中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1741-1755 DOI: 10.7536/PC200826 Previous Articles   Next Articles

• Review •

Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling

Shiying Yang1,2,3(), Junqin Liu3, Qianfeng Li3, Yang Li3   

  1. 1 The Key Laboratory of Marine Environment & Ecology, Ministry of Education,Qingdao 266100, China
    2 Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering(MEGE),Qingdao 266100, China
    3 College of Environmental Science and Engineering, Ocean University of China,Qingdao 266100, China
  • Received: Revised: Online: Published:
  • Contact: Shiying Yang
  • Supported by:
    Natural Science Foundation of Shandong Province, China(ZR2020MB093)
Richhtml ( 11 ) PDF ( 398 ) Cited
Export

EndNote

Ris

BibTeX

Zero-valent aluminum(ZVAl) possesses physical properties of good ductility and light weight, and has chemical properties of more negative redox potential. In the preparation process of new lightweight and high-strength composite materials, ZVAl has been taken preferentially as an ideal metal matrix. On the other hand, ZVAl, an excellent electronic donor, has been used for rapid hydrogen evolution and efficient removal of pollutants in the field of hydrogen production and environment remediation. Mechanical ball milling, is a novel material processing method which is simply operated and easy engineering. Furthermore, it can overcome the drawbacks of ununiform mixing and poor interface combination in the traditional preparation methods of aluminum-based metal materials. Moreover, it can destroy the dense oxide film on the surface of ZVAl, and break through the bottleneck that limits the electronic release of ZVAl. By ball milling ZVAl and grinding aids to control the grinding strength, the uniform dispersion and good interface bonding of the composites can be achieved,and a small amount of intermetallic compounds and chemically active substances are generated. As a result, the composites with excellent material properties can be obtained.Besides, the quantity of hydrogen production and the efficiency of pollutants removal could be increased through the function of the “cutter”, the mechanical chemical reaction such as displacement, carbonization or dechlorination, the change of microstructure during mechanical ball milling, and the pitting effect, the primary battery effect, the reduction of side reactions in the aqueous medium and other action mechanisms. Above all, this paper summarizes the principle of using mechanical ball milling to enhance the mechanical properties of ZVAl-based composite materials. In addition, the surface modification of ZVAl by mechanical ball milling and the mechanism of its application in hydrogen production and pollutant removal are systematically summarized. Afterward, the influence of ball milling parameters and water chemical conditions on the system are discussed. Finally, prospects of the research areas meriting for further investigation are pointed out. Supposing to promote the further development of mechanically modified ZVAl in the field of environment remediation through in-depth understanding of related fields of different disciplines.

