中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (3): 462-470 DOI: 10.7536/PC200567 Previous Articles   Next Articles

• Review •

Ion-Conducting Membrane for Vanadium Redox Flow Batteries

Feiran Wang1, Fengjing Jiang1,*()   

  1. 1 Institute of Fuel Cell, School of Mechanical Engineering, Shanghai Jiao Tong University,Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Contact: Fengjing Jiang
  • Supported by:
    the Key Research and Develop Project of Hainan Province(ZDYF2019004)
Richhtml ( 61 ) PDF ( 1299 ) Cited
Export

EndNote

Ris

BibTeX

With the continuous development of renewable energy technology, vanadium redox flow battery, as a large-scale energy storage device with great development prospects, has widely drawn attention of domestic and foreign scholars. Ion-conducting membrane is one of the important components of vanadium redox flow battery, which has a key influence on the performance, life time and cost of the battery. Based on the research work reported domestically and abroad, this review reports in detail the research and application progress as well as the technical problems of ion-conducting membrane for vanadium redox flow battery. In addition, some new developments of ion-conducting membrane for vanadium redox flow battery are introduced.

Contents

1 Introduction

2 Performance requirements of ion?conducting membrane

3 Perfluorosulfonic acid ion exchange membrane

3.1 Modification of inorganic particles

3.2 Polymer blending

3.3 Porous matrix filling

4 Partial fluorination ion exchange membrane

5 Non?fluoride ion exchange membrane

6 Porous ion?conducting membrane

7 Conclusion and prospect

Fig.1 Diagram of structure of vanadium redox flow battery
Fig.2 Illustration of the formation process of porous SPES membrane[43]
Fig.3 Scheme of preparation of SPES/S-ZrO2 composite membranes[58]
Fig.4 Diagram of the preparation process of PVDF ion-conducting membranes[34]
Table 1 Battery performance of different ion-conducting membranes
[1]
Ding C , Zhang H M , Li X F , Liu T , Xing F. J. Phys. Chem. Lett., 2013, 4(8): 1281.
[2]
Ponce de LeÓn C, Frías-Ferrer A , González-García J , Szánto D A , Walsh F C. J. Power Sources, 2006, 160(1): 716.
[3]
Wang C X , Yang Z , Wang Y R , Zhao P Y , Yan W , Zhu G Y , Ma L B , Yu B , Wang L , Li G G , Liu J , Jin Z. ACS Energy Lett., 2018, 3(10): 2404.
[4]
Yan W , Wang C X , Tian J Q , Zhu G Y , Ma L B , Wang Y R , Chen R P , Hu Y , Wang L , Chen T , Ma J , Jin Z. All-polymer particulate slurry batteries. Nat. Commun., 2019, 10(1): 1.
[5]
Wang C X , Li X , Yu B , Wang Y R , Yang Z , Wang H Z , Lin H N , Ma J , Li G G , Jin Z. ACS Energy Lett., 2020, 5(2): 411.
[6]
Kear G , Shah A A , Walsh F C. Int. J. Energy Res., 2012, 36(11): 1105.
[7]
Li X F , Zhang H M , Mai Z S , Zhang H Z , Vankelecom I. Energy Environ. Sci., