中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (1): 25-41 DOI: 10.7536/PC201059 Previous Articles   Next Articles

• Invited Account •

Two Dimensional Electrically Conductive Metal-Organic Frameworks

Zhuang Yan1,2, Yaling Liu1,2,*(), Zhiyong Tang1,2,*()   

  1. 1 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology,Beijing 100190, China
    2 School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Yaling Liu, Zhiyong Tang
  • Supported by:
    the Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000); the National Key Basic Research Program of China(2016YFA0200700); the National Natural Science Foundation of China(92056204); the National Natural Science Foundation of China(22073021); the National Natural Science Foundation of China(21890381); the National Natural Science Foundation of China(21721002); the National Natural Science Foundation of China(21722301); and the Frontier Science Key Project of Chinese Academy of Sciences(QYZDJ-SSW-SLH038)
Richhtml ( 225 ) PDF ( 2710 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks(MOFs) are a class of crystalline porous materials formed by self-assembly of metal ions or clusters and organic ligands through coordination bonds. Due to the high porosity and functional designability, MOFs have found wide applications of which make them widely used in various fields. However, most traditional MOFs have poor conductivity, which severely restricts their development in electrical related fields. In recent years, electrically conductive MOFs, especially two dimensional electrically conductive MOFs(2D ECMOFs), have attracted a great deal of research attention due to their semiconducting or metallic properties closely-related to their unique π-π stacking and π-d conjugation structures, which have great application potentials in electrical and energy related fields such as sensors, electronics, electrocatalysts, batteries, and supercapacitors. In this review, the recent progress in conducting mechanisms, structures, synthesis strategies and applications of 2D ECMOFs are summarized and highlighted. Furthermore, future challenges and opportunities based on the current research status are prospected.

Contents

1 Introduction

2 Mechanisms of conduction of 2D ECMOFs

2.1 Physical mechanism

2.2 Chemical mechanism

3 Structures of 2D ECMOFs

3.1 Symmetric structure

3.2 Asymmetric structure

4 Synthesis strategies of 2D ECMOFs

4.1 Single phase method

4.2 Interface-assisted method

4.3 Other methods

5 Applications of 2D ECMOFs

5.1 Sensors

5.2 Energy storage

5.3 Energy conversion

5.4 Electronics

6 Conclusion and outlook

Fig. 1 Band-like and hopping transport modes
Fig. 2 Through-space and through-bond transport
Fig. 3 Hexagonal structure and properties of Cu3(THQ)2(left), Cu3(HHTP)2(middle) and Cu3(HHTP)(THQ)(right)[29]. Copyright 2020, 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 4 Molecular structures of several representative 2D ECMOFs ligands with diverse symmetry
Fig. 5 Schematic illustration of several 2D ECMOFs with diverse symmetry
Fig. 6 Synthesis of Ni3(HITP2[19]. Copyright 2014, American Chemistry Society
Fig. 7 (a) Schematic representation of the vapor-induced formation of Ni3(HITP)2 films;(b) SEM images of centimeter-scale film during the process of growth(scale bars: 100 nm); Optical images of(c) the thinnest film,(d) the thicker film, and(e) the thickest film[62]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 8 Synthesis and characterization of single-layer Ni-BHT. (a) Schematic illustration of the synthesis process;(b) AFM phase image on HOPG and its cross-sectional analysis. The bright areas correspond to Ni-BHT;(c) AFM topological image of single-layer Ni-BHT and its cross-sectional analysis. The white square in(b) corresponds to the scan area[17]. Copyright 2013, American Chemical Society
Fig. 9 Illustration of (a) the crystal structure of Cu3(HHTP)2 and(b) the preparation of Cu3(HHTP)2 thin-film in a LBL fashion by a spray method[64]. Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 10 Sensing responses of the 2D ECMOF array based on Cu3(HHTP)2, Cu3(HITP)2 and Ni3(HITP)2 to representative examples from different categories of VOCs, where ΔG/G0 is the relative response(change in conductance) upon a 30 s exposure to 200 ppm of the VOC vapor; each response is averaged from 12 measurements(4 exposures to 3 separate devices for each ECMOF); error bars show one standard deviation[33]. Copyright 2015, American Chemical Society
Fig. 11 Schematic illustration of the interface-induced growth of the conductive Ni3(HITP)2 modified separator for the application in Li-S batteries[81]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 12 (a) Galvanostatic charge/discharge curves of 2D Cu-THQ MOF electrode at 50 mA·g-1. The six areas marked by I-VI represent the various charge/discharge processes of 2D Cu-THQ MOF marked in(b);(b) The evolution of electronic states of the repeating coordination unit of 2D Cu-THQ MOF during the charge/discharge process. The binding sites between Li and O, and variation of valence states of Cu, are indicated by blue and gray circles[88]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 13 (a) Illustrative schematic of Cu-BHT-based field-effect transistors;(b) Photograph of bottom-gate bottom-contact FETs based on the Cu-BHT film;(c, d) Output and(e, f) transfer characteristics of Cu-BHT-based FETs[5]. Copyright 2015, Springer Nature
Fig. 14 (a) Diagram of the 2D ECMOF-based vertical OSVs;(b) SEM image of the cross-section of the vertical OSV consisting of LSMO(50 nm), Cu3(HHTP)2 spacer(100 nm), Co electrode(50 nm), and Au(50 nm);(c) Magnetic hysteresis loops and(d) the magnetoresistance loop for the LSMO/Cu3(HHTP)2(100 nm)/Co OSVs at 10 K;(e) Temperature dependence of the magnetoresistance value[106]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
[1]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science , 2013, 341: 1230444.

