中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1721-1730 DOI: 10.7536/PC200841 Previous Articles   Next Articles

• Review •

Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols

Shumin Cheng1, Lin Du1(), Xiuhui Zhang2, Maofa Ge3   

  1. 1 Environment Research Institute, Shandong University, Qingdao 266237, China
    2 Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
    3 State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Contact: Lin Du
  • Supported by:
    National Natural Science Foundation of China(21876098); National Natural Science Foundation of China(91644214)
Richhtml ( 11 ) PDF ( 396 ) Cited
Export

EndNote

Ris

BibTeX

Aqueous aerosols coated by surface-active organics, such as sea spray aerosol(SSA), commonly possess inverse micelle structure with an aqueous core coated by a hydrophobic organic monolayer. The surface organization and chemical composition of organic films of SSAs have important influence on their physical, chemical and optical properties. Langmuir monolayers are monomolecular layers formed by the diffusion of long-chain surface-active organics with low volatility, such as fatty acids, fatty alcohols and phospholipids at the air-water interface. With Langmuir trough, the changes in surface pressure(π) along with decreasing molecular area(A) of single and mixed component monolayers at the air-water interface can be obtained. In addition, π-A isotherms provide information about the interfacial behavior of corresponding monolayers above an aqueous surface. Understanding the interfacial properties of monolayers will enable the prediction of the fate and behaviors of surfactants in the real-world SSA. This paper reviews the commonly used interfacial characterization techniques of atmospheric aerosols, established models for SSA based on Langmuir monolayer, and the implications of organic films on atmospheric behavior of SSA. Although the physical properties and morphological changes of SSA-related monolayers have been studied in depth, little attention has been paid to the interfacial changes induced by environmental factors such as reactive gases, irradiation and bioactive substances. These knowledge gaps shed light on future laboratory simulation and model research of SSA.

Contents

1 Introduction

2 Commonly used interfacial characterization techniques of atmospheric aerosols

3 Established models for SSA based on Langmuir monolayer

3.1 Single component monolayers

3.2 Mixed component monolayers

4 Implications of organic films on atmospheric behaviors of SSA

5 Conclusion and outlook

Fig.1 Schematic representation of sea to air transfer of organics via sea spray aerosols[24]
Fig. 2 The π-A isotherm of stearic acid on pure water, molecular arrangements in different phases are shown by the cartoons
Table 1 Common analytical methods of Langmuir monolayer and their advantages and disadvantages
Fig. 3 Experimental setup showing the IRRAS as well as the Langmuir trough[69]
Fig. 4 The BAM images of palmitic acid monolayer on pure water show gaseous, liquid and solid films from left to right[21]
Fig. 5 IRRAS spectra of d31-Palmitic acid monolayers(20.5 Å2 per molecule) on CaCl2 subphases of(a) low Ca2+ concentration(0 ≤ [Ca2+] ≤ 1 mmol/L) and(b) high Ca2+ concentration(10 ≤ [Ca2+] ≤ 300 mmol/L)[23]
Fig. 6 Coadsorption of saccharides in phospholipid monolayers[43]
[1]
Jayarathne T, Sultana C M, Lee C, Malfatti F, Cox J L, Pendergraft M A, Moore K A, Azam F, Tivanski A V, Cappa C D, Bertram T H, Grassian V H, Prather K A, Stone E A. Environ. Sci. Technol., 2016, 50(21): 11511.

pmid: 27709902
[2]
Cunliffe M, Engel A, Frka S, Gašparović B, Guitart C, Murrell J C, Salter M, Stolle C, Upstill-Goddard R, Wurl O. Prog. Oceanogr., 2013, 109: 104.

doi: 10.1016/j.pocean.2012.08.004
[3]
Wurl O, Ekau W, Landing W M, Zappa C J. Elementa-Sci. Anthrop., 2017, 5: 31.

doi: 10.1525/elementa.228
[4]
Ellison G B, Tuck A F, Vaida V. J. Geophys. Res., 1999, 104(D9): 11633.