Contents

1 Introduction

2 Enhanced mechanical properties of materials

2.1 Controlling grinding intensity

2.2 Intermetallic reaction

2.3 Formation of chemically active substances

2.4 Achievement of uniform dispersion of materials

3 Improving chemical reaction efficiency

3.1 Function of “cutter”

3.2 Mechanochemical reaction

3.3 Changes in microstructure

3.4 Pitting effect

3.5 Primary battery effect

3.6 Reducing side reaction

4 Ball milling parameters

4.1 Ball milling time

4.2 Rotating speed

4.3 Grinding aid ratio

4.4 Dopant

4.5 Ball milling atmosphere

5 Water chemical parameters

5.1 pH

5.2 Temperature

5.3 Reaction by-product

6 Conclusion and outlook

Fig. 1 XRD patterns of Al-Bi-Sn ternary composites[48]
Fig. 2 FE-SEM images of GNS/ZVAl ball milling powder with different milling time:(a, b) 1 h,(c, d) 2,h,(e, f) 3 h,(g, h) 4 h[50]
Fig. 3 FESEM micrograph of ZVAl/CNT(a,b) and ZVAlbm/CNT(c,d) for various milling times(black arrows indicate the CNT)[37]
Fig. 4 Preparation of CNT-ZVAl composite powder by chemical deposition coupled ball milling process[39]
Fig. 5 SEM images of(a) Bi-NPs@GO,(b) Bi-NPs, and(c) magnified images of Bi-NPs[55]
Fig. 6 SEM images of(a) Bi-NPs@GO/Al and(b) Bi-NPs/Al[55]
Table 1 Typical cases study on surface modification research based on zero-valent aluminum by mechanical ball milling in aqueous media
Surface modification and action mechanism Milling aid Ball milling parameters Results ref
Function of “cutter” NaCl t = 20 h, r = 270 r/min, X = 1.5 wt% The highest average hydrogen generation rate per 1 g of aluminum was achieved to be 75 mL/min. 62
KCl t = 7 h, r = 200 r/min, X = 50 wt% The amount of generated hydrogen as the amount for the sample was already close to the theoretical limit. 35
NiCl2 t = 1 h, r = 400 r/min, X = 10 mol% The hydrogen yield to be 88.8%. 63
Mechanochemical reaction NiCl2, NaBH4 t = 15 h, r = 400 r/min, X1 = 10 wt%,
X2 = 15 wt%
The mixture yields 1778 mL hydrogen/1 g mixture with 100% efficiency within 50 min. 64
Al2O3 r = 400 r/min, X = 1∶1 99.3% of HCB was degraded in the MCT process. 67
SiO2 r = 275 r/min, X = 1∶1 Only 16% of syn-DP and 22% of anti-DP remain. 68
SiO2 r = 275 r/min, X = 5∶1 Only 0.3% of syn-DP and 0.3% of anti-DP remain. 69
CaO t = 20 h, r = 600 r/min, X = 4∶1 Degradation efficiency = 93.2%. 70
Changing the
microstructure
air t = 16 h, r = 400 r/min The particles have platelet morphology and are constituted by a nanocrystalline aluminum core surrounded by a thick amorphous alumina layer of 4.5±0.5 nm. 44
SiO2 t = 60 h, r = 250 r/min, X = 50 wt% Average size of crystalline silica synthesized by mechanical activation was about 30 nm. 71
terpineol, dispersants t = 6 h, r = 200 r/min, Al = 3 mg, terpineol = 18 mL, dispersants = 1~9 mL Excellent surface coating with coating thickness ranging from 10 to 13 nm. 72
Pitting effect NaCl t = 12 h, X = 20 wt% Effectively enhanced the hydrogen generation rate of the powders. 73
TiO2 t =3 min, X = 1∶1 Exhibited higher generation rate than the others' nanocrystals at initial 12 h 74
Primary battery effect Bi, Sn t = 30 min, r = 1500 r/min, X = 10 wt% Composites had >95% hydrogen yields. 48
Sn, In t = 30 min, r = 1500 r/min, X = 10 wt% Al-Sn-In composites have hydrogen yields of >95%. 49
MWCNT t = 4 h, r = 400 r/min, X = 4∶1~15∶1 The accumulative concentration of H2O2 reached 947 mg/L in Al-CNTs/O2 system.
The removal efficiencies of TOC and total phosphorus were 68.35% and 73.27%.
43
Reducing side
reaction
CaH2, NiCl2 t = 3 h, r = 400 r/min, X1 = 10 mol%,
X2 = 10 mol%
Sample shows a hydrogen yield of 92.1% and mHGR(maximum hydrogen generation rate) of 1566.3 mL·min-1·g-1. 63
AlCl3 t = 5 h, r = 250 r/min, X = 5 wt% The mixture shows the best hydrolysis performances with 16% of the theoretical H2 volume reached in 1 h. 61
Bi, GO t = 4 h, r = 800 r/min, X = 10 wt% The hydrogen productions per gram of the prepared composite were about 960 mL. 55
polytetrafluoroethylene t = 5 h, r = 800 r/min, X = 4 wt%~10 wt% PTFE could significantly promote the reaction property of aluminum with water steam. 76
organic fluoride, Bi t = 5 h, r = 800 r/min, X = 10 wt% The sample Al-2.5%OF-7.5%Bi exhibits the maximum hydrogen generation rate of 5622 mL·min-1·g-1 at 50 ℃. 77
Fig. 7 SEM micrograph of aluminum powder milled with salt. Inset is the crystal structure of sodium chloride[62]
Fig. 8 SEM micrograph of aluminum powder milled with titanium dioxide[74]
Fig. 9 Backscatter SEM micrograph of the surface of ZVAl-Sn-In(a) and the corresponding EDS mappings for Al(b), Sn(c), and In(d)[49]
Fig. 10 Schematic illustration of in situ generation of H2O2 using MWCNT-ZVAl/O2 system[43]
Fig. 11 SEM images of morphology evolution of(a~c) LSBM and(d~f) HSBM CNT/ZVAl powders[52]
Fig. 12 SEM images of CNT-ZVAl composite powders having different weight percentages of CNTs:(a, b) 1 wt%,(c, d) 3 wt%,(e, f) 5 wt%,(g, h) 7 wt%[39]
Fig. 13 Effect of SA dosage on H2 evolution of mZVAl before and after ball milling.(a) reaction for 30 h,(b) reaction for 180 h[23]
Fig. 14 Ball milling atmosphere conditions on Cr(Ⅵ) removal by BM-mZVAl[24]
[1]
Lien H L, Yu C C, Lee Y C. Chemosphere, 2010, 80(8): 888.
[2]
Fu F L, Han W J, Cheng Z H, Tang B. Desalination Water Treat., 2016, 57(12): 5592.

