中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1812-1822 DOI: 10.7536/PC200920 Previous Articles   Next Articles

• Review •

Performances and Interactions of Contaminants Removal from Water by Sulfidated Zerovalent Iron

Kaili Gu1,2, Haozhen Li1,2, Jinhua Zhang1,2, Jinxiang Li1,2()   

  1. 1 School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    2 Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing 210094, China
  • Received: Revised: Online: Published:
  • Contact: Jinxiang Li
  • Supported by:
    National Natural Science Foundation of China(51708416); Fundamental Research Founds for the Central Universities(30919011267); State Key Laboratory of Pollution Control and Resource Reuse Foundation(PCRRF19005)
Richhtml ( 40 ) PDF ( 633 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, synchronously mediating the reactivity and electron selectivity(ES) of zerovalent iron(ZVI) toward target contaminant has been of great interest but challenging to researchers. Sulfidation can suppress the side reaction of ZVI with water under anaerobic conditions and thus improve the ES toward target contaminants. As such, this review systematically summarizes the physicochemical characteristics of sulfidated ZVI(S-ZVI) as function of the sulfidation approaches, reagents and extents. Then, this work analyzes the interactions of contaminants removal by S-ZVI. Typically, the sulfidation can tune the electrical conductivity and/or hydrophobicity of ZVI, thereby enhancing the reactivity and ES toward target contaminants under aerobic or anaerobic conditions, which is strongly dependent on S/Fe molar ratio but without regard to the approaches and reagents of sulfidation. Finally, the application potentials of S-ZVI for groundwater remediation and wastewater treatment are also outlooked.

Contents

1 Introduction

2 Preparations and morphology of S-ZVI

2.1 One-step synthesis

2.2 Two-step synthesis

2.3 Ball-milling synthesis

3 Surface and bulk characteristics of S-ZVI

3.1 Surface information

3.2 Valence state and distribution of S/Fe

3.3 Bulk contents of S and Fe

4 Physical and chemical properties of S-ZVI

4.1 Conductivity

4.2 Hydrophobicity

4.3 H2 evolution rate

5 Decontamination performances of S-ZVI

5.1 Reactivity

5.2 Electron selectivity

6 Engineering applications

7 Conclusion and outlook

Fig. 1 Schematic diagrams of the synthesis methods of S-ZVI and its morphology and structure.(a) one-step method,(b) two-step method,(c) ball milling method;(d) SEM[41] and TEM[42] images of S-nZVIone-step,(e) SEM[43] and TEM[28] images of S-nZVItwo-step,(f) SEM[44] image of S-mZVIbm
Fig. 2 (a) Specific surface area[36,42,54,56⇓⇓ ~59,67] and(b) related surface information of S-ZVI particles under different sulfide-modified methods and S/Fe molar ratios[36,42,55]
Fig. 3 Effects of sulfide-modified methods and S/Fe molar ratios on(a) S speciation and Fe speciation on the surfac e [49,53,54,57,61];(b) the content of S and Fe0 on the surface[39,54,59] of S-ZVI particles
Fig. 4 Effects of sulfide-modified methods and S/Fe molar ratios on(a) the fitted resistance[28,39,53,54](b) contact angle[39,57];(c) H2 evolution rate[36,39,57,63] of S-ZVI
Fig. 5 (a) Surface-area-normalized rate constant[30,31,36,42,54,59,64] and(b) electron efficiency of contaminants removal by S-ZVI under different sulfide-modified methods and S/Fe molar ratios[28,30,39,54,57,61,67,68]
Fig. 6 A field study of S-nZVI for in situ groundwater remediation[70]
[1]
Rangsivek R, Jekel M R. Water Res., 2005, 39(17): 4153.

pmid: 16181656
[2]
Shokes T E, Möller G. Environ. Sci. Technol., 1999, 33(2): 282.

doi: 10.1021/es980543x
[3]
Arnold W A, Roberts A L. Environ. Sci. Technol., 2000, 34(9): 1794.

doi: 10.1021/es990884q
[4]
Hung H M, Hoffmann M R. Environ. Sci. Technol., 1998, 32(19): 3011.

doi: 10.1021/es980273i
[5]
Keum Y S, Li Q X. Chemosphere, 2004, 54(3): 255.

doi: 10.1016/j.chemosphere.2003.08.003
[6]
Agrawal A, Tratnyek P G. Environ. Sci. Technol., 1996, 30(1): 153.

doi: 10.1021/es950211h
[7]
Nam S, Tratnyek P G. Water Res., 2000, 34(6): 1837.

doi: 10.1016/S0043-1354(99)00331-0
[8]
Pereira W S, Freire R S. J. Braz. Chem. Soc., 2006, 17(5): 832.

doi: 10.1590/S0103-50532006000500003
[9]
Fu F L, Dionysiou D D, Liu H. J. Hazard. Mater., 2014, 267: 194.
[10]
Naseri E, NdÉ-TchoupÉ A, Mwakabona H, Nanseu-Njiki C, Noubactep C, Njau K, Wydra K. Sustainability, 2017, 9(7): 1224.
[11]
Guan X H, Sun Y K, Qin H J, Li J X, Lo I M C, He D, Dong H R. Water Res., 2015, 75: 224.

doi: 10.1016/j.watres.2015.02.034
[12]
Sun Y K, Li J X, Huang T L, Guan X H. Water Res., 2016, 100: 277.

doi: 10.1016/j.watres.2016.05.031
[13]
Li J X, Sun Y K, Zhang X Y, Guan X H. J. Hazard. Mater., 2020, 400: 123330.

doi: 10.1016/j.jhazmat.2020.123330
[14]
Yang S Y, Reng T F, Zhang Y X, Zheng D, Xin J. Progress in Chemistry, 2017, 29(4): 388.
( 杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 化学进展, 2017, 29(4): 388.)

doi: 10.7536/PC170133
[15]
Qiu X H, Fang Z Q. Progress in Chemistry, 2010, 22(2/3): 291.
( 邱心泓, 方战强. 化学进展, 2010, 22(2/3): 291.)
[16]
Yang K L, Zhou J S, Lv D, Sun Y, Lou Z M, Xu X H. Progress in Chemistry, 2017, 29(11): 1407.
( 杨昆仑, 周家盛, 吕丹, 孙悦, 楼子墨, 徐新华. 化学进展, 2017, 29(11): 1407.)

doi: 10.7536/PC170634
[17]
Wang S C, Song Y D, Sun Y K. Progress in Chemistry, 2019, 31(2/3): 422.
( 王舒畅, 宋亚丹, 孙远奎. 化学进展, 2019, 31(2/3): 422.)

doi: 10.7536/PC180726
[18]
Zhang J H, Cheng Z Y, Yang X G, Luo J Q, Li H Z, Chen H M, Zhang Q, Li J X. Chem. Eng. J., 2020, 393: 124779.

doi: 10.1016/j.cej.2020.124779
[19]
Kanel S R, Nepal D, Manning B, Choi H. J. Nanoparticle Res., 2007, 9(5): 725.
[20]
O'Carroll D, Sleep B, Krol M, Boparai H, Kocur C. Adv. Water Resour., 2013, 51: 104.

doi: 10.1016/j.advwatres.2012.02.005
[21]
Liu H, Wang Q, Wang C, Li X Z. Chem. Eng. J., 2013, 215-216: 90.
[22]
He F, Gong L, Fan D M, Tratnyek P G, Lowry G V. Environ. Sci.: Processes Impacts, 2020, 22(3): 528.
[23]
Fan S F, Xin J, Hang J Y, Rong W L, Zheng X L. Progress in Chemistry, 2018, 30(7): 1035.
( 范淑芬, 辛佳, 黄静怡, 荣伟莉, 郑西来. 化学进展, 2018, 30(7): 1035.)

doi: 10.7536/PC171106
[24]
Fan D M, O'Brien Johnson G, Tratnyek P G, Johnson R L. Environ. Sci. Technol., 2016, 50(17): 9558.

doi: 10.1021/acs.est.6b02170
[25]
Fan D M, Anitori R P, Tebo B M, Tratnyek P G, Lezama Pacheco J S, Kukkadapu R K, Engelhard M H, Bowden M E, Kovarik L, Arey B W. Environ. Sci. Technol., 2013, 47(10): 5302.
[26]
Qin H J, Guan X H, Bandstra J Z, Johnson R L, Tratnyek P G. Environ. Sci. Technol., 2018, 52(23): 13887.

doi: 10.1021/acs.est.8b04436
[27]
Kim E J, Kim J H, Azad A M, Chang Y S. ACS Appl. Mater. Interfaces, 2011, 3(5): 1457.
[28]
Xu J, Cao Z, Zhou H, Lou Z M, Wang Y, Xu X H, Lowry G V. Environ. Sci. Technol., 2019, 53(22): 13344.

doi: 10.1021/acs.est.9b04210
[29]
Su Y M, Adeleye A S, Keller A A, Huang Y X, Dai C M, Zhou X F, Zhang Y L. Water Res., 2015, 74: 47.

doi: 10.1016/j.watres.2015.02.004
[30]
Gu Y W, Gong L, Qi J L, Cai S C, Tu W X, He F. Water Res., 2019, 159: 233.
[31]
Li D, Mao Z, Zhong Y, Huang W L, Wu Y D, Peng P A. Water Res., 2016, 103: 1.

