中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1693-1705 DOI: 10.7536/PC200918 Previous Articles   Next Articles

Special Issue: 金属有机框架材料

• Review •

M-N/C Electrocatalysts Derived from MOFs for Oxygen Reduction Reaction

Siyan Yu, Long Zheng, Pengfei Meng, Xiudong Shi, Shijun Liao()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510641, China
  • Received: Revised: Online: Published:
  • Contact: Shijun Liao
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(51971094); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015A030312007)
Richhtml ( 71 ) PDF ( 883 ) Cited
Export

EndNote

Ris

BibTeX

Benefiting from its high oxygen reduction activity comparable with platinum catalyst, the transition metal and nitrogen co-doped carbon catalyst(M-N/C) has become one of the most important non-noble metal catalysts, and it is recognized as the most promising non-noble metal catalyst, as substitute of precious platinum catalyst, in proton exchange membrane fuel cells in the future. Metal organic frameworks(MOFs), a new class of crystalline porous materials with regular porous structure, high porosity, controllable morphology and size, and tunable ligands, have been regarded as perfect precursors for preparing various high-performance doped carbon catalysts. The catalysts derived from MOF often show superior structure and performance compared with those derived from conventional precursors, making them more prospective for applying in the fuel cells. Actually, it has become one of the most attractive topics to prepare M-N/C catalysts with MOFs as precursors in recent years. In this paper, we systematically introduce the research works on MOFs derived M-N/C catalysts at home and abroad in recent years, including the preparation technologies of MOF derived M-N/C catalysts, the strategies of improving the structure and performance of MOF derived carbon catalysts, as well as the research progress on the characterization technologies of such catalysts. Finally, we indicate the problems and challenges existed in MOF derived M-N/C catalysts, propose possible strategies/measures to solve the problems. The development and application of this type of new catalysts are also prospected.

