中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1756-1765 DOI: 10.7536/PC200855 Previous Articles   Next Articles

• Review •

Recent Advances in Peptide-Based Electrochemical Biosensor

Han Zhang1,2, Jiawang Ding1(), Wei Qin1   

  1. 1 CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research(YIC), Chinese Academy of Sciences,Yantai 264003, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Jiawang Ding
  • Supported by:
    National Natural Science Foundation of China(41876108); Taishan Scholar Program of Shandong Province(tsqn201909163); Taishan Scholar Program of Shandong Province(tspd20181215)
Richhtml ( 54 ) PDF ( 708 ) Cited
Export

EndNote

Ris

BibTeX

Peptides with unique features such as small molecular weight, ease synthesis, good biocompatibility, high stability and versatile sequences, have received increasing interest as recognition elements for biosensors. Electrochemical analysis has wide applications because of its high sensitivity, good accuracy, simple equipment, wide detection range and easy to use. The peptide-based electrochemical biosensors can be used in many fields including environment monitoring, biomedicine and food detection. In this review, we introduce the peptide-based electrochemical biosensors for detection heavy metal ions, small-molecules, proteins, pathogenic bacteria and viruses. The strategies for peptide modification and immobilization are summarized. We also describe the properties and sensing mechanisms of peptide-based electrochemical biosensors. Sensing strategies especially those based on target-binding induced combination, digestion and phosphorylation of peptides have been discussed. Lastly, the current problems and prospect of the research on peptide-based electrochemical biosensor are discussed and prospected.

Contents

1 Introduction

2 Overview of peptide

3 Peptide-based electrochemical biosensor

3.1 Identification and detection of heavy metal ions

3.2 Identification and detection of small molecules

3.3 Identification and detection of proteins

3.4 Identification and detection of bacteria and viruses

4 Conclusions and prospects

Fig. 1 Different strategies for covalent immobilization of peptides
Fig. 2 Schematic illustration of the specific interactions of C u2+[10] (a), Z n2+[11] (b), C u+[12] (c), A g+[13] (d) and H g2+[14] (e) with peptides
Fig. 3 Three different kinds of interactions between proteins and peptides
Table 1 The recognition and detection of protein by peptide-based electrochemical biosensor
Protein Sequence of peptide Linear range Detection limit Method ref
Neutrophil gelatinase-associated lipocalin DRWVARDPASIFGGGGSC - 1.74 μg/mL Electrochemical Impedance Spectroscopy 29
Eucine-rich α-2-glycoprotein 1 QDIMDLPDINTLGGGGSC 0~0.25 μg/mL 0.025 μg/mL Electrochemical Impedance Spectroscopy 30
Cardiac troponin I CFYSHSFHENWPS 15.5~1.55×103 pg/mL 3.4 pg/mL Electrochemical Impedance Spectroscopy 31
CFYSHSFHENWPSK - 0.3 pg/mL Electrochemiluminescence 44
Metalloproteinase GYPKSALR 1~10 μg/L 0.19 μg/L Electrochemical Impedance Spectroscopy 32
PLGVR - 33 fg/mL Electrochemiluminescence 60
GPLGVRGKGGC 0.1~103 pg/mL 0.078 pg/mL Differential Pulse Voltammetry 54
NS1 protein EHDRMHAYYLTR - 0.025 μg/mL Electrochemical Impedance Spectroscopy 33
Human chorionic gonadotropin PPLRINRHILTR 0.01~0.2 UI/mL 0.6 mIU/mL Electrochemical Impedance Spectroscopy 34,35
Beta-amyloid oligomer THSQWNKPSKPKTNMK 0.01~200 nmol/L 6 pmol/L Linear Sweep Voltammetry 36
Human immunoglobulin G HWRGWVA - 0.26 ng/mL Differential Pulse Voltammetry 40
Antibodies of HPV SPINNTKPHEAR 0.01~0.02 μg/L - Amperometry 37
Anti-Toxoplasma gondii immunoglobulins APTGDPSQNSDGNRG - - Differential Pulse Voltammetry 41
Amyloid-β(1-42) CPPPPTHSQWNKPSKPKTNMK 0.003~7 ng/mL 0.2 pg/mL Differential Pulse Voltammetry 42
Specific IgG of juvenile idiopathic arthritis ACSSWLPRGCGGGS - - Differential Pulse Voltammetry 43
Tau protein DVWMINKKRK - 0.3 nmol/L Differential Pulse Voltammetry 44
R. rickettsii reactive antibodies ANVVLFNDAVQLTQ - - CyclicVoltammetry 45
Cry1Ab protein TSMKLDRWIPPL 0.01~100 ng/mL 7.0 pg/mL Square Wave Voltammetry 46
Prostate specific antigen CEHSSKLQLAK 1~1.0×108 fg/mL 0.01 fg/mL Chronoamperometry 47,50,51
Human epidermal growth factor receptor CKLRLEWNR 0.5~1.0 ng/mL 0.08 pg/mL Photoelectrochemistry 48
Caspase-3 GDGDEVDGC - 5 fmol/L Square Wave Voltammetry 53
EEAAADEVDFKKAAAC 1~10 ng/mL 24.62 pg/mL Linear Sweep Voltammetry 52
Trypsin FRR 2.5~2.0×105 pg/mL 0.81 pg/mL Square Wave Voltammetry 55,56,57,61
Cathepsin B PLRFGA - 0.32 nmol/L AC Voltammetry 58
Tyrosinase/Thrombin KSAFPRGRY 2.6~32/4.5~100 μg/mL 1.5/1.9 μg/mL Photoelectrochemistry 59
Histone acetyltransferases RGKGGKGLGKGGAKAC 0.01~150 nmol/L 0.0036 nmol/L Square Wave Voltammetry 66
Protein kinase LRRASLGGGGC - 1.05 mU/mL Square Wave Voltammetry 63
CLRRASLG 0.01~50 U/mL 0.0019 U/mL Stripping Voltammetry 64
CRRLRRASLG 0.05~50 U/mL 0.02 U/mL Photoelectrochemistry 65
Fig. 4 Schematic diagram of biosensor based multifunctional peptides[39]
Fig. 5 Schematic diagram of electrochemical biosensor based on peptides strand-displacement reaction[44]
Fig. 6 Schematic diagram of sandwich assay for bacteria based on peptide pairs
[1]
Cui Y, Kim S N, Naik R R, McAlpine M C. Acc. Chem. Res., 2012, 45(5): 696.