doi: 10.1016/j.watres.2016.07.003
[32]
Wang B, Dong H R, Li L, Wang Y Y, Ning Q, Tang L, Zeng G M. Chem. Eng. J., 2020, 381: 122773.

doi: 10.1016/j.cej.2019.122773
[33]
Rajajayavel S R C, Ghoshal S. Water Res., 2015, 78: 144.

doi: 10.1016/j.watres.2015.04.009 pmid: 25935369
[34]
Li J X, Zhang X Y, Sun Y K, Liang L P, Pan B C, Zhang W M, Guan X H. Environ. Sci. Technol., 2017, 51(23): 13533.
[35]
Fan D M, Lan Y, Tratnyek P G, Johnson R L, Filip J, O'Carroll D M, Nunez Garcia A, Agrawal A. Environ. Sci. Technol., 2017, 51(22): 13070.

doi: 10.1021/acs.est.7b04177
[36]
Bhattacharjee S, Ghoshal S. Environ. Sci. Technol., 2018, 52(19): 11078.

doi: 10.1021/acs.est.8b02399 pmid: 30188121
[37]
Mangayayam M, Dideriksen K, Ceccato M, Tobler D J. Environ. Sci. Technol., 2019, 53(8): 4389.

doi: 10.1021/acs.est.8b06480 pmid: 30859830
[38]
Mangayayam M C, Perez J P H, Dideriksen K, Freeman H M, Bovet N, Benning L G, Tobler D J. Environ. Sci.: Nano, 2019, 6(11): 3422.
[39]
Xu J, Avellan A, Li H, Liu X T, Noël V, Lou Z M, Wang Y, Kaegi R, Henkelman G, Lowry G V. Adv. Mater., 2020, 32(17): 1906910.

doi: 10.1002/adma.v32.17
[40]
Tang J, Tang L, Feng H P, Dong H R, Zhang Y, Liu S S, Zeng G M. Acta Chim. Sinica, 2017, 75(6): 575.

doi: 10.6023/A17020045
( 汤晶, 汤琳, 冯浩朋, 董浩然, 章毅, 刘思诗, 曾光明. 化学学报, 2017, 75(6): 575.)

doi: 10.6023/A17020045
[41]
Pang H W, Diao Z F, Wang X X, Ma Y, Yu S J, Zhu H T, Chen Z S, Hu B W, Chen J R, Wang X K. Chem. Eng. J., 2019, 366: 368.

doi: 10.1016/j.cej.2019.02.098
[42]
Lv D, Zhou J S, Cao Z, Xu J, Liu Y L, Li Y Z, Yang K L, Lou Z M, Lou L P, Xu X H. Chemosphere, 2019, 224: 306.

doi: 10.1016/j.chemosphere.2019.02.109
[43]
Mangayayam M C, Alonso-De-linaje V, Dideriksen K, Tobler D J. Chemosphere, 2020, 249: 126137.

doi: S0045-6535(20)30330-1 pmid: 32058137
[44]
Guo W Q, Zhao Q, Du J S, Wang H Z, Li X F, Ren N Q. Chem. Eng. J., 2020, 388: 124303.
[45]
Bae S, Collins R N, Waite T D, Hanna K. Environ. Sci. Technol., 2018, 52(21): 12010.

doi: 10.1021/acs.est.8b01734
[46]
Yan W L, Ramos M A V, Koel B E, Zhang W X. J. Phys. Chem. C, 2012, 116(9): 5303.

doi: 10.1021/jp208600n
[47]
Ling L, Zhang W X. Environ. Sci. Technol. Lett., 2014, 1(7): 305.

doi: 10.1021/ez5001512
[48]
Ramos M A V, Yan W L, Li X Q, Koel B E, Zhang W X. J. Phys. Chem. C, 2009, 113(33): 14591.

doi: 10.1021/jp9051837
[49]
Wu D L, Peng S H, Yan K L, Shao B B, Feng Y, Zhang Y L. ACS Sustainable Chem. Eng., 2018, 6(3): 3039.

doi: 10.1021/acssuschemeng.7b02787
[50]
Li S L, Yan W L, Zhang W X. Green Chem., 2009, 11(10): 1618.

doi: 10.1039/b913056j
[51]
Xu F Y, Deng S B, Xu J, Zhang W, Wu M, Wang B, Huang J, Yu G. Environ. Sci. Technol., 2012, 46(8): 4576.

doi: 10.1021/es203876e
[52]
Gao J, Wang W, Rondinone A J, He F, Liang L Y. J. Hazard. Mater., 2015, 300: 443.

doi: 10.1016/j.jhazmat.2015.07.038
[53]
Gu Y W, Wang B B, He F, Bradley M J, Tratnyek P G. Environ. Sci. Technol., 2017, 51(21): 12653.