Contents

1 Introduction

2 General synthesis methods of MOFs materials

3 Progress of MOFs derived carbon catalysts

3.1 Characteristics of MOFs derived carbon catalysts

3.2 General synthetic approach

3.3 Progress of preparation technology of MOFs derived carbon catalyst

4 Studies on improving structure and performance of MOFs derived carbon catalysts

4.1 Regulating the composition of MOFs

4.2 Maintaining the morphology of MOFs-derived carbon

4.3 In-situ growth of MOFs on the substrate

4.4 Pore structure control

4.5 Studies on durability improvement

5 Progress in characterization technology

6 Conclusion and outlook

Fig. 1 The single crystal X-ray structures of ZIFs[37]
Fig. 2 (a)Synthesis principles of Fe-doped ZIF-derived catalysts.(b)Accurately controlled sizes of the Fe-ZIF catalysts from 20 to 1000 nm.(c, d)HAADF-STEM images of the best per-forming Fe-doped ZIF catalyst (50 nm)and EELS analysis (the inset of d)[69]
Fig. 3 (a)Schematic illustration of the formation of Fe-ISAs/CN, (b)TEM, (c)HAADF-STEM image, corresponding element maps showing the distributionof Fe (yellow), C (red), and N (orange), (d),(e)HAADF-STEM images and enlarged images of the Fe-ISAs/CN. Single Fe atoms highlighted by red circles[72]
Fig. 4 (a)Schematic illustration. (b)TEM image of FePc-20@ZIF-8 composite. (c)HRTEM, (d)HAADF-STEM of Fe SAs-N/C- 20 catalyst. (e)Fe K-edge XANES (inset is the magnifified image)and (f)FT k3-weighted EXAFS spectra of Fe SAs-N/C-20 and the reference samples. (g)Corre-sponding FT-EXAFS fifitting curves of Fe SAs-N/C-20[73]
Fig. 5 (a)UV-Vis spectra change in K3[Fe(CN)6] solution and photographs showing the exchange of {K2Fe(CN)6}- into Cd-TTPBA-4.(b)The UV spectrum of post-exchange K3Fe(CN)6 solution at different concentrations (1: 2.5×10-4 mol·L-1, 2: 5×10-4 mol·L-1, 3: 7.5×10-4 mol·L-1, and 4: 10-3 mol·L-1)and the calibration graph of K3Fe(CN)6 solution at 302 nm.(c)The HAADF-STEM image of Fe/N/C-1000-2. (d and e)The HAADF-STEM image and the corresponding elemental mappings of Fe, N, C, and O atoms for Fe/N/C-1000-2[74]
Fig. 6 Schematic illustration of FeSA-N-C catalyst synthesized via a mixed-ligand strategy[23]
Fig. 7 (a)HIM images of u-carbon. Insets show HIM image with-higher magnification (top)and TEM image (bottom). (b~d)SEM images of Co@C(b), Fe@C(c), and CoFe@C(d). (e~g)HIM images of cross section in Co@C(e), Fe@C(f), and CoFe@C(g). (h~m)TEM images of Co@C(h, k), Fe@C(i, l), and CoFe@C(j, m)[25]
Fig. 8 Schematic illustration of Co, N-HCNP electrocatalyst[92]
Fig. 9 (a,b)SEM images of the precursor Fe/N/S@UIO-66-NH2 and the Fe/N/S-PC catalyst; (c)TEM image of Fe/N/S-PC; (d)HAAD-STEM image of Fe/N/S-PC; (e,f)carbon, nitrogen, iron, and sulfur EDS mapping of Fe/N/S-PC over the area in (c)[77]
Fig. 10 Schematic illustration of the formation of nitrogen-doped carbon from ZIF-8 with a meso-microporous hierarchical structure[103]
Fig. 11 (a)Schematic illustration of the synthesis of FeN4/HOPC-c-1000. (b)Models of OMS-Fe-ZIF-8 viewed from different directions. (c)SEM images of OMS-Fe-ZIF-8 and (d)FeN4/HOPC-c-1000 taken from different directions. (e)SEM images of one selected broken OMS-Fe-ZIF-8 and details of the internal structure. (f)SEM images of one selected broken FeN4/HOPC-c-1000 and details of the internal structure[104]
Table 1 Summary of electrochemical performance of M-N/C Electrocatalysts Derived from MOFs
Catalysts MOFs SBET
(m2·g-1)
Catalysts loading
(mg·cm-2)
Electrolyte Eoneset
vs RHE
E1/2
vs RHE
ref
Fe@NMC-1 ZIF-8 793.3 0.204 0.1 M KOH 1.01 V 0.88 V 22
FeSA-N-C Fex-PCN-222 532 0.28 0.1 M KOH 1.00 V 0.89 V 23
3D-Fe-PNC ZIF-8@Fe-PBA 794.3 0.4 0.1 M KOH 1.02 V 0.91 V 24
CoFe@C MET-6 950 0.408 0.1 M KOH 0.98 V 0.89 V 25
Fe,N-HPCC Fe,Zn-ZIF 817 0.788 0.1 M KOH 0.972 V 0.898 V 26
1 activated at 750 ℃ Co(Im)2 264 0.6 0.1 M HClO4 0.83 V - 54
Fe/N-PCNs Zn/Fe-MOF 864 ~0.5 0.1 M KOH 0.96 V 0.86 V 65
C-FeHZ8@g-C3N4-950 ZIF-8 754 0.5 0.1 M KOH 0.97 V 0.845 V 66
Fe-ZIF(50 nm) Zn,Fe-ZIF 614 0.06 0.5 M H2SO4 - 0.85 V 69
C-AFC©ZIF-8 ZIF-8 705 0.622 0.1 M HClO4 - 0.747 V 70
Fe-N/C-155 ZIF-8 849 0.245 0.1 M KOH 1.09 V 0.85 V 71
Fe-ISAs/CN ZIF-8 - 0.408 0.1 M KOH 0.986 V 0.9 V 72
Fe SAs-N/C-20 ZIF-8 1392.91 0.612 0.1 M KOH - 0.915 V 73
Fe/N/C-1000-2 Cd-TTPBA-4 524.8 0.6 0.1 M KOH 1.0 V 0.87 V 74
Fe/N/S-PC UIO-66-NH2 853 0.5 0.1 M KOH 0.97 V 0.87 V 77
P-CNCo-20 Zn,Co-ZIF 1225 0.1 0.1 M KOH 0.93 V 0.85 V 78
Fe/Ni-MOFs/NG-20 Fe/Ni-MOFs 189.79 0.141 0.1 M KOH 1.09 V - 87
Co-Ni(1∶1)@NC-900 Co-Ni-ZIF - 0.141 0.1 M KOH 0.923 V 0.821 V 88
C-FeZIF-1.44-950 ZIF-8 1255 0.5 0.1 M KOH 0.99 V 0.864 V 91
Co,N-HCNP ZIF-8@ZIF-67 632.5 0.788 0.1 M KOH 0.926 V 0.855 V 92
Co,N-PCL[4] ZIF-L@ZIF-67 319 0.2 0.1 M KOH - 0.846 V 93
NEMC/G ZIF-8 655 0.25 0.1 M KOH - 0.82 V 103
Co@NC-MOF-2-900 ZnxCo1-x(C3H4N2) MOF 371 0.065 0.1 M KOH 0.93 V 0.82 V 105
Co-N-C-1000 Co-doped ZIF 841 0.408 0.1 M KOH - 0.856 V 106
Cr/N/C-950 ZIF-8 884.9 0.6 0.1 M HClO4 - 0.773 V 107
Ir-SAC ZIF-8 1490 0.4 0.1 M HClO4 0.97 V 0.864 V 108
20Mn-NC-second ZIF-8 715 ~4 0.5 M H2SO4 - 0.80 V 109
[1]
Boudghene Stambouli A, Traversa E. Renew. Sustain. Energy Rev., 2002, 6(3): 295.