doi: 10.1126/science.1230444
[2]
Hendon C H, Tiana D, Walsh A. Phys. Chem. Chem. Phys., 2012, 14: 13120.

doi: 10.1039/c2cp41099k
[3]
Sun L, Campbell M G, Dincă M. Angew. Chem. Int. Ed. , 2016, 55: 3566.

doi: 10.1002/anie.201506219
[4]
Talin A A, Centrone A, Ford A C, Foster M E, Stavila V, Haney P, Kinney R A, Szalai V, El Gabaly F, Yoon H P, Leonard F, Allendorf M D. Science , 2014, 343: 66.

doi: 10.1126/science.1246738
[5]
Huang X, Sheng P, Tu Z, Zhang F, Wang J, Geng H, Zou Y, Di C A, Yi Y, Sun Y, Xu W, Zhu D. Nat. Commun., 2015, 6: 7408.

doi: 10.1038/ncomms8408
[6]
Huang X, Zhang S, Liu L, Yu L, Chen G, Xu W, Zhu D. Angew. Chem. Int. Ed., 2018, 57: 146.

doi: 10.1002/anie.201707568
[7]
Campbell M G, Dincă M. Sensors, 2017, 17: 1108.

doi: 10.3390/s17051108
[8]
Koo W T, Jang J S, Kim I D. Chem , 2019, 5: 1938.

doi: 10.1016/j.chempr.2019.04.013
[9]
Liu J, Song X, Zhang T, Liu S, Wen H, Chen L. Angew. Chem. Int. Ed., 2020.

doi: https://doi.org/10.1002/anie.202006102
[10]
Yu M, Dong R, Feng X. J. Am. Chem. Soc., 2020, 142: 12903.

doi: 10.1021/jacs.0c05130
[11]
Li Z H , Tan M J , Zheng Y H , Luo Y Y , Jing Q S , Jiang J K , Li M J. J. Inorg. Mater. , 2020, 35( 7): 769.
李泽晖, 谭美娟, 郑元昊, 骆雨阳, 经求是, 蒋靖坤, 李明杰. 无机材料学报, 2020, 35( 7): 769.
[12]
Song X, Liu J, Zhang T, Chen L. Sci. China Chem., 2020, 63: 1391.

doi: 10.1007/s11426-020-9791-2
[13]
Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Bredas J L. Chem. Rev., 2007, 107: 926.

doi: 10.1021/cr050140x
[14]
Mott N F, Davis E A. Electronic Processes in Non-Crystalline materials. Oxford University Press , 2012.
[15]
Hofmann P. Solid State Physics : An Introduction . John Wiley & Sons , 2015.
[16]
Sakanoue T, Sirringhaus H. Nat. Mater., 2010, 9: 736.

doi: 10.1038/nmat2825
[17]
Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J H, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H. J. Am. Chem. Soc., 2013, 135: 2462.