doi: 10.1021/acs.est.7b03604
[54]
Li J X, Zhang X Y, Liu M C, Pan B C, Zhang W M, Shi Z, Guan X H. Environ. Sci. Technol., 2018, 52(5): 2988.
[55]
Du J K, Bao J G, Lu C H, Werner D. Water Res., 2016, 102: 73.

doi: 10.1016/j.watres.2016.06.009
[56]
Li D, Zhu X F, Zhong Y, Huang W L, Peng P A. Water Res., 2017, 121: 140.

doi: 10.1016/j.watres.2017.05.019
[57]
Xu J, Wang Y, Weng C, Bai W L, Jiao Y, Kaegi R, Lowry G V. Environ. Sci. Technol., 2019, 53(10): 5936.
[58]
Zou H W, Hu E D, Yang S Y, Gong L, He F. Sci. Total. Environ., 2019, 650: 419.
[59]
Wu J, Zhao J, Hou J, Zeng R J, Xing B S. Environ. Sci. Technol., 2019, 53(14): 8105.

doi: 10.1021/acs.est.8b06834
[60]
Su Y M, Jassby D, Song S K, Zhou X F, Zhao H Y, Filip J, Petala E, Zhang Y L. Environ. Sci. Technol., 2018, 52(11): 6466.

doi: 10.1021/acs.est.8b00231
[61]
Xu W Q, Li Z J, Shi S S, Qi J L, Cai S C, Yu Y, O'Carroll D M, He F. Appl. Catal. B: Environ., 2020, 262: 118303.
[62]
Dong H R, Zhang C, Deng J M, Jiang Z, Zhang L H, Cheng Y J, Hou K J, Tang L, Zeng G M. Water Res., 2018, 135: 1.
[63]
Cao Z, Li H, Xu X H, Xu J. Chem. Eng. J., 2020, 394: 124876.
[64]
Wei X P, Yin H, Peng H, Guo Z Y, Lu G N, Dang Z. Chem. Eng. J., 2020, 395: 125085.

doi: 10.1016/j.cej.2020.125085
[65]
Cao Z, Liu X, Xu J, Zhang J, Yang Y, Zhou J L, Xu X H, Lowry G V. Environ. Sci. Technol., 2017, 51(19): 11269.

doi: 10.1021/acs.est.7b02480
[66]
Lv D, Zhou X X, Zhou J S, Liu Y L, Li Y Z, Yang K L, Lou Z M, Baig S A, Wu D L, Xu X H. Appl. Surf. Sci., 2018, 442: 114.

doi: 10.1016/j.apsusc.2018.02.085
[67]
He F, Li Z J, Shi S S, Xu W Q, Sheng H Z, Gu Y W, Jiang Y H, Xi B D. Environ. Sci. Technol., 2018, 52(15): 8627.

doi: 10.1021/acs.est.8b01735
[68]
Gong L, Lv N, Qi J L, Qiu X J, Gu Y W, He F. J. Hazard. Mater., 2020, 396: 122620.

doi: 10.1016/j.jhazmat.2020.122620
[69]
Mikhail Khudenko B. Water Sci. Technol., 1991, 2310-12: 1873.
[70]
Nunez Garcia A, Boparai H K, Chowdhury A I A, de Boer C V, Kocur C M D, Passeport E, Sherwood Lollar B, Austrins L M, Herrera J, O'Carroll D M. Water Res., 2020, 174: 115594.

doi: S0043-1354(20)30130-5 pmid: 32092544
[71]
Nunez Garcia A, Boparai H K, de Boer C V, Chowdhury A I A, Kocur C M D, Austrins L M, Herrera J, O'Carroll D M. Water Res., 2020, 170: 115319.

doi: S0043-1354(19)31093-0 pmid: 31790885
[1] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[2] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[3] Shuchang Wang, Yadan Son, Yuankui Sun. Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron [J]. Progress in Chemistry, 2019, 31(2/3): 422-432.
[4] Lin Han, Baoliang Chen*. Generation Mechanism and Fate Behaviors of Environmental Persistent Free Radicals [J]. Progress in Chemistry, 2017, 29(9): 1008-1020.
[5] Wang Yujuan, Xu Jie, Yin Guochuan. Diversity of Active Intermediates in Homogeneous Catalytic Oxidations [J]. Progress in Chemistry, 2012, 24(0203): 203-211.
[6] . Application of Cyclodextrins in Polymerization [J]. Progress in Chemistry, 2010, 22(05): 927-937.
[7] Zhang Zhiguo**,Yin Hong. Ring-Opening Polymerization Kinetics of Ethylene Oxide and Propylene Oxide [J]. Progress in Chemistry, 2007, 19(04): 575-582.
[8] Peng Bixian,Zhao Xiang. Research on Size-Selected Supported Metal Cluster Study [J]. Progress in Chemistry, 2000, 12(03): 245-.