doi: 10.1016/S1364-0321(01)00015-6
[2]
Li Y G, Dai H J. Chem. Soc. Rev., 2014, 43(15): 5257.

doi: 10.1039/C4CS00015C
[3]
Morozan A, Jousselme B, Palacin S. Energy Environ. Sci., 2011, 4(4): 1238.
[4]
Debe M K. Nature, 2012, 486(7401): 43.
[5]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.

doi: 10.1038/nmat3191
[6]
Chen Z W, Higgins D, Yu A P, Zhang L, Zhang J J. Energy Environ. Sci., 2011, 4(9): 3167.

doi: 10.1039/c0ee00558d
[7]
Zheng Y, Jiao Y, Jaroniec M, Jin Y G, Qiao S Z. Small, 2012, 8(23): 3550.

doi: 10.1002/smll.201200861 pmid: 22893586
[8]
Lee J S, Tai Kim S, Cao R G, Choi N S, Liu M L, Lee K T, Cho J. Adv. Energy Mater., 2011, 1(1): 34.

doi: 10.1002/aenm.201000010
[9]
Cheng F Y, Chen J. Chem. Soc. Rev., 2012, 41(6): 2172.

doi: 10.1039/c1cs15228a
[10]
Rahman M A, Wang X J, Wen C E. J. Electrochem. Soc., 2013, 160(10): A1759.

doi: 10.1149/2.062310jes
[11]
Cao R G, Lee J S, Liu M L, Cho J. Adv. Energy Mater., 2012, 2(7): 816.
[12]
Niu W H, Li L G, Liu X J, Wang N, Liu J, Zhou W J, Tang Z H, Chen S W. J. Am. Chem. Soc., 2015, 137(16): 5555.

doi: 10.1021/jacs.5b02027
[13]
Chung H T, Cullen D A, Higgins D, Sneed B T, Holby E F, More K L, Zelenay P. Science, 2017, 357(6350): 479.

doi: 10.1126/science.aan2255 pmid: 28774924
[14]
Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323(5915): 760.

doi: 10.1126/science.1168049
[15]
Zhou M, Wang H L, Guo S J. Chem. Soc. Rev., 2016, 45(5): 1273.
[16]
Shen M X, Wei C T, Ai K L, Lu L H. Nano Res., 2017, 10(5): 1449.

doi: 10.1007/s12274-016-1400-7
[17]
Sarapuu A, Kibena-Põldsepp E, Borghei M, Tammeveski K. J. Mater. Chem. A, 2018, 6(3): 776.

doi: 10.1039/C7TA08690C
[18]
Zheng Y P, Yang D S, Kweun J M, Li C Z, Tan K, Kong F T, Liang C P, Chabal Y J, Kim Y Y, Cho M, Yu J S, Cho K. Nano Energy, 2016, 30: 443.

doi: 10.1016/j.nanoen.2016.10.037
[19]
Gu W L, Hu L Y, Li J, Wang E K. Electroanalysis, 2018, 30(7): 1217.