doi: 10.1021/ar2002057
[2]
Karimzadeh A, Hasanzadeh M, Shadjou N, Guardia M D L. Trac Trends Anal. Chem., 2018, 107: 1.

doi: 10.1016/j.trac.2018.07.018
[3]
Liu Q T, Wang J F, Boyd B J. Talanta, 2015, 136: 114.
[4]
Lowman H B. Annu. Rev. Biophys. Biomol. Struct., 1997, 26(1): 401.

doi: 10.1146/biophys.1997.26.issue-1
[5]
Barbosa A J M, Oliveira A R, Roque A C A. Trends Biotechnol., 2018, 36(12): 1244.

doi: 10.1016/j.tibtech.2018.07.004
[6]
Pavan S, Berti F. Anal. Bioanal. Chem., 2012, 402(10): 3055.

doi: 10.1007/s00216-011-5589-8
[7]
Wang Z X, Wang Y F, Qi W, Su R X, He Z M. Prog. Chem., 2020, 32: 687.
( 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. 化学进展, 2020, 32: 687.).

doi: 10.7536/PC191020
[8]
Puiu M, Bala C. Bioelectrochemistry, 2018, 120: 66.

doi: 10.1016/j.bioelechem.2017.11.009
[9]
Saadati A, Hassanpour S, Guardia M D L, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Trac Trends Anal. Chem., 2019, 114: 56.
[10]
Papp S, Jágerszki G, Gyurcsányi R E. Angew. Chem. Int. Ed., 2018, 57(17): 4752.

doi: 10.1002/anie.v57.17
[11]
Thirupathi P, Lee K H. Bioorg. Med. Chem. Lett., 2013, 23: 6811.

doi: 10.1016/j.bmcl.2013.10.015
[12]
Jung K H, Oh E T, Park H J, Lee K H. Biosens. Bioelectron., 2016, 85: 437.

doi: 10.1016/j.bios.2016.04.101
[13]
Kim J M, Lohani C R, Neupane L N, Choi Y, Lee K H. Chem. Commun., 2012, 48(24): 3012.

doi: 10.1039/c2cc16953c
[14]
Neupane L N, Oh E T, Park H J, Lee K H. Anal. Chem., 2016, 88(6): 3333.

doi: 10.1021/acs.analchem.5b04892 pmid: 26872241
[15]
Liu T, Yin J, Wang Y H, Miao P. J. Electroanal. Chem., 2016, 783: 304.