doi: 10.1080/19443994.2015.1006259
[3]
Yang S Y, Zheng D, Chang S Y, Shi C. Prog. Chem., 2016,(05):754.
( 杨世迎, 郑迪, 常书雅, 石超. 化学进展, 2016,(05):754.)
[4]
Yang S Y, Zhang Y X, Zheng D, Xin J. Prog. Chem., 2017,(08):879.
( 杨世迎, 张艺萱, 郑迪, 辛佳. 化学进展, 2017,(08):879.)
[5]
Yuan C, Li L, Sun Y L, Wang B D, Xu H, Wang Y. R. Environm. Sci., 2016, 29(07):1067.
( 袁超, 李磊, 孙应龙, 王邦达, 徐辉, 王毅. 环境科学研究, 2016, 29(07):1067.)
[6]
Lin C J, Wang S L, Huang P M, Tzou Y M, Liu J C, Chen C C, Chen J H, Lin C. Water Res., 2009, 43(20): 5015.

doi: 10.1016/j.watres.2009.08.015 pmid: 19729183
[7]
Jiang B, Xin S S, Gao L, Luo S Y, Xue J L, Wu M B. Chem. Eng. J., 2017, 308: 588.

doi: 10.1016/j.cej.2016.09.098
[8]
Lin K Y A, Lin C H. Chem. Eng. J., 2016, 297: 19.

doi: 10.1016/j.cej.2016.03.136
[9]
Lin K Y A, Lin J Y, Lien H L. Chemosphere, 2017, 172: 325.

doi: 10.1016/j.chemosphere.2017.01.040
[10]
Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189(1/2): 76.

doi: 10.1016/j.jhazmat.2011.02.001
[11]
Huang C C, Lo S L, Lien H L. Chem. Eng. J., 2015, 273: 413.

doi: 10.1016/j.cej.2015.03.064
[12]
Chen L H, Huang C C, Lien H L. Chemosphere, 2008, 73(5): 692.

doi: 10.1016/j.chemosphere.2008.07.005 pmid: 18701127
[13]
Zhang H H, Cao B P, Liu W P, Lin K D, Feng J. J. Environ. Sci., 2012, 24(2): 314.
[14]
Wang A Q, Guo W L, Hao F F, Yue X X, Leng Y Q. Ultrason. Sonochemistry, 2014, 21(2): 572.

doi: 10.1016/j.ultsonch.2013.10.015
[15]
Cai M Q, Wei X Q, Song Z J, Jin M C. Ultrason. Sonochemistry, 2015, 22: 167.
[16]
Wu C C, Hus L C, Chiang P N, Liu J C, Kuan W H, Chen C C, Tzou Y M, Wang M K, Hwang C E. Water Res., 2013, 47(7): 2583.

doi: 10.1016/j.watres.2013.02.024 pmid: 23497977
[17]
Cheng Z H, Fu F L, Dionysiou D D, Tang B. Water Res., 2016, 96: 22.
[18]
Fan J H, Wang H W, Ma L M. Environ. Sci. Pollut. Res., 2016, 23(16): 16686.

doi: 10.1007/s11356-016-6628-y
[19]
Fan J H, Liu X, Ma L M. Chem. Eng. J., 2015, 263: 71.

doi: 10.1016/j.cej.2014.10.082
[20]
Cheng Z H, Fu F L, Pang Y S, Tang B, Lu J W. Chem. Eng. J., 2015, 260: 284.