doi: 10.1021/ja312380b
[18]
Kambe T, Sakamoto R, Kusamoto T, Pal T, Fukui N, Hoshiko K, Shimojima T, Wang Z, Hirahara T, Ishizaka K, Hasegawa S, Liu F, Nishihara H. J. Am. Chem. Soc., 2014, 136: 14357.

doi: 10.1021/ja507619d
[19]
Sheberla D, Sun L, Blood-Forsythe M A, Er S, Wade C R, Brozek C K, Aspuru-Guzik A, Dincă M. J. Am. Chem. Soc., 2014, 136: 8859.

doi: 10.1021/ja502765n
[20]
Clough A J, Skelton J M, Downes C A, de la Rosa A A, Yoo J W, Walsh A, Melot B C, Marinescu S C. J. Am. Chem. Soc., 2017, 139: 10863.

doi: 10.1021/jacs.7b05742
[21]
Dou J H, Sun L, Ge Y, Li W, Hendon C H, Li J, Gul S, Yano J, Stach E A, Dincă M. J. Am. Chem. Soc., 2017, 139: 13608.

doi: 10.1021/jacs.7b07234
[22]
Dong R, Han P, Arora H, Ballabio M, Karakus M, Zhang Z, Shekhar C, Adler P, Petkov P S, Erbe A, Mannsfeld S C B, Felser C, Heine T, Bonn M, Feng X, Cánovas E. Nat. Mater., 2018, 17: 1027.

doi: 10.1038/s41563-018-0189-z
[23]
Clough A J, Orchanian N M, Skelton J M, Neer A J, Howard S A, Downes C A, Piper L F J, Walsh A, Melot B C, Marinescu S C. J. Am. Chem. Soc., 2019, 141: 16323.

doi: 10.1021/jacs.9b06898
[24]
Day R W, Bediako D K, Rezaee M, Parent L R, Skorupskii G, Arguilla M Q, Hendon C H, Stassen I, Gianneschi N C, Kim P, Dincă M. ACS Cent. Sci., 2019, 5: 1959.

doi: 10.1021/acscentsci.9b01006
[25]
Foster M E, Sohlberg K, Allendorf M D, Talin A A. J. Phys. Chem. Lett., 2018, 9: 481.

doi: 10.1246/cl.1980.481
[26]
Hmadeh M, Lu Z, Liu Z, Gándara F, Furukawa H, Wan S, Augustyn V, Chang R, Liao L, Zhou F, Perre E, Ozolins V, Suenaga K, Duan X, Dunn B, Yamamto Y, Terasaki O, Yaghi O M. Chem. Mater. , 2012, 24: 3511.

doi: 10.1021/cm301194a
[27]
Park J, Hinckley A C, Huang Z, Feng D, Yakovenko A A, Lee M, Chen S, Zou X, Bao Z. J. Am. Chem. Soc., 2018, 140: 14533.

doi: 10.1021/jacs.8b06666
[28]
Meng Z, Mirica K A. Nano Res., 2021, 14: 369.

doi: 10.1007/s12274-020-2874-x
[29]
Yao M S, Zheng J J, Wu A Q, Xu G, Nagarkar S S, Zhang G, Tsujimoto M, Sakaki S, Horike S, Otake K, Kitagawa S. Angew. Chem. Int. Ed., 2020, 59: 172.

doi: 10.1002/anie.v59.1
[30]
Shinde S S, Lee C H, Jung J Y, Wagh N K, Kim S H, Kim D H, Lin C, Lee S U, Lee J H. Energ. Environ. Sci. , 2019, 12: 727.

doi: 10.1039/C8EE02679C
[31]
Chen T, Dou J H, Yang L, Sun C, Libretto N J, Skorupskii G, Miller J T, Dincă M. J. Am. Chem. Soc. , 2020, 142: 12367.

doi: 10.1021/jacs.0c04458
[32]
Skorupskii G, Trump B A, Kasel T W, Brown C M, Hendon C H, Dincă M. Nat. Chem., 2020, 12: 131.

doi: 10.1038/s41557-019-0372-0
[33]
Campbell M G, Liu S F, Swager T M, Dincă M. J. Am. Chem. Soc. , 2015, 137: 13780.