doi: 10.1016/j.jelechem.2016.11.006
[16]
Jiang Y, Chen X F, Lan L T, Pan Y, Zhu G X, Miao P. New J. Chem., 2018, 42(18): 14733.
[17]
Jiang M, Chen H R, Li S S, Liang R, Liu J H, Yang Y, Wu Y J, Yang M, Huang X J. Environ. Sci.: Nano, 2018, 5(11): 2761.
[18]
Lin M, Cho M, Choe W S, Lee Y. Electroanalysis, 2016, 28(5): 998.

doi: 10.1002/elan.v28.5
[19]
Yu Y Y, Wang P, Zhu X D, Peng Q W, Zhou Y, Yin T X, Liang Y X, Yin X X. Anal., 2018, 143(1): 323.

doi: 10.1039/C7AN01683B
[20]
Ding J W, Qin W. Trac Trends Anal. Chem., 2020, 124: 115803.

doi: 10.1016/j.trac.2019.115803
[21]
Compagnone D, Faieta M, Pizzoni D, Di Natale C, Paolesse R, van Caelenberg T, Beheydt B, Pittia P. Sens. Actuat. B: Chem., 2015, 207: 1114.

doi: 10.1016/j.snb.2014.10.049
[22]
Mascini M, Gaggiotti S, Della Pelle F, di Natale C, Qakala S, Iwuoha E, Pittia P, Compagnone D. Front. Chem., 2018, 6: 105.

doi: 10.3389/fchem.2018.00105
[23]
Wasilewski T, Szulczyński B, Wojciechowski M, Kamysz W, Gębicki J. Microchem. J., 2020, 154: 104509.

doi: 10.1016/j.microc.2019.104509
[24]
Li Y, Zhang W S, Zhang L, Li J F, Su Z Q, Wei G. Adv. Mater. Interfaces, 2017, 4(3): 1600895.
[25]
Wang L, Lin J. Appl. Sci., 2017, 9: 160.

doi: 10.3390/app9010160
[26]
Wu Y J, Wang F, Lu K, Lv M, Zhao Y F. Sens. Actuat. B: Chem., 2017, 244: 1022.

doi: 10.1016/j.snb.2017.01.048
[27]
Zhang W S, Xi J D, Zhang Y C, Su Z Q, Wei G. Arab. J. Chem., 2020, 13(1): 1406.
[28]
Wang J, Yatabe R, Onodera T, Tanaka M, Okochi M, Toko K. Sens. Mater., 2019, 31(8): 2609.
[29]
Cho C H, Kim J H, Song D K, Park T J, Park J P. Biosens. Bioelectron., 2019, 142: 111482.

doi: 10.1016/j.bios.2019.111482
[30]
Lim J M, Ryu M Y, Yun J W, Park T J, Park J P. Biosens. Bioelectron., 2017, 98: 330.

doi: 10.1016/j.bios.2017.07.013
[31]
Wang B, Jing R, Qi H L, Gao Q, Zhang C X. J. Electroanal. Chem., 2016, 781: 212.

doi: 10.1016/j.jelechem.2016.08.005
[32]
Ma F, Yan J D, Sun L N, Chen Y. Talanta, 2019, 205: 120142.

doi: 10.1016/j.talanta.2019.120142
[33]
Lim J M, Kim J H, Ryu M Y, Cho C H, Park T J, Park J P. Anal. Chimica Acta, 2018, 1026: 109.

doi: 10.1016/j.aca.2018.04.005
[34]
Xia N, Wang X, Yu J, Wu Y Y, Cheng S C, Xing Y, Liu L. Sens. Actuat. B: Chem., 2017, 239: 834.
[35]
Xia N, Wang X, Yu J, Wu Y Y, Chen S C, Xing Y, Liu L. Sens. Actuat. B: Chem., 2017, 243: 784.

doi: 10.1016/j.snb.2016.12.066
[36]
Xing Y, Feng X Z, Zhang L P, Hou J T, Han G C, Chen Z C. Int. J. Nanomed., 2017, 12: 3171.

doi: 10.2147/IJN.S132776 pmid: 28458538
[37]
Valencia D P, Dantas L M F, Lara A, García J, Rivera Z, Rosas J, Bertotti M. J. Electroanal. Chem., 2016, 770: 50.

doi: 10.1016/j.jelechem.2016.03.040
[38]
Mahshid S S, Mahshid S, VallÉe-BÉlisle A, Kelley S O. Anal. Chem., 2019, 91(8): 4943.

doi: 10.1021/acs.analchem.9b00648 pmid: 30908033
[39]
Liu N Z, Hui N, Davis J J, Luo X L. ACS Sens., 2018, 3(6): 1210.