doi: 10.1002/elan.v30.7
[20]
Bezerra C W B, Zhang L, Lee K, Liu H S, Marques A L B, Marques E P, Wang H J, Zhang J J. Electrochimica Acta, 2008, 53(15): 4937.

doi: 10.1016/j.electacta.2008.02.012
[21]
Wang X X, Swihart M T, Wu G. Nat. Catal., 2019, 2(7): 578.
[22]
Chen X D, Wang N, Shen K, Xie Y K, Tan Y P, Li Y W. ACS Appl. Mater. Interfaces, 2019, 11(29): 25976.
[23]
Jiao L, Wan G, Zhang R, Zhou H, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2018, 57(28): 8525.

doi: 10.1002/anie.v57.28
[24]
Najam T, Shah S S A, Ding W, Wei Z D. J. Phys. Chem. C, 2019, 123(27): 16796.

doi: 10.1021/acs.jpcc.9b03730
[25]
Zhao R, Liang Z B, Gao S, Yang C, Zhu B J, Zhao J L, Qu C, Zou R Q, Xu Q. Angew. Chem., 2019, 131(7): 2177.

doi: 10.1002/ange.v131.7
[26]
Guo Z Y, Zhang Z P, Li Z L, Dou M L, Wang F. Nano Energy, 2019, 57: 108.

doi: 10.1016/j.nanoen.2018.12.009
[27]
Brüller S, Liang H W, Kramm U I, Krumpfer J W, Feng X L, Müllen K. J. Mater. Chem. A, 2015, 3(47): 23799.
[28]
Chen Y C, Gokhale R, Serov A, Artyushkova K, Atanassov P. Nano Energy, 2017, 38: 201.

doi: 10.1016/j.nanoen.2017.05.059
[29]
Han A J, Chen W X, Zhang S L, Zhang M L, Han Y H, Zhang J, Ji S F, Zheng L R, Wang Y, Gu L, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(15): 1706508.
[30]
Lee S, Kwak D H, Han S B, Hwang E T, Kim M C, Lee J Y, Lee Y W, Park K W. Electrochimica Acta, 2016, 191: 805.

doi: 10.1016/j.electacta.2016.01.135
[31]
Qing X, Shi J J, Ma C Y, Fan M Y, Bai Z Y, Chen Z W, Qiao J L, Zhang J J. J. Power Sources, 2014, 266: 88.

doi: 10.1016/j.jpowsour.2014.04.136
[32]
Kim D W, Li O L, Saito N. Phys. Chem. Chem. Phys., 2014, 16(28): 14905.

doi: 10.1039/c4cp01406e
[33]
Ma J H, Shi M H, Yao Z Z, Mi H Y, Hoang T K A. J. Solid State Chem., 2019, 276: 139.

doi: 10.1016/j.jssc.2019.04.033
[34]
Hu L B, Yu F, Wang F, Yang S C, Peng B H, Chen L, Wang G, Hou J, Dai B, Tian Z Q. Chin. Chem. Lett., 2020, 31(5): 1207.

doi: 10.1016/j.cclet.2019.06.041
[35]
Liang H W, Wei W, Wu Z S, Feng X L, Müllen K. J. Am. Chem. Soc., 2013, 135(43): 16002.

doi: 10.1021/ja407552k
[36]
Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444
[37]
Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. PNAS, 2006, 103(27): 10186.

doi: 10.1073/pnas.0602439103
[38]
Lee Y R, Kim J, Ahn W S. Korean J. Chem. Eng., 2013, 30(9): 1667.

doi: 10.1007/s11814-013-0140-6
[39]
Zheng N, Richard M. J. Am. Chem. Soc., 2006, 128:12394.

pmid: 16984171
[40]
Jin K, Huang X Y, Pang L, Li J, Appel A, Wherland S. Chem. Commun., 2002,(23): 2872.
[41]
Son W J, Kim J, Kim J, Ahn W S. Chem. Commun., 2008,(47): 6336.
[42]
Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, PastrÉ J. J. Mater. Chem., 2006, 16(7): 626.

doi: 10.1039/B511962F
[43]
Tian T, Zeng Z X, Vulpe D, Casco M E, Divitini G, Midgley P A, Silvestre-Albero J, Tan J C, Moghadam P Z, Fairen-Jimenez D. Nat. Mater., 2018, 17(2): 174.

