. Acta , 2015, 856: 90.

doi: 10.1016/j.aca.2014.11.026
[50]
Wang S Q, Deng W F, Yang L, Tan Y M, Xie Q J, Yao S Z. ACS Appl. Mater. Interfaces , 2017, 9: 24440.

doi: 10.1021/acsami.7b07307
[51]
Yang H G, Yang R, Zhang P, Qin Y M, Chen T, Ye F G. Microchim. Acta , 2017, 184: 4629.

doi: 10.1007/s00604-017-2509-4
[52]
Chen W H, Vazquez Gonzalez M, Kozell A, Cecconello A, Willner I. Small , 2018, 14: 1703149.

doi: 10.1002/smll.v14.5
[53]
Li M, Chen J, Wu W, Fang Y, Dong S. J. Am. Chem. Soc., 2020, 142: 15569.

doi: 10.1021/jacs.0c07273
[54]
Greig I R. Chem. Soc. Rev., 2010, 39: 2272.

doi: 10.1039/b902741f
[55]
Wu J, Wang Z, Jin X, Zhang S, Li T, Zhang Y, Xing H, Yu Y, Zhang H, Gao X, Wei H. Adv. Mater., 2021, 33: 2005024.
[56]
Wu J, Yu Y, Cheng Y, Cheng C, Zhang Y, Jiang B, Zhao X, Miao L, Wei H. Angew. Chem. Int. Ed., 2021, 60: 1227.
[57]
Burger B, Maffettone P M, Gusev V V, Aitchison C M, Bai Y, Wang X, Li X, Alston B M, Li B, Clowes R, Rankin N, Harris B, Sprick R S, Cooper A I. Nature , 2020, 583: 237.
[58]
Tovmasyan A, Sheng H, Weitner T, Arulpragasam A, Lu M, Warner D S, Vujaskovic Z, Spasojevic I, Batinic-Haberle I. Med. Princ. Pract., 2013, 22: 103.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[3] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[6] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[7] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[8] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[9] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[10] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[11] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[12] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[13] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[14] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[15] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
Viewed
Full text


Abstract

Efficient Design Strategies for Nanozymes