doi: 10.1021/acssensors.8b00318
[40]
Neto S Y, Lima M I S, Pereira S R F, Goulart L R, Luz R D S, Damos F S. Biosens. Bioelectron., 2019, 143: 111652.
[41]
Alves L M, Barros H L S, Flauzino J M R, Guedes P H G, Pereira J M, Fujiwara R T, Mineo T W P, Mineo J R, de Oliveira R J, Madurro J M, G Brito-Madurro A. J. Pharm. Biomed. Anal., 2019, 175: 112778.

doi: 10.1016/j.jpba.2019.112778
[42]
Negahdary M, Heli H. Microchim. Acta, 2019, 186: 766.

doi: 10.1007/s00604-019-3903-x
[43]
Rodovalho V R, Araujo G R, Vaz E R, Ueira-Vieira C, Goulart L R, Madurro J M, Brito-Madurro A G. Biosens. Bioelectron., 2018, 100: 577.

doi: S0956-5663(17)30671-1 pmid: 29031228
[44]
Dai Y F, Abbasi K, Bandyopadhyay S, Liu C C. ACS Sens., 2019, 4(8): 1980.

doi: 10.1021/acssensors.9b00831
[45]
Prado I C, Chino M E T A, dos Santos A L, Souza A L A, Pinho L G, Lemos E R S, De-Simone S G. Biosens. Bioelectron., 2018, 100: 115.

doi: S0956-5663(17)30565-1 pmid: 28886455
[46]
Lu X, Jiang D J, Yan J X, Ma Z E, Luo X E, Wei T L, Xu Y, He Q H. Talanta, 2018, 179: 646.

doi: 10.1016/j.talanta.2017.11.032
[47]
Vural T, Yaman Y T, Ozturk S, Abaci S, Denkbas E B. J. Colloid Interface Sci., 2018, 510: 318.

doi: 10.1016/j.jcis.2017.09.079
[48]
Liu X, Liu H W, Li M, Qi H L, Gao Q, Zhang C X. ChemElectroChem, 2017, 4(7): 1708.
[49]
Luo J J, Liang D, Qiu X Q, Yang M H. Anal. Bioanal. Chem., 2019, 411(26): 6889.

doi: 10.1007/s00216-019-02060-1
[50]
Tang Z, Fu Y, Ma Z. Biosens. Bioelectron., 2017, 92: 577.

doi: 10.1016/j.bios.2016.10.057
[51]
Tang Z, Fu Y, Ma Z. Biosens. Bioelectron., 2017, 94: 394.

doi: 10.1016/j.bios.2017.03.030
[52]
Song S, Hu X J, Li H J, Zhao J L, Koh K, Chen H X. Sens. Actuat. B: Chem., 2018, 274: 54.
[53]
Khalilzadeh B, Charoudeh H N, Shadjou N, Mohammad-Rezaei R, Omidi Y, Velaei K, Aliyari Z, Rashidi M R. Sens. Actuat. B: Chem., 2016, 231: 561.

doi: 10.1016/j.snb.2016.03.043
[54]
Xu W J, Jing P, Yi H Y, Xue S Y, Yuan R. Sens. Actuat. B: Chem., 2016, 230: 345.

doi: 10.1016/j.snb.2016.02.064
[55]
Gonzalez-Fernandez E, Avlonstis N, Murray A F, Mount A R, Bradley M. Biosens. Bioelectron., 2016, 84: 82.

doi: 10.1016/j.bios.2015.11.088
[56]
Ucar A, González-Fernández E, Staderini M, Avlonitis N, Murray A F, Bradley M, Mount A R. Anal., 2020, 145(3): 975.

doi: 10.1039/C9AN02321F
[57]
Staderini M, González-Fernández E, Murray A F, Mount A R, Bradley M. Sens. Actuat. B: Chem., 2018, 274: 662.

doi: 10.1016/j.snb.2018.07.100
[58]
Song Y, Fan H F, Anderson M J, Wright J G, Hua D H, Koehne J, Meyyappan M, Li J. Anal. Chem., 2019, 91(6): 3971.

doi: 10.1021/acs.analchem.8b05189
[59]
Chen J X, Liu Y F, Zhao G C. Sensors, 2016, 16(1): 135.

doi: 10.3390/s16010135
[60]
Nie Y M, Zhang P, Wang H J, Zhuo Y, Chai Y Q, Yuan R. Anal. Chem., 2017, 89(23): 12821.

doi: 10.1021/acs.analchem.7b03240
[61]
Wu F F, Zhou Y, Zhang H, Yuan R, Chai Y Q. Anal. Chem., 2018, 90(3): 2263.