doi: 10.1021/jacs.5b09600
[34]
Li W H, Ding K, Tian H R, Yao M S, Nath B, Deng W H, Wang Y, Xu G. Adv. Funct. Mater. , 2017, 27: 1702067.

doi: 10.1002/adfm.v27.27
[35]
Clough A J, Yoo J W, Mecklenburg M H, Marinescu S C. J. Am. Chem. Soc. , 2015, 137: 118.

doi: 10.1021/ja5116937
[36]
Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, Feng X. Angew. Chem. Int. Ed. , 2015, 54: 12058.

doi: 10.1002/anie.201506048
[37]
Campbell M G, Sheberla D, Liu S F, Swager T M, Dincă M. Angew. Chem. Int. Ed., 2015, 54: 4349.

doi: 10.1002/anie.201411854
[38]
Lian Y, Yang W, Zhang C, Sun H, Deng Z, Xu W, Song L, Ouyang Z, Wang Z, Guo J, Peng Y. Angew. Chem. Int. Ed., 2020, 59: 286.

doi: 10.1002/anie.v59.1
[39]
Sun X, Wu K H, Sakamoto R, Kusamoto T, Maeda H, Nishihara H. Chem. Lett., 2017, 46: 1072.

doi: 10.1246/cl.170382
[40]
Cui Y, Yan J, Chen Z, Xing W, Ye C, Li X, Zou Y, Sun Y, Liu C, Xu W, Zhu D. iScience , 2020, 23: 100812.

doi: 10.1016/j.isci.2019.100812
[41]
Wang Z, Wang G, Qi H, Wang M, Wang M, Park S, Wang H, Yu M, Kaiser U, Fery A, Zhou S, Dong R, Feng X. Chem. Sci., 2020, 11: 7665.

doi: 10.1039/D0SC01408G
[42]
Feng D, Lei T, Lukatskaya M R, Park J, Huang Z, Lee M, Shaw L, Chen S, Yakovenko A A, Kulkarni A, Xiao J, Fredrickson K, Tok J B, Zou X, Cui Y, Bao Z. Nat. Energy , 2018, 3: 30.

doi: 10.1038/s41560-017-0044-5
[43]
Park J, Lee M, Feng D, Huang Z, Hinckley A C, Yakovenko A, Zou X, Cui Y, Bao Z. J. Am. Chem. Soc., 2018, 140: 10315.

doi: 10.1021/jacs.8b06020
[44]
Cui Y, Yan J, Chen Z, Zhang J, Zou Y, Sun Y, Xu W, Zhu D. Adv. Sci. , 2019, 6: 1802235.

doi: 10.1002/advs.v6.9
[45]
Bi S, Banda H, Chen M, Niu L, Chen M, Wu T, Wang J, Wang R, Feng J, Chen T, Dincă M., Kornyshev A A, Feng G. Nat. Mater., 2020, 19: 552.

doi: 10.1038/s41563-019-0598-7
[46]
Dong R, Zhang Z, Tranca D C, Zhou S, Wang M, Adler P, Liao Z, Liu F, Sun Y, Shi W, Zhang Z, Zschech E, Mannsfeld S C B, Felser C, Feng X. Nat. Commun., 2018, 9: 2637.

doi: 10.1038/s41467-018-05141-4
[47]
Jia H, Yao Y, Zhao J, Gao Y, Luo Z, Du P. J. Mater. Chem. A , 2018, 6: 1188.

doi: 10.1039/C7TA07978H
[48]
Liu J, Zhou Y, Xie Z, Li Y, Liu Y, Sun J, Ma Y, Terasaki O, Chen L. Angew. Chem. Int. Ed., 2020, 59: 1081.

doi: 10.1002/anie.v59.3
[49]
Wu A Q, Wang W Q, Zhan H B, Cao L A, Ye X L, Zheng J J, Kumar P N, Chiranjeevulu K, Deng W H, Wang G E, Yao M S, Xu G. Nano Res., 2021, 14: 438.

doi: 10.1007/s12274-020-2823-8
[50]
Yoon H, Lee S, Oh S, Park H, Choi S, Oh M. Small , 2019, 15: 1805232.