doi: 10.1029/1999JD900073
[5]
Schiffer J M, Mael L E, Prather K A, Amaro R E, Grassian V H. ACS Cent. Sci., 2018, 4(12): 1617.

doi: 10.1021/acscentsci.8b00674
[6]
Casper C B, Verreault D, Adams E M, Hua W, Allen H C. J. Phys. Chem. B, 2016, 120(8): 2043.

doi: 10.1021/acs.jpcb.5b10483
[7]
Cochran R E, Laskina O, Jayarathne T, Laskin A, Laskin J, Lin P, Sultana C, Lee C, Moore K A, Cappa C D, Bertram T H, Prather K A, Grassian V H, Stone E A. Environ. Sci. Technol., 2016, 50(5): 2477.

doi: 10.1021/acs.est.5b04053
[8]
Cochran R E, Laskina O, Trueblood J V, Estillore A D, Morris H S, Jayarathne T, Sultana C M, Lee C, Lin P, Laskin J, Laskin A, Dowling J A, Qin Z, Cappa C D, Bertram T H, Tivanski A V, Stone E A, Prather K A, Grassian V H. Chem, 2017, 2(5): 655.

doi: 10.1016/j.chempr.2017.03.007
[9]
Donaldson D J, George C. Environ. Sci. Technol., 2012, 46(19): 10385.

doi: 10.1021/es301651m pmid: 22724587
[10]
Adams E M, Casper C B, Allen H C. J. Colloid Interface Sci., 2016, 478: 353.

doi: 10.1016/j.jcis.2016.06.016
[11]
de Leeuw G, Andreas E L, Anguelova M D, Fairall C W, Lewis E R, O'Dowd C, Schulz M, Schwartz S E. Rev. Geophys., 2011, 49(2): RG2001.
[12]
Reddy S K, Thiraux R, Rudd B A W, Lin L, Adel T, Joutsuka T, Geiger F M, Allen H C, Morita A, Paesani F. Chemistry, 2018, 4(7): 1629.
[13]
O'Dowd C D, De Leeuw G. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 2007, 365(1856): 1753.
[14]
Bertram T H, Cochran R E, Grassian V H, Stone E A. Chem. Soc. Rev., 2018, 47(7): 2374.

doi: 10.1039/C7CS00008A
[15]
Chingin K, Yan R H, Zhong D C, Chen H W. ACS Omega, 2018, 3(8): 8709.

doi: 10.1021/acsomega.8b01157
[16]
Cochran R E, Jayarathne T, Stone E A, Grassian V H. J. Phys. Chem. Lett., 2016, 7(9): 1692.

doi: 10.1021/acs.jpclett.6b00489
[17]
Tervahattu H, Hartonen K, Kerminen V M, Kupiainen K, Aamio P, Koskentalo T, Tuck A F, Vaida V. J. Geophys. Res., 2002, 107(D7/8): 4053.

doi: 10.1029/2000JD000282
[18]
Tervahattu H, Juhanoja J, Kupiainen K. J. Geophys. Res.: Atmos., 2002, 107(D16): 4319.

doi: 10.1029/2001JD001403
[19]
MacIntyre F. Sci. Am., 1974, 230(5): 62.

doi: 10.1038/scientificamerican0574-62
[20]
MacIntyre F. J. Geophys. Res., 1972, 77(27): 5211.

doi: 10.1029/JC077i027p05211
[21]
Adams E, Allen H. Atmosphere, 2013, 4(4): 315.

doi: 10.3390/atmos4040315
[22]
Denton J K, Kelleher P J, Johnson M A, Baer M D, Kathmann S M, Mundy C J, Wellen Rudd B A, Allen H C, Choi T H, Jordan K D. PNAS, 2019, 116(30): 14874.

doi: 10.1073/pnas.1818600116
[23]
Wellen Rudd B A, Vidalis A S, Allen H C. Phys. Chem. Chem. Phys., 2018, 20(24): 16320.