doi: 10.1021/acs.analchem.7b04631
[62]
Zou Y, Wang Z H, Zhang H X, Liu Y. Biosens. Bioelectron., 2018, 122: 205.

doi: 10.1016/j.bios.2018.09.048
[63]
Hu Q, Kong J M, Han D X, Bao Y, Zhang X J, Zhang Y W, Niu L. Talanta, 2020, 206: 120173.

doi: 10.1016/j.talanta.2019.120173
[64]
Zhao J, Yang L L, Dai Y H, Tang Y Y, Gong X Q, Du D S, Cao Y. Biosens. Bioelectron., 2018, 119: 42.

doi: 10.1016/j.bios.2018.07.063
[65]
Wang Y, Li X, Waterhouse G I N, Zhou Y L, Yin H S, Ai S Y. Talanta, 2019, 196: 197.

doi: S0039-9140(18)31302-X pmid: 30683351
[66]
Xu L H, Zhang Q Q, Hu Y F, Ma S H, Hu D D, Wang J, Rao J J, Guo Z Y, Wang S, Wu D, Liu Q, Peng J Q. Anal. Chimica Acta, 2019, 1066: 28.

doi: 10.1016/j.aca.2019.03.047
[67]
Etayash H, Jiang K R, Thundat T, Kaur K. Anal. Chem., 2014, 86(3): 1693.

doi: 10.1021/ac4034938 pmid: 24400685
[68]
Lv E, Ding J W, Qin W. Anal. Chem., 2018, 90(22): 13600.

doi: 10.1021/acs.analchem.8b03809
[69]
Jiang K R, Etayash H, Azmi S, Naicker S, Hassanpourfard M, Shaibani P M, Thakur G, Kaur K, Thundat T. Anal. Methods, 2015, 7(23): 9744.
[70]
Andrade C A S, Nascimento J M, Oliveira I S, de Oliveira C V J, de Melo C P, Franco O L, Oliveira M D L. Colloids Surf. B: Biointerfaces, 2015, 135: 833.

doi: 10.1016/j.colsurfb.2015.03.037
[71]
Silva A G Jr, Oliveira M D L, Oliveira I S, Lima-Neto R G, Sá S R, Franco O L, Andrade C A S. Sens. Actuat. B: Chem., 2018, 255: 3267.

doi: 10.1016/j.snb.2017.09.153
[72]
de Miranda J L, Oliveira M D L, Oliveira I S, Frias I A M, Franco O L, Andrade C A S. Biochem. Eng. J., 2017, 124: 108.
[73]
Hoyos-NoguÉs M, Brosel-Oliu S, Abramova N, Muñoz F X, Bratov A, Mas-Moruno C, Gil F J. Biosens. Bioelectron., 2016, 86: 377.

doi: S0956-5663(16)30606-6 pmid: 27399935
[74]
Kim J H, Cho C H, Ryu M Y, Kim J G, Lee S J, Park T J, Park J P. PLoS One, 2019, 14: 0222144.
[75]
Tara Bahadur K C, Tada S, Zhu L P, Uzawa T, Minagawa N, Luo S C, Zhao H C, Yu H H, Aigaki T, Ito Y. Chem. Commun., 2018, 54(54): 7542.

doi: 10.1039/C8CC90286K
[76]
Baek S H, Park C Y, Nguyen T P, Kim M W, Park J P, Choi C, Kim S Y, Kailasa S K, Park T J. Food Control., 2020, 114: 107225.
[77]
Matsubara T, Ujie M, Yamamoto T, Akahori M, Einaga Y, Sato T. PNAS, 2016, 113(32): 8981.

doi: 10.1073/pnas.1603609113 pmid: 27457924
[78]
Matsubara T, Ujie M, Yamamoto T, Einaga Y, Daidoji T, Nakaya T, Sato T. ACS Sens., 2020, 5(2): 431.

doi: 10.1021/acssensors.9b02126
[79]
Wang L, Zhang Y J, Wu A G, Wei G. Anal. Chim. Acta, 2017, 985: 2.
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[3] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[4] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[5] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[6] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[9] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[10] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[11] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[12] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[13] Quanfei Zhu, Jundi Hao, Jingwen Yan, Yu Wang, Yuqi Feng. FAHFAs: Biological Functions, Analysis and Synthesis [J]. Progress in Chemistry, 2021, 33(7): 1115-1125.
[14] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[15] Jianyun Lin, Shihe Luo, Chongling Yang, Ying Xiao, Liting Yang, Zhaoyang Wang. Bio-Based Polymeric Hemostatic Material and Wound Dressing [J]. Progress in Chemistry, 2021, 33(4): 581-595.