doi: 10.1038/nmat5050 pmid: 29251723
[44]
Sa Y J, Seo D J, Woo J, Lim J T, Cheon J Y, Yang S Y, Lee J M, Kang D, Shin T J, Shin H S, Jeong H Y, Kim C S, Kim M G, Kim T Y, Joo S H. J. Am. Chem. Soc., 2016, 138(45): 15046.
[45]
Li J K, Ghoshal S, Liang W T, Sougrati M T, Jaouen F, Halevi B, McKinney S, McCool G, Ma C R, Yuan X X, Ma Z F, Mukerjee S, Jia Q Y. Energy Environ. Sci., 2016, 9(7): 2418.

doi: 10.1039/C6EE01160H
[46]
Ramaswamy N, Tylus U, Jia Q Y, Mukerjee S. J. Am. Chem. Soc., 2013, 135(41): 15443.

doi: 10.1021/ja405149m pmid: 24032690
[47]
Kramm U I, Abs-Wurmbach I, Herrmann-Geppert I, Radnik J, Fiechter S, Bogdanoff P. J. Electrochem. Soc., 2011, 158(1): B69.

doi: 10.1149/1.3499621
[48]
Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332(6028): 443.

doi: 10.1126/science.1200832
[49]
Tran T N, Song M Y, Singh K P, Yang D S, Yu J S. J. Mater. Chem. A, 2016, 4(22): 8645.

doi: 10.1039/C6TA01543C
[50]
Magali F, Jeremy K, Deborah M. J. Phys. Chem. C, 2012, 116:16001.

doi: 10.1021/jp302396g
[51]
Chenitz R, Kramm U I, Lefèvre M, Glibin V, Zhang G X, Sun S H, Dodelet J P. Energy Environ. Sci., 2018, 11(2): 365.

doi: 10.1039/C7EE02302B
[52]
Carlota D, Miguel P, Sergio R, Francisco P A. Int. J. Hydrogen. Energ., 2019, 166:F3311.
[53]
Singhal R, Kalra V. ChemPhysChem, 2017, 18(2): 223.

doi: 10.1002/cphc.201600771 pmid: 27813238
[54]
Ma S Q, Goenaga G A, Call A V, Liu D J. Chem. Eur. J., 2011, 17(7): 2063.

doi: 10.1002/chem.201003080
[55]
Xiao L, Yang J M, Huang G Y, Zhao Y, Zhu H B. Inorg. Chem. Commun., 2020, 118: 107982.

doi: 10.1016/j.inoche.2020.107982
[56]
Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Science, 2009, 324(5923): 71.

doi: 10.1126/science.1170051 pmid: 19342583
[57]
Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Angew. Chem., 2013, 125(1): 389.

doi: 10.1002/ange.201204958
[58]
Wen Z, Ci S, Hou Y, Chen J. Angew. Chem. Int. Edit., 2014, 126:6614.
[59]
Su P P, Xiao H, Zhao J, Yao Y, Shao Z G, Li C, Yang Q H. Chem. Sci., 2013, 4(7): 2941.

doi: 10.1039/c3sc51052b
[60]
Lee J S, Park G S, Kim S T, Liu M L, Cho J. Angew. Chem. Int. Ed., 2013, 52(3): 1026.

doi: 10.1002/anie.201207193
[61]
Choi J Y, Hsu R S, Chen Z W. J. Phys. Chem. C, 2010, 114(17): 8048.
[62]
Zhong R Q, Zhi C X, Wu Y X, Liang Z B, Tabassum H, Zhang H, Qiu T J, Gao S, Shi J M, Zou R Q. Chin. Chem. Lett., 2020, 31(6): 1588.

doi: 10.1016/j.cclet.2019.12.004
[63]
Bashyam R, Zelenay P. Nature, 2006, 443(7107): 63.

doi: 10.1038/nature05118
[64]
Tang F, Lei H T, Wang S J, Wang H X, Jin Z X. Nanoscale, 2017, 9(44): 17364.

doi: 10.1039/C7NR06844A
[65]
Zheng L, Yu S, Lu X, Fan W, Liao S. ACS Appl. Mater. Inter., 2020, 12:13878.