doi: 10.1039/C8CP01188E
[24]
Wolf M J, Coe A, Dove L A, Zawadowicz M A, Dooley K, Biller S J, Zhang Y, Chisholm S W, Cziczo D J. Environ. Sci. Technol., 2019, 53(3): 1139.

doi: 10.1021/acs.est.8b05150
[25]
Ruehl C R, Wilson K R. J. Phys. Chem. A, 2014, 118(22): 3952.

doi: 10.1021/jp502844g
[26]
Nozière B, Baduel C, Jaffrezo J L. Nat. Commun., 2014, 5(1): 1.
[27]
Tinel L, Rossignol S, Bianco A, Passananti M, Perrier S, Wang X M, Brigante M, Donaldson D J, George C. Environ. Sci. Technol., 2016, 50(20): 11041.

doi: 10.1021/acs.est.6b03165
[28]
Shrestha M, Luo M, Li Y M, Xiang B, Xiong W, Grassian V H. Chem. Sci., 2018, 9(26): 5716.

doi: 10.1039/c8sc01957f pmid: 30079180
[29]
Vaida V. Science, 2016, 353(6300): 650.

doi: 10.1126/science.aah4111
[30]
Mochida M, Kitamori Y, Kawamura K, Nojiri Y, Suzuki K. J. Geophys. Res., 2002, 107(D17): AAC 1.
[31]
Donaldson D J, Vaida V. Chem. Rev., 2006, 106(4): 1445.

pmid: 16608186
[32]
Davies J F, Miles R E H, Haddrell A E, Reid J P. PNAS, 2013, 110(22): 8807.

doi: 10.1073/pnas.1305277110 pmid: 23674675
[33]
Forestieri S D, Staudt S M, Kuborn T M, Faber K, Ruehl C R, Bertram T H, Cappa C D. Atmos. Chem. Phys., 2018, 18(15): 10985.

doi: 10.5194/acp-18-10985-2018
[34]
Cochran R E, Ryder O S, Grassian V H, Prather K A. Acc. Chem. Res., 2017, 50(3): 599.

doi: 10.1021/acs.accounts.6b00603
[35]
Sebastiani F, Campbell R A, Rastogi K, Pfrang C. Atmos. Chem. Phys., 2018, 18(5): 3249.

doi: 10.5194/acp-18-3249-2018
[36]
Rouvière A, Ammann M. Atmos. Chem. Phys., 2010, 10(23): 11489.

doi: 10.5194/acp-10-11489-2010
[37]
Dynarowicz-Łᶏtka P, Dhanabalan A, Oliveira O N Jr. Adv. Colloid Interface Sci., 2001, 91(2): 221.

doi: 10.1016/S0001-8686(99)00034-2
[38]
Blodgett K B, Langmuir I. Phys. Rev., 1937, 51(11): 964.

doi: 10.1103/PhysRev.51.964
[39]
Adams E M, Verreault D, Jayarathne T, Cochran R E, Stone E A, Allen H C. Phys. Chem. Chem. Phys., 2016, 18(47): 32345.

doi: 10.1039/C6CP06887A
[40]
Mendelsohn R, Brauner J W, Gericke A. Annu. Rev. Phys. Chem., 1995, 46(1): 305.

doi: 10.1146/physchem.1995.46.issue-1
[41]
Khattari Z, Sayyed M I, Qashou S I, Fasfous I, Al-Abdullah T, Maghrabi M. Chem. Phys., 2017, 490: 106.

doi: 10.1016/j.chemphys.2017.04.012
[42]
Volpati D, Aoki P H B, Alessio P, Pavinatto F J, Miranda P B, Constantino C J L, Oliveira O N Jr. Adv. Colloid Interface Sci., 2014, 207: 199.

doi: 10.1016/j.cis.2014.01.014
[43]
Burrows S M, Gobrogge E, Fu L, Link K, Elliott S M, Wang H F, Walker R. Geophys. Res. Lett., 2016, 43(15): 8306.