doi: 10.1016/j.cej.2014.09.012
[21]
Arslan-Alaton I, Olmez-Hanci T, Khoei S, Fakhri H. Catal. Today, 2017, 280: 199.

doi: 10.1016/j.cattod.2016.04.039
[22]
Yang B, Deng J P, Wei L Y, Han Y N, Yu G, Deng S B, Zhu C Z, Duan H B, Zhuo Q F. Chem. Eng. J., 2018, 333: 613.
[23]
Ren T F, Yang S Y, Wu S, Wang M Q, Xue Y C. Chem. Eng. J., 2019, 374: 100.

doi: 10.1016/j.cej.2019.05.172
[24]
Zhang Y X, Yang S Y, Zhang Y Q, Wu S, Xin J. Chem. Eng. J., 2018, 353: 760.

doi: 10.1016/j.cej.2018.07.174
[25]
Mohan M, Subramanian S, Angelo P C. Trans. Indian Ceram. Soc., 2011, 70(3): 125.

doi: 10.1080/0371750X.2011.10600158
[26]
Zhang G Y, Zha W S, Chen X L, Yan J. Powder Metall. Technol., 2018,(04):315.
( 张桂银, 查五生, 陈秀丽, 严峻. 粉末冶金技术, 2018,(04):315.)
[27]
Wu S, Yang S Y, Liu S J, Zhang Y X, Ren T F, Zhang Y Q. J. Colloid Interface Sci., 2020, 560: 260.
[28]
Estrada-Guel I, Carreño-Gallardo C, Martínez-Sánchez R. Microsc. Microanal., 2012, 18(S2): 1566.

doi: 10.1017/S1431927612009683
[29]
Liu Z Y, Xu S J, Xiao B L, Xue P, Wang W G, Ma Z Y. Compos. A: Appl. Sci. Manuf., 2012, 43(12): 2161.

doi: 10.1016/j.compositesa.2012.07.026
[30]
Streletskii A N, Kolbanev I V, Borunova A B, Butyagin P Y. J. Mater. Sci., 2004, 39(16/17): 5175.

doi: 10.1023/B:JMSC.0000039205.46608.1a
[31]
Chen X Y, Zhao Z W, Liu X H, Hao M M, Chen A L, Tang Z Y. J. Power Sources, 2014, 254: 345.

doi: 10.1016/j.jpowsour.2013.12.113
[32]
Gai W Z, Liu W H, Deng Z Y, Zhou J G. Int. J. Hydrog. Energy, 2012, 37(17): 13132.

doi: 10.1016/j.ijhydene.2012.04.025
[33]
Grosjean M H, RouÉ L. J. Alloys Compd., 2006, 416(1/2): 296.

doi: 10.1016/j.jallcom.2005.09.008
[34]
Jia Y Y, Shen J, Meng H X, Dong Y M, Chai Y J, Wang N. J. Alloys Compd., 2014, 588: 259.

doi: 10.1016/j.jallcom.2013.11.058
[35]
Razavi-Tousi S S, Szpunar J A. J. Alloys Compd., 2016, 679: 364.

doi: 10.1016/j.jallcom.2016.04.038
[36]
Ayodele O O, Adegbenjo A O, Awotunde M A, Akinwamide S O, Shongwe M B, Olubambi P A. Mater. Today: Proc., 2020, 28: 745.
[37]
Jargalsaikhan B, Bor A, Lee J, Choi H. Adv. Powder Technol., 2020, 31(5): 1957.

doi: 10.1016/j.apt.2020.02.031
[38]
Yunusov F A, Larionova T V, Bobrynina E V, Ma T J, Tolochko O V. Mater. Today, 2020, 30: 640.
[39]
Zhang Y P, Wang Q, Ramachandran C S. Diam. Relat. Mater., 2020, 104: 107748.

doi: 10.1016/j.diamond.2020.107748
[40]
Razavi-Tousi S S, Szpunar J A. Int. J. Hydrog. Energy, 2013, 38(2): 795.

doi: 10.1016/j.ijhydene.2012.10.106
[41]
Razavi-Tousi S S, Szpunar J A. Powder Technol., 2015, 284: 149.

doi: 10.1016/j.powtec.2015.06.035
[42]
Dupiano P, Stamatis D, Dreizin E L. Int. J. Hydrog. Energy, 2011, 36(8): 4781.