doi: 10.1021/acsami.9b22577
[66]
Deng Y J, Chi B, Tian X L, Cui Z M, Liu E S, Jia Q Y, Fan W J, Wang G H, Dang D, Li M S, Zang K T, Luo J, Hu Y F, Liao S J, Sun X L, Mukerjee S. J. Mater. Chem. A, 2019, 7(9): 5020.
[67]
Tran T N, Shin C H, Lee B J, Samdani J S, Park J D, Kang T H, Yu J S. Catal. Sci. Technol., 2018, 8(20): 5368.

doi: 10.1039/C8CY01140K
[68]
Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet J P. Nat. Commun., 2011, 2(1): 1.
[69]
Zhang H G, Hwang S, Wang M Y, Feng Z X, Karakalos S, Luo L L, Qiao Z, Xie X H, Wang C M, Su D, Shao Y Y, Wu G. J. Am. Chem. Soc., 2017, 139(40): 14143.
[70]
Ye Y F, Cai F, Li H B, Wu H H, Wang G X, Li Y S, Miao S, Xie S H, Si R, Wang J, Bao X H. Nano Energy, 2017, 38: 281.

doi: 10.1016/j.nanoen.2017.05.042
[71]
Ye G Y, He Q, Liu S Q, Zhao K M, Su Y K, Zhu W W, Huang R J, He Z. J. Mater. Chem. A, 2019, 7(27): 16508.

doi: 10.1039/C9TA04954A
[72]
Chen Y J, Ji S F, Wang Y G, Dong J C, Chen W X, Li Z, Shen R, Zheng L R, Zhuang Z B, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2017, 56(24): 6937.

doi: 10.1002/anie.201702473
[73]
Jiang R, Li L, Sheng T, Hu G F, Chen Y G, Wang L Y. J. Am. Chem. Soc., 2018, 140(37): 11594.

doi: 10.1021/jacs.8b07294 pmid: 30168714
[74]
Huang J W, Chen Y B, Liu X, Huang Y C, Ding Y L, Xu Y, Yao H C, Zhu H B, Yang H. Chem. Commun., 2019, 55(48): 6930.

doi: 10.1039/C9CC02390A
[75]
Yang N, Li L, Li J, Ding W, Wei Z D. Chem. Sci., 2018, 9(26): 5795.

doi: 10.1039/c8sc01801d pmid: 30079190
[76]
Zhang P F, Chen C, Zhang X H, Jiang Z G, Huang J L, Chen J H. Electrochimica Acta, 2019, 298: 570.

doi: 10.1016/j.electacta.2018.12.119
[77]
Zheng L, Dong Y Y, Chi B, Cui Z M, Deng Y J, Shi X D, Du L, Liao S J. Small, 2019, 15(4): 1803520.

doi: 10.1002/smll.201803520 pmid: 30561824
[78]
Chen Y Z, Wang C M, Wu Z Y, Xiong Y J, Xu Q, Yu S H, Jiang H L. Adv. Mater., 2015, 27(34): 5010.

doi: 10.1002/adma.201502315
[79]
Chen L L, Zhang Y L, Dong L L, Yang W X, Liu X J, Long L, Liu C Y, Dong S J, Jia J B. J. Mater. Chem. A, 2020, 8(8): 4369.
[80]
Lu Z Y, Wang B, Hu Y F, Liu W, Zhao Y F, Yang R O, Li Z P, Luo J, Chi B, Jiang Z, Li M S, Mu S C, Liao S J, Zhang J J, Sun X L. Angew. Chem., 2019, 131(9): 2648.

doi: 10.1002/ange.v131.9
[81]
Wang J, Liu W, Luo G, Li Z J, Zhao C, Zhang H R, Zhu M Z, Xu Q, Wang X Q, Zhao C M, Qu Y T, Yang Z K, Yao T, Li Y F, Lin Y, Wu Y E, Li Y D. Energy Environ. Sci., 2018, 11(12): 3375.

doi: 10.1039/C8EE02656D
[82]
Wang J, Huang Z Q, Liu W, Chang C R, Tang H L, Li Z J, Chen W X, Jia C J, Yao T, Wei S Q, Wu Y E, Li Y D. J. Am. Chem. Soc., 2017, 139(48): 17281.

doi: 10.1021/jacs.7b10385
[83]
Duan X D, Ren S S, Pan N, Zhang M D, Zheng H G. J. Mater. Chem. A, 2020, 8(18): 9355.