doi: 10.1002/grl.v43.15
[44]
Rontu N, Vaida V. J. Phys. Chem. C, 2007, 111(31): 11612.

doi: 10.1021/jp070484m
[45]
Larsen M C. J. Chem. Educ., 2014, 91(4): 597.

doi: 10.1021/ed4004854
[46]
Aston M S. Chem. Soc. Rev., 1993, 22(1): 67.

doi: 10.1039/CS9932200067
[47]
Rontu N, Vaida V. J. Phys. Chem. C, 2007, 111(27): 9975.

doi: 10.1021/jp0718395
[48]
Donaldson D J, Tuck A F, Vaida V. Phys. Chem. Chem. Phys., 2001, 3(23): 5270.

doi: 10.1039/b105215m
[49]
Zhang T, Fiamingo M, Allen H C. J. Geophys. Res. Oceans, 2018, 123(8): 5286.

doi: 10.1029/2018JC013926
[50]
Tang M J, Huang X, Lu K D, Ge M F, Li Y J, Cheng P, Zhu T, Ding A J, Zhang Y H, Gligorovski S, Song W, Ding X, Bi X H, Wang X M. Atmos. Chem. Phys., 2017, 17(19): 11727.

doi: 10.5194/acp-17-11727-2017
[51]
Zhao Y, Chen Z M, Shen X L, Zhang X. Environ. Sci. Technol., 2011, 45(8): 3317.

doi: 10.1021/es104107c pmid: 21428282
[52]
Zhang Y, Tong S R, Ge M F, Jing B, Hou S Q, Tan F, Chen Y, Guo Y C, Wu L Y. Sci. Total. Environ., 2018, 633: 1253.

doi: 10.1016/j.scitotenv.2018.03.288
[53]
Yang P, Yang H, Wang N, Du C Y, Pang S F, Zhang Y H. J. Environ. Sci., 2020, 87: 250.

doi: 10.1016/j.jes.2019.07.002
[54]
Zhao Y, Wingen L M, Perraud V, Finlayson-Pitts B J. Atmos. Chem. Phys., 2016, 16(5): 3245.

doi: 10.5194/acp-16-3245-2016
[55]
Siciliano T, Siciliano M, Malitesta C, Proto A, Cucciniello R, Giove A, Iacobellis S, Genga A. Environ. Sci. Pollut. Res., 2018, 25(24): 23929.
[56]
Varrica D, Tamburo E, Vultaggio M, di Carlo I. Int. J. Environ. Res. Public Heal., 2019, 16(14): 2507.
[57]
Coury C, Dillner A M. Atmos. Environ., 2009, 43(4): 940.

doi: 10.1016/j.atmosenv.2008.10.056
[58]
Zhang S J, Xu L, Guo X M, Huang D, Li W J. Environm. Sci., 2020, 41(5): 2017.
( 张淑佳, 徐亮, 郭新梅, 黄道, 李卫军. 环境科学, 2020, 41(5): 2017.)
[59]
Li W J, Liu L, Xu L, Zhang J, Yuan Q, Ding X K, Hu W, Fu P Q, Zhang D Z. Sci. Total. Environ., 2020, 719: 137520.

doi: 10.1016/j.scitotenv.2020.137520
[60]
Langmuir I. J. Am. Chem. Soc., 1917, 39(9): 1848.

doi: 10.1021/ja02254a006
[61]
Mohwald H. Annu. Rev. Phys. Chem., 1990, 41(1): 441.

doi: 10.1146/physchem.1990.41.issue-1
[62]
Le Calvez E, Blaudez D, Buffeteau T, Desbat B. Langmuir, 2001, 17(3): 670.

doi: 10.1021/la000224v
[63]
Gericke A, Huehnerfuss H. J. Phys. Chem., 1993, 97(49): 12899.

doi: 10.1021/j100151a044
[64]
Sung W, Kim D, Shen Y R. Curr. Appl. Phys., 2013, 13(4): 619.