doi: 10.1002/smll.v15.17
[51]
Zhong H, Ghorbani-Asl M, Ly K H, Zhang J, Ge J, Wang M, Liao Z, Makarov D, Zschech E, Brunner E, Weidinger I M, Zhang J, Krasheninnikov A V, Kaskel S, Dong R, Feng X. Nat. Commun., 2020, 11: 1409.

doi: 10.1038/s41467-020-15141-y
[52]
Hou R, Miao M, Wang Q, Yue T, Liu H, Park H S, Qi K, Xia B Y. Adv. Energy Mater., 2019, 10: 1901892.

doi: 10.1002/aenm.v10.1
[53]
Hoppe B, Hindricks K D J, Warwas D P, Schulze H A, Mohmeyer A, Pinkvos T J, Zailskas S, Krey M R, Belke C, König S, Fröba M, Haug R J, Behrens P. CrystEngComm , 2018, 20: 6458.

doi: 10.1039/C8CE01264D
[54]
Xing D, Wang Y, Zhou P, Liu Y, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B. Appl. Catal. B-Environ., 2020, 278: 119295.

doi: 10.1016/j.apcatb.2020.119295
[55]
Dong R, Zhang T, Feng X. Chem. Rev., 2018, 118: 6189.

doi: 10.1021/acs.chemrev.8b00056
[56]
Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Chem. Soc. Rev., 2018, 47: 6267.

doi: 10.1039/C8CS00268A
[57]
Li Y Z, Fu Z H, Xu G. Coord. Chem. Rev. , 2019, 388: 79.

doi: 10.1016/j.ccr.2019.02.033
[58]
Wang L, Sahabudeen H, Zhang T, Dong R. NPG 2 D Mater. Appl., 2018, 2: 26.
[59]
Maeda H, Sakamoto R, Nishihara H. Langmuir , 2016, 32: 2527.

doi: 10.1021/acs.langmuir.6b00156
[60]
Allendorf M D, Dong R, Feng X, Kaskel S, Matoga D, Stavila V. Chem. Rev., 2020, 120: 8581.

doi: 10.1021/acs.chemrev.0c00033
[61]
Wu G, Huang J, Zang Y, He J, Xu G. J. Am. Chem. Soc., 2017, 139: 1360.

doi: 10.1021/jacs.6b08511
[62]
Yuan K, Song T, Zhu X, Li B, Han B, Zheng L, Li J, Zhang X, Hu W. Small , 2019, 15: 1804845.

doi: 10.1002/smll.v15.12
[63]
Rubio-Gimenez V, Galbiati M, Castells-Gil J, Almora-Barrios N, Navarro-Sanchez J, Escorcia-Ariza G, Mattera M, Arnold T, Rawle J, Tatay S, Coronado E, Marti-Gastaldo C. Adv. Mater., 2018, 30: 1704291.
[64]
Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Angew. Chem. Int. Ed., 2017, 56: 16510.
[65]
Dong L, Gao Z A, Lin N. Prog. Surf. Sci., 2016, 91: 101.
[66]
Gao Z, Hsu C H, Liu J, Chuang F C, Zhang R, Xia B, Xu H, Huang L, Jin Q, Liu P N, Lin N. Nanoscale , 2019, 11: 878.
[67]
Zhang R, Liu J, Gao Y, Hua M, Xia B, Knecht P, Papageorgiou A C, Reichert J, Barth J V, Xu H, Huang L, Lin N. Angew. Chem. Int. Ed. , 2020, 59: 2669.
[68]
Du X, Zhang J, Wang H, Huang Z, Guo A, Zhao L, Niu Y, Li X, Wu B, Liu Y. Mater. Chem. Front., 2020, 4: 243.
[69]
Wang M, Shi H, Zhang P, Liao Z, Wang M, Zhong H, Schwotzer F, Nia A S, Zschech E, Zhou S, Kaskel S, Dong R, Feng X. Adv. Funct. Mater., 2020, 30: 2002664.
[70]
Liu X, Zhuo M, Zhang W, Gao M, Liu X H, Sun B, Wu J. Ultrason. Sonochem., 2020, 67: 105179.
[71]
Rubio-Gimenez V, Almora-Barrios N, Escorcia-Ariza G, Galbiati M, Sessolo M, Tatay S, Martí-Gastaldo C. Angew. Chem. Int. Ed., 2018, 57: 15086.
[72]
Stassen I, Dou J H, Hendon C, Dincă M. ACS Cent. Sci., 2019, 5: 1425.
[73]
Koo W T, Kim S J, Jang J S, Kim D H, Kim I D. Adv. Sci. , 2019, 6: 1900250.
[74]
Yao M S, Xiu J W, Huang Q Q, Li W H, Wu W W, Wu A Q, Cao L A, Deng W H, Wang G E, Xu G. Angew. Chem. Int. Ed., 2019, 58: 14915.