doi: 10.1039/D0TA02825H
[84]
Guo X Y, Gu J X, Lin S R, Zhang S L, Chen Z F, Huang S P. J. Am. Chem. Soc., 2020, 142(12): 5709.

doi: 10.1021/jacs.9b13349
[85]
Zhang N, Zhou T P, Ge J K, Lin Y, Du Z Y, Zhong C A, Wang W J, Jiao Q Y, Yuan R L, Tian Y C, Chu W S, Wu C Z, Xie Y. Matter, 2020, 3(2): 509.
[86]
Qiao Y, Ni Y Y, Kong F T, Li R J, Zhang C Q, Kong A G, Shan Y K. Chem. Asian J., 2019, 14(15): 2676.

doi: 10.1002/asia.v14.15
[87]
Qin X L, Huang Y, Wang K, Xu T T, Wang Y L, Wang M Y, Zhao M, Gao Q. Ind. Eng. Chem. Res., 2019, 58(24): 10224.

doi: 10.1021/acs.iecr.9b01412
[88]
Long J L, Li R, Gou X L. Catal. Commun., 2017, 95: 31.

doi: 10.1016/j.catcom.2017.02.026
[89]
Dong Z, Liu G L, Zhou S C, Zhang Y Y, Zhang W L, Fan A X, Zhang X, Dai X P. ChemCatChem, 2018, 10(23): 5475.

doi: 10.1002/cctc.v10.23
[90]
Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130(16): 5390.

doi: 10.1021/ja7106146 pmid: 18376833
[91]
Deng Y J, Chi B, Li J, Wang G H, Zheng L, Shi X D, Cui Z M, Du L, Liao S J, Zang K T, Luo J, Hu Y F, Sun X L. Adv. Energy Mater., 2019, 9(13): 1802856.

doi: 10.1002/aenm.v9.13
[92]
Hu Z W, Zhang Z P, Li Z L, Dou M L, Wang F. ACS Appl. Mater. Interfaces, 2017, 9(19): 16109.

doi: 10.1021/acsami.7b00736
[93]
Park H, Oh S, Lee S, Choi S, Oh M. Appl. Catal. B: Environ., 2019, 246: 322.

doi: 10.1016/j.apcatb.2019.01.083
[94]
Chai L L, Zhang L J, Wang X, Hu Z Y, Xu Y W, Li T T, Hu Y, Qian J J, Huang S M. Carbon, 2020, 158: 719.
[95]
Wei J, Hu Y X, Wu Z X, Liang Y, Leong S, Kong B, Zhang X Y, Zhao D Y, Simon G P, Wang H T. J. Mater. Chem. A, 2015, 3(32): 16867.

doi: 10.1039/C5TA04330A
[96]
Zhang C, Wang Y C, An B, Huang R, Wang C, Zhou Z, Lin W. Adv. Mater., 2017, 29: 1604556.1.
[97]
Kone I, Xie A, Tang Y, Chen Y, Liu J, Chen Y M, Sun Y Z, Yang X J, Wan P Y. ACS Appl. Mater. Interfaces, 2017, 9(24): 20963.

doi: 10.1021/acsami.7b02306
[98]
Sun T T, Li Y L, Cui T T, Xu L B, Wang Y G, Chen W X, Zhang P P, Zheng T, Fu X Z, Zhang S L, Zhang Z D, Wang D S, Li Y D. Nano Lett., 2020, 20(8): 6206.

doi: 10.1021/acs.nanolett.0c02677
[99]
Gao L Q, Xiao M L, Jin Z, Liu C P, Ge J J, Xing W. J. Energy Chem., 2019, 35: 17.

doi: 10.1016/j.jechem.2018.09.019
[100]
Tian P F, Zang J B, Song S W, Zhou S Y, Gao H W, Xu H Q, Tian X Q, Wang Y H. J. Power Sources, 2020, 448: 227443.
[101]
Meng Z H, Cai S C, Wang R, Tang H L, Song S Q, Tsiakaras P. Appl. Catal. B: Environ., 2019, 244: 120.

doi: 10.1016/j.apcatb.2018.11.037
[102]
Feng L, Yuan S, Zhang L L, Tan K, Li J L, Kirchon A, Liu L M, Zhang P, Han Y, Chabal Y J, Zhou H C. J. Am. Chem. Soc., 2018, 140(6): 2363.