doi: 10.1016/j.cap.2012.12.002
[65]
Dluhy R A, Cornell D G. J. Phys. Chem., 1985, 89(15): 3195.
[66]
Wang Y C, Du X Z, Guo L, Liu H J. J. Chem. Phys., 2006, 124(13): 134706.

doi: 10.1063/1.2185629
[67]
Adams E M, Wellen B A, Thiraux R, Reddy S K, Vidalis A S, Paesani F, Allen H C. Phys. Chem. Chem. Phys., 2017, 19(16): 10481.

doi: 10.1039/C7CP00167C
[68]
Zhang T, Cathcart M G, Vidalis A S, Allen H C. Chem. Phys. Lipids, 2016, 200: 24.

doi: S0009-3084(16)30060-3 pmid: 27335336
[69]
Cheng S M, Du L, George C. J. Geophys. Res. Atmos., 2020, 125(13): e2019JD032182.
[70]
Roldán-Carmona C, Giner-Casares J J, PÉrez-Morales M, Martín-Romero M T, Camacho L. Adv. Colloid Interface Sci., 2012, 173: 12.

doi: 10.1016/j.cis.2012.02.002
[71]
Voss L F, Bazerbashi M F, Beekman C P, Hadad C M, Allen H C. J. Geophys. Res., 2007, 112(D6): D06209.
[72]
Gilman J B, Eliason T L, Fast A, Vaida V. J. Colloid Interface Sci., 2004, 280(1): 234.

doi: 10.1016/j.jcis.2004.07.019
[73]
Sierra-Hernández M R, Allen H C. Langmuir, 2010, 26(24): 18806.

doi: 10.1021/la1032674 pmid: 21117635
[74]
Li S Y, Du L, Wei Z M, Wang W X. Sci. Total. Environ., 2017, 580: 1155.

doi: 10.1016/j.scitotenv.2016.12.072
[75]
Wellen B A, Lach E A, Allen H C. Phys. Chem. Chem. Phys., 2017, 19(39): 26551.

doi: 10.1039/C7CP04527A
[76]
Tang C Y, Huang Z S, Allen H C. J. Phys. Chem. B, 2011, 115(1): 34.

doi: 10.1021/jp1062447
[77]
Brzozowska A M, Duits M H G, Mugele F. Colloids Surf., A, 2012, 407: 38.

doi: 10.1016/j.colsurfa.2012.04.055
[78]
Li S Y, Du L, Tsona N T, Wang W X. Chemosphere, 2018, 196: 323.

doi: 10.1016/j.chemosphere.2017.12.157
[79]
Li S Y, Du L, Wang W X. Environ. Chem., 2017, 14(7): 407.
[80]
Link K A, Spurzem G N, Tuladhar A, Chase Z, Wang Z M, Wang H F, Walker R A. J. Phys. Chem. A, 2019, 123(26): 5621.

doi: 10.1021/acs.jpca.9b02255
[81]
Li S Y, Jiang X T, Roveretto M, George C, Liu L, Jiang W, Zhang Q Z, Wang W X, Ge M F, Du L. Atmos. Chem. Phys., 2019, 19(15): 9887.

doi: 10.5194/acp-19-9887-2019
[82]
Carter-Fenk K, Allen H. Atmosphere, 2018, 9(12): 503.

doi: 10.3390/atmos9120503
[83]
Li S Y, Cheng S M, Du L, Wang W X. Atmos. Environ., 2019, 200: 15.

doi: 10.1016/j.atmosenv.2018.11.052
[84]
Brzozowska A, Mugele F, Duits M. Colloids Surf. A, 2013, 433: 200.

doi: 10.1016/j.colsurfa.2013.04.062
[85]
Johansson J H, Salter M E, Acosta Navarro J C, Leck C, Nilsson E D, Cousins I T. Environ. Sci.: Processes Impacts, 2019, 21(4): 635.