doi: 10.1002/anie.v58.42
[75]
Mendecki L, Mirica K A. ACS Appl. Mater. Inter., 2018, 10: 19248.

doi: 10.1021/acsami.8b03956
[76]
Wu F, Fang W, Yang X, Xu J, Xia J, Wang Z. J. Chin. Chem. Soc-TAIP., 2018, 66: 522.
[77]
Cao L A, Yao M S, Jiang H J, Kitagawa S, Ye X L, Li W H, Xu G. J. Mater. Chem. A , 2020, 8: 9085.

doi: 10.1039/D0TA01379J
[78]
Sheberla D, Bachman J C, Elias J S, Sun C J, Shao-Horn Y, Dincă M. Nat. Mater. , 2017, 16: 220.

doi: 10.1038/nmat4766
[79]
Li Y, Li Q, Zhao S, Chen C, Zhou J, Tao K, Han L. ChemistrySelect , 2018, 3: 13596.

doi: 10.1002/slct.201803150
[80]
Li Y L, Zhou J J, Wu M K, Chen C, Tao K, Yi F Y, Han L. Inorg. Chem., 2018, 57: 6202.

doi: 10.1021/acs.inorgchem.8b00493
[81]
Zang Y, Pei F, Huang J, Fu Z, Xu G, Fang X. Adv. Energy Mater., 2018, 8: 1802052.

doi: 10.1002/aenm.v8.31
[82]
Cai D, Lu M, Li, Cao J, Chen D, Tu H, Li J, Han W. Small , 2019, 15: 1902605.

doi: 10.1002/smll.v15.44
[83]
Gu S, Bai Z, Majumder S, Huang B, Chen G. J. Power Sources , 2019, 429: 22.

doi: 10.1016/j.jpowsour.2019.04.087
[84]
Guo L, Sun J, Sun X, Zhang J, Hou L, Yuan C. Nanoscale Adv. , 2019, 1: 4688.

doi: 10.1039/C9NA00616H
[85]
Sun J, Guo L, Sun X, Zhang J, Liu Y, Hou L, Yuan C. J. Mater. Chem. A , 2019, 7: 24788.

doi: 10.1039/C9TA08788E
[86]
Wu Z, Adekoya D, Huang X, Kiefel M J, Xie J, Xu W, Zhang Q, Zhu D, Zhang S. ACS Nano , 2020, 14: 12016.

doi: 10.1021/acsnano.0c05200
[87]
Wada K, Sakaushi K, Sasaki S, Nishihara H. Angew. Chem. Int. Ed., 2018, 57: 8886.

doi: 10.1002/anie.201802521
[88]
Jiang Q, Xiong P, Liu J, Xie Z, Wang Q, Yang X Q, Hu E, Cao Y, Sun J, Xu Y, Chen L. Angew. Chem. Int. Ed., 2020, 59: 5273.

doi: 10.1002/anie.v59.13
[89]
Nam K W, Park S S, Dos Reis R, Dravid V P, Kim H, Mirkin C A, Stoddart J F. Nat. Commun., 2019, 10: 4948.

doi: 10.1038/s41467-019-12857-4
[90]
Wang F, Liu Z, Yang C, Zhong H, Nam G, Zhang P, Dong R, Wu Y, Cho J, Zhang J, Feng X. Adv. Mater., 2020, 32: 1905361.

doi: 10.1002/adma.v32.4
[91]
Andreiadis E S, Jacques P A, Tran P D, Leyris A, Chavarot-Kerlidou M, Jousselme B, Matheron M, PÉcaut J, Palacin S, Fontecave M, Artero V. Nat. Chem., 2013, 5: 48.

doi: 10.1038/NCHEM.1481
[92]
Ito Y, Cong W, Fujita T, Tang Z, Chen M. Angew. Chem. Int. Ed., 2015, 54: 2131.