doi: 10.1016/j.ijhydene.2011.01.062
[43]
Tan N, Yang Z, Gong X B, Wang Z R, Fu T, Liu Y. Sci. Total. Environ., 2019, 650: 2567.

doi: 10.1016/j.scitotenv.2018.09.353
[44]
AndrÉ B, Coulet M V, Esposito P H, Rufino B, Denoyel R. Mater. Lett., 2013, 110: 108.

doi: 10.1016/j.matlet.2013.07.101
[45]
Stamatis D, Jiang Z, Hoffmann V K, Dreizin M S E L, Alinejad B. Combust. Sci. Technol., 2008, 181(1): 20.
[46]
Umbrajkar S, Schoenitz M, Dreizin E. Prop., Explos., Pyrotech., 2006, 31(5): 382.
[47]
Prosviryakov A S, Shcherbachev K D, Tabachkova N Y. Mater. Charact., 2017, 123: 173.

doi: 10.1016/j.matchar.2016.11.028
[48]
du Preez S P, Bessarabov D G. Int. J. Hydrog. Energy, 2019, 44(39): 21896.

doi: 10.1016/j.ijhydene.2019.06.154
[49]
du Preez S P, Bessarabov D G. Int. J. Hydrog. Energy, 2018, 43(46): 21398.
[50]
Yu Z H, Yang W S, Zhou C, Zhang N B, Chao Z L liu H, Cao Y F, Sun Y, Shao P Z, Wu G H. Carbon, 2019, 141: 25.
[51]
Ogawa F, Yamamoto S, Masuda C. Mater. Sci. Eng. A, 2018, 711: 460.

doi: 10.1016/j.msea.2017.11.077
[52]
Xu R, Tan Z Q, Xiong D B, Fan G L, Guo Q, Zhang J, Su Y S, Li Z Q, Zhang D. Compos. A: Appl. Sci. Manuf., 2017, 96: 57.

doi: 10.1016/j.compositesa.2017.02.017
[53]
Zhao Z Y, Bai P K, Misra R D K, Dong M Y, Guan R G, Li Y J, Zhang J X, Tan L, Gao J F, Ding T, Du W B, Guo Z H. J. Alloys Compd., 2019, 792: 203.

doi: 10.1016/j.jallcom.2019.04.007
[54]
Thomas S, Pillari L K, Umasankar V, Pious J. Mater. Today: Proc., 2019, 18: 4058.
[55]
Xiao F, Yang R J, Li J M. Int. J. Hydrog. Energy, 2020, 45(11): 6082.

doi: 10.1016/j.ijhydene.2019.12.105
[56]
PÉrez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, Estrada-Guel I, Martínez-Sánchez R. J. Alloys Compd., 2014, 615: S578.

doi: 10.1016/j.jallcom.2014.01.225
[57]
Rashad M, Pan F S, Zhang J Y, Asif M. J. Alloys Compd., 2015, 646: 223.

doi: 10.1016/j.jallcom.2015.06.051
[58]
Xie Y M, Huang Y X, Wang F F, Meng X C, Li J C, Dong Z B, Cao J. J. Alloys Compd., 2020, 823: 153741.

doi: 10.1016/j.jallcom.2020.153741
[59]
Sha J J, Lv Z Z, Lin G Z, Dai J X, Zu Y F, Xian Y Q, Zhang W, Cui D, Yan C L. Mater. Lett., 2020, 262: 127024.

doi: 10.1016/j.matlet.2019.127024
[60]
Mousavian R T, Behnamfard S, Khosroshahi R A, Zavašnik J, Ghosh P, Krishnamurthy S, Heidarzadeh A, Brabazon D. Mater. Sci. Eng. A, 2020, 771: 138639.
[61]
Al Bacha S, Zakhour M, Nakhl M, Bobet J L. Int. J. Hydrog. Energy, 2020, 45(11): 6102.

doi: 10.1016/j.ijhydene.2019.12.162
[62]
Alinejad B, Mahmoodi K. Int. J. Hydrog. Energy, 2009, 34(19): 7934.

doi: 10.1016/j.ijhydene.2009.07.028
[63]
Liu Y, Wang X H, Liu H Z, Dong Z H, Li S Q, Ge H W, Yan M. Energy, 2015, 84: 714.