doi: 10.1021/es00161a003
[86]
Gilman J B, Tervahattu H, Vaida V. Atmos. Environ., 2006, 40(34): 6606.

doi: 10.1016/j.atmosenv.2006.05.052
[87]
Griffith E C, Adams E M, Allen H C, Vaida V. J. Phys. Chem. B, 2012, 116(27): 7849.

doi: 10.1021/jp303913e
[88]
Cheng S M, Li S Y, Tsona N T, George C, Du L. Sci. Total. Environ., 2019, 671: 1161.

doi: 10.1016/j.scitotenv.2019.03.433
[89]
Li S Y, Du L, Zhang Q Z, Wang W X. Environ. Pollut., 2018, 242: 626.

doi: 10.1016/j.envpol.2018.07.043
[90]
Kang M J, Yang F, Ren H, Zhao W Y, Zhao Y, Li L J, Yan Y, Zhang Y J, Lai S C, Zhang Y Y, Yang Y, Wang Z F, Sun Y L, Fu P Q. Sci. Total. Environ., 2017, 607: 339.
[91]
Griffith E C, Guizado T R C, Pimentel A S, Tyndall G S, Vaida V. J. Phys. Chem. C, 2013, 117(43): 22341.

doi: 10.1021/jp402737n
[92]
Moore M J K, Furutani H, Roberts G C, Moffet R C, Gilles M K, Palenik B, Prather K A. Atmos. Environ., 2011, 45(39): 7462.

doi: 10.1016/j.atmosenv.2011.04.034
[93]
Cosman L M, Bertram A K. J. Phys. Chem. A, 2008, 112(20): 4625.

doi: 10.1021/jp8005469 pmid: 18444630
[94]
Zhang X L, Massoli P, Quinn P K, Bates T S, Cappa C D. J. Geophys. Res. Atmos., 2014, 119(13): 8384.

doi: 10.1002/2013JD021213
[95]
Tang I N. J. Geophys. Res., 1996, 101(D14): 19245.

doi: 10.1029/96JD03003
[96]
Harper K L, Allen H C. Langmuir, 2007, 23(17): 8925.

doi: 10.1021/la7006974
[97]
Salter M E, Hamacher-Barth E, Leck C, Werner J, Johnson C M, Riipinen I, Nilsson E D, Zieger P. Geophys. Res. Lett., 2016, 43(15): 8277.

doi: 10.1002/2016GL070275
[98]
Tang C Y, Huang Z S, Allen H C. J. Phys. Chem. B, 2010, 114(51): 17068.

doi: 10.1021/jp105472e
[99]
George C, Ammann M, D'Anna B, Donaldson D J, Nizkorodov S A. Chem. Rev., 2015, 115(10): 4218.

doi: 10.1021/cr500648z
[100]
Malfatti F, Lee C, Tinta T, Pendergraft M A, Celussi M, Zhou Y Y, Sultana C M, Rotter A, Axson J L, Collins D B, Santander M V, Anides Morales A L, Aluwihare L I, Riemer N, Grassian V H, Azam F, Prather K A. Environ. Sci. Technol. Lett., 2019, 6(3): 171.

doi: 10.1021/acs.estlett.8b00699
[101]
Rastelli E, Corinaldesi C, Dell'Anno A, Lo Martire M, Greco S, Cristina Facchini M, Rinaldi M, O'Dowd C, Ceburnis D, Danovaro R. Sci. Rep., 2017, 7(1): 11475.

doi: 10.1038/s41598-017-10563-z pmid: 28904380
[102]
Mayol E, JimÉnez M A, Herndl G J, Duarte C M, Arrieta J M. Front. Microbiol., 2014, 5: 557.

doi: 10.3389/fmicb.2014.00557 pmid: 25400625
[103]
Mayol E, Arrieta J M, JimÉnez M A, Martínez-Asensio A, Garcias-Bonet N, Dachs J, González-Gaya B, Royer S J, Benítez-Barrios V M, Fraile-Nuez E, Duarte C M. Nat. Commun., 2017, 8(1): 201.