doi: 10.1002/anie.201410050
[93]
Downes C A, Clough A J, Chen K, Yoo J W, Marinescu S C. ACS Appl. Mater. Inter., 2018, 10: 1719.

doi: 10.1021/acsami.7b15969
[94]
Miner E M, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M. Nat. Commun., 2016, 7: 10942.

doi: 10.1038/ncomms10942
[95]
Miner E M, Gul S, Ricke N D, Pastor E, Yano J, Yachandra V K, Van Voorhis T, Dincă M. ACS Catal., 2017, 7: 7726.

doi: 10.1021/acscatal.7b02647
[96]
Miner E M, Wang L, Dincă M. Chem. Sci., 2018, 9: 6286.

doi: 10.1039/C8SC02049C
[97]
Park J, Chen Z, Flores R A, Wallnerstrom G, Kulkarni A, Norskov J K, Jaramillo T F, Bao Z. ACS Appl. Mater. Inter., 2020, 12: 39074.

doi: 10.1021/acsami.0c09323
[98]
Zhong H, Ly K H, Wang M, Krupskaya Y, Han X, Zhang J, Zhang J, Kataev V, Buchner B, Weidinger I M, Kaskel S, Liu P, Chen M, Dong R, Feng X. Angew. Chem. Int. Ed., 2019, 58: 10677.

doi: 10.1002/anie.v58.31
[99]
Li W H, Lv J, Li Q, Xie J, Ogiwara N, Huang Y, Jiang H, Kitagawa H, Xu G, Wang Y. J. Mater. Chem. A , 2019, 7: 10431.

doi: 10.1039/C9TA02169H
[100]
Li C, Gao Y, Xia X, Zhu J, Wang X, Fu Y. Small , 2020, 16: 1907043.

doi: 10.1002/smll.v16.8
[101]
Shi X, Hua R, Xu Y, Liu T, Lu G. Sustain. Energ. Fuels , 2020, 4: 4589.

doi: 10.1039/D0SE00515K
[102]
Zhang C F , Chen Z W , Lian Y B , Chen Y J , Li Q , Gu Y D , Lu Y T , Deng Z , Peng Y. Acta Phys-Chim. Sin ., 2019, 35( 12): 1404.

doi: 10.3866/PKU.WHXB201905030
张楚风, 陈哲伟, 连跃彬, 陈宇杰, 李沁, 顾银冬, 陆永涛, 邓昭, 彭扬. 物理化学学报, 2019, 35( 12): 1404.
[103]
Wang B, Luo Y, Liu B, Duan G. ACS Appl. Mater. Inter., 2019, 11: 35935.

doi: 10.1021/acsami.9b14319
[104]
Wang Z F, Su N, Liu F. Nano Lett., 2013, 13: 2842.

doi: 10.1021/nl401147u
[105]
Pal T, Doi S, Maeda H, Wada K, Tan C M, Fukui N, Sakamoto R, Tsuneyuki S, Sasaki S, Nishihara H. Chem. Sci., 2019, 10: 5218.

doi: 10.1039/C9SC01144G
[106]
Song X, Wang X, Li Y, Zheng C, Zhang B, Di C A, Li F, Jin C, Mi W, Chen L, Hu W. Angew. Chem. Int. Ed., 2020, 59: 1118.

doi: 10.1002/anie.v59.3
[107]
Sun L, Liao B, Sheberla D, Kraemer D, Zhou J, Stach E A, Zakharov D, Stavila V, Talin A A, Ge Y, Allendorf M D, Chen G, LÉonard F, Dincă M. Joule , 2017, 1: 168.

doi: 10.1016/j.joule.2017.07.018
[108]
Nonoguchi Y, Sato D, Kawai T. Polymers, 2018, 10: 962.

doi: 10.3390/polym10090962
[109]
de Lourdes Gonzalez-Juarez M, Flores E, Martin-Gonzalez M, Nandhakumar I, Bradshaw D. J. Mater. Chem. A , 2020, 8: 13197.

doi: 10.1039/D0TA04939E
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[3] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[4] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[5] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[6] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[7] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[8] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[9] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[10] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[11] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[12] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[13] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[14] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[15] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.