doi: 10.1016/j.energy.2015.03.035
[64]
Fan M Q, Liu S, Sun W Q, Fei Y, Pan H, Lv C J, Chen D, Shu K Y. Int. J. Hydrog. Energy, 2011, 36(24): 15673.

doi: 10.1016/j.ijhydene.2011.08.114
[65]
Chen C, Lan B X, Liu K, Wang H B, Guan X, Dong S J, Luo P. J. Alloys Compd., 2019, 808: 151733.
[66]
Deng Z Y, Tang Y B, Zhu L L, Sakka Y, Ye J H. Int. J. Hydrog. Energy, 2010, 35(18): 9561.

doi: 10.1016/j.ijhydene.2010.07.027
[67]
Deng S S, Kang S G, Feng N N, Zhu J X, Yu B, Xie X F, Chen J. J. Hazard. Mater., 2017, 333: 116.

doi: 10.1016/j.jhazmat.2017.03.022
[68]
Wang H Z, Huang J, Zhang K L, Yu Y F, Liu K, Yu G, Deng S B, Wang B. J. Hazard. Mater., 2014, 264: 230.

doi: 10.1016/j.jhazmat.2013.10.075
[69]
Wang H Z, Huang J, Zhang S Y, Xu Y, Zhang K L, Liu K, Cao Z G, Yu G, Deng S B, Wang Y J, Wang B. Chem. Eng. J., 2016, 292: 98.

doi: 10.1016/j.cej.2016.02.011
[70]
Chen Z L, Mao Q J, Lu S Y, Buekens A, Xu S X, Wang X, Yan J H. Chemosphere, 2017, 180: 130.

doi: 10.1016/j.chemosphere.2017.04.004
[71]
Borouni M, Niroumand B, Maleki A. J. Solid State Chem., 2018, 263: 208.

doi: 10.1016/j.jssc.2018.04.014
[72]
Kim H G, Park J I, Lee G H. Curr. Appl. Phys., 2013, 13(7): 1218.

doi: 10.1016/j.cap.2013.03.019
[73]
Yolcular S, Karaoglu S. Energy Sources A: Recovery Util. Environ. Eff., 2017, 39(18): 1919.

doi: 10.1080/15567036.2017.1390009
[74]
Wang H W, Chung H W, Teng H T, Cao G Z. Int. J. Hydrog. Energy, 2011, 36(23): 15136.

doi: 10.1016/j.ijhydene.2011.08.077
[75]
Fan M Q, Sun L X, Xu F. Renew. Energy, 2011, 36(2): 519.

doi: 10.1016/j.renene.2010.07.006
[76]
Xiao F, Yang R J, Li J M. J. Alloys Compd., 2018, 761: 24.

doi: 10.1016/j.jallcom.2018.05.087
[77]
Xiao F, Yang R J, Li J M. Energy, 2019, 170: 159.

doi: 10.1016/j.energy.2018.12.135
[78]
Zhang B Y, Huang C, Yan S, Li Y C, Cheng Y. Appl. Surf. Sci., 2013, 286: 91.

doi: 10.1016/j.apsusc.2013.09.026
[79]
Fan M Q, Sun L X, Xu F. Energy Convers. Manag., 2010, 51(3): 594.

doi: 10.1016/j.enconman.2009.11.005
[80]
Zhang Z M, Wang N, Zhu L H, Lv H, Dong X L, Chai H J, Tang H Q. J. Environ. Chem. Eng., 2017, 5(1): 915.
[81]
Okoro A M, Machaka R, Lephuthing S S, Awotunde M A, Oke S R, Falodun O E, Olubambi P A. J. Alloys Compd., 2019, 785: 356.

doi: 10.1016/j.jallcom.2019.01.174
[82]
Liu Y, Wang X H, Liu H Z, Dong Z H, Li S Q, Ge H W, Yan M. Energy, 2014, 72: 421.

doi: 10.1016/j.energy.2014.05.060
[83]
Liu S, Fan M Q, Wang C, Huang Y X, Chen D, Bai L Q, Shu K Y. Int. J. Hydrog. Energy, 2012, 37(1): 1014.
[84]
Czech E, Troczynski T. Int. J. Hydrog. Energy, 2010, 35(3): 1029.

doi: 10.1016/j.ijhydene.2009.11.085
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[5] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[6] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[7] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[8] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[9] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[10] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[11] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[12] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[13] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[14] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[15] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.