doi: 10.1038/s41467-017-00110-9 pmid: 28779070
[104]
Schiffer J M, Luo M, Dommer A C, Thoron G, Pendergraft M, Santander M V, Lucero D, Pecora de Barros E, Prather K A, Grassian V H, Amaro R E. J. Phys. Chem. Lett., 2018, 9(14): 3839.

doi: 10.1021/acs.jpclett.8b01363 pmid: 29916254
[105]
Luo M, Dommer A C, Schiffer J M, Rez D J, Mitchell A R, Amaro R E, Grassian V H. Langmuir, 2019, 35(27): 9050.

doi: 10.1021/acs.langmuir.9b00689
[1] Rongzhi Tang, Hui Wang, Ying Liu, Song Guo. Constituents of Atmospheric Semi-Volatile and Intermediate Volatility Organic Compounds and Their Contribution to Organic Aerosol [J]. Progress in Chemistry, 2019, 31(1): 180-190.
[2] Qingyang Xi, Jinsong Liu, Ziquan Li, Kongjun Zhu, Guoan Tai, Ruogu Song. Etching Methods and Application of Molybdenum Disulfide Film [J]. Progress in Chemistry, 2018, 30(6): 847-863.
[3] Li Zhiguo, Zhang Lingling. Influence Factors on the Performance of DNA Self-Assembled Monolayers on Gold [J]. Progress in Chemistry, 2014, 26(05): 846-855.
[4]

Li Heng1,2 Wen Yongqiang2 Yang Qinglin1** Song Yanlin2**

. Organic Molecules Modified Silicon Surface [J]. Progress in Chemistry, 2008, 20(12): 1964-1971.
[5]

Guo Yan|Zhao Jianwei**

. Theoretical Studies of Nonideal Electrochemical Behavior of Self-assembled System [J]. Progress in Chemistry, 2008, 20(06): 821-827.
[6] Ni Gang,Yang Wu**,He Xiaoyan,Bo Lili,Lu Weilian. Advances in Surface Initiated Polymerization [J]. Progress in Chemistry, 2005, 17(06): 1074-1080.
[7] Ou Yangjianming**. Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers [J]. Progress in Chemistry, 2005, 17(05): 931-937.
[8] Ou Yangjianming**,Chen Dezhi. The Growth of Biomineral Crystals Modulated by Self-Assembled Monolayers [J]. Progress in Chemistry, 2005, 17(03): 563-572.
[9] . Self2Assembly Monolayers and Their Characterization [J]. Progress in Chemistry, 2005, 17(02): 203-208.
[10] Zhai Yi,Zhang Jinli,Li Wei**,Wang Yiping. Preparation and Application of the Self-Assembled Monolayers [J]. Progress in Chemistry, 2004, 16(04): 477-.
[11] Kong Desheng1,2,Wan Lijun1**,Chen Shenhao2. Application and Research Progress of Electrochemical STM in Corrosion Science [J]. Progress in Chemistry, 2004, 16(02): 204-.
[12] Yang Xuegeng1,Chen Shenhao1,2**,Ma Houyi1,Quan Zhenlan1,Li Degang1. Inhibitive Self-Assembled Monolayers on Metal Surface [J]. Progress in Chemistry, 2003, 15(02): 123-.
[13] Zhou Feng,Liu Weimin. Surface-initiated Polymerization on Inorganic Substrates and Its Use to the Fabrication of End-grafted Polymer Films [J]. Progress in Chemistry, 2002, 14(02): 141-.
[14] Lv Qing,Gong Haofei,Liu Minghua. Progress in Bolaamphiphile [J]. Progress in Chemistry, 2001, 13(03): 161-.
[15] Li Yan,Shi Zujin,Zhou Xihuang,Gu Zhennan. The Supramolecular Self -Organization of Nanoclusters [J]. Progress in Chemistry, 1999, 11(02): 148-.