doi: 10.1021/jacs.7b12916
[103]
Lai Q X, Zhao Y X, Liang Y Y, He J P, Chen J H. Adv. Funct. Mater., 2016, 26(45): 8334.

doi: 10.1002/adfm.v26.45
[104]
Qiao M F, Wang Y, Wang Q, Hu G Z, Mamat X, Zhang S S, Wang S Y. Angew. Chem. Int. Ed., 2020, 59(7): 2688.

doi: 10.1002/anie.v59.7
[105]
Peera S G, Balamurugan J, Kim N H, Lee J H. Small, 2018, 14(19): 1800441.
[106]
Sun W, Du L, Tan Q, Zhou J G, Hu Y F, Du C Y, Gao Y Z, Yin G P. ACS Appl. Mater. Interfaces, 2019, 11(44): 41258.

doi: 10.1021/acsami.9b11830
[107]
Luo E G, Zhang H, Wang X, Gao L Q, Gong L Y, Zhao T, Jin Z, Ge J J, Jiang Z, Liu C P, Xing W. Angew. Chem. Int. Ed., 2019, 58(36): 12469.

doi: 10.1002/anie.v58.36
[108]
Xiao M L, Zhu J B, Li G R, Li N, Li S, Cano Z P, Ma L, Cui P X, Xu P, Jiang G P, Jin H L, Wang S, Wu T P, Lu J, Yu A P, Su D, Chen Z W. Angew. Chem., 2019, 131(28): 9750.

doi: 10.1002/ange.v131.28
[109]
Li J Z, Chen M J, Cullen D A, Hwang S, Wang M Y, Li B Y, Liu K X, Karakalos S, Lucero M, Zhang H G, Lei C, Xu H, Sterbinsky G E, Feng Z X, Su D, More K L, Wang G F, Wang Z B, Wu G. Nat. Catal., 2018, 1(12): 935.

doi: 10.1038/s41929-018-0164-8
[110]
Jiang W J, Gu L, Li L, Zhang Y, Zhang X, Zhang L J, Wang J Q, Hu J S, Wei Z D, Wan L J. J. Am. Chem. Soc., 2016, 138(10): 3570.

doi: 10.1021/jacs.6b00757
[111]
Lai Q X, Zheng L R, Liang Y Y, He J P, Zhao J X, Chen J H. ACS Catal., 2017, 7(3): 1655.

doi: 10.1021/acscatal.6b02966
[112]
Ye W, Chen S M, Lin Y, Yang L, Chen S J, Zheng X S, Qi Z M, Wang C M, Long R, Chen M, Zhu J F, Gao P, Song L, Jiang J, Xiong Y J. Chem, 2019, 5(11): 2865.
[113]
Li J Z, Zhang H G, Samarakoon W, Shan W T, Cullen D A, Karakalos S, Chen M J, Gu D M, More K L, Wang G F, Feng Z X, Wang Z B, Wu G. Angew. Chem. Int. Ed., 2019, 58(52): 18971.

doi: 10.1002/anie.v58.52
[114]
Liu W G, Zhang L L, Liu X, Liu X Y, Yang X F, Miao S, Wang W T, Wang A Q, Zhang T. J. Am. Chem. Soc., 2017, 139(31): 10790.

doi: 10.1021/jacs.7b05130
[115]
Li J, Jiao L, Wegener E, Richard L L, Liu E, Zitolo A, Sougrati M T, Mukerjee S, Zhao Z, Huang Y, Yang F, Zhong S, Xu H, Kropf A J, Jaouen F, Myers D, Jia Q. J. Am. Chem Soc., 2019, 142:1417.

doi: 10.1021/jacs.9b11197
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[3] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[4] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[5] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[6] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[7] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[8] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[9] Xiuting Dong, Wen Zhang, Song Zhao, Xinlei Liu, Yuxin Wang. Shaping Methods for Metal-Organic Framework Composites [J]. Progress in Chemistry, 2021, 33(12): 2173-2187.
[10] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[11] Zhichao Liu, Hongliang Mu, Yan Li, Liu Feng, Dong Wang, Guangwu Wen. Application of Metal-Organic Frameworks-Derived Conversion-Type Anodes in Alkali Metal-Ion Batteries [J]. Progress in Chemistry, 2021, 33(11): 2002-2023.
[12] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[13] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[14] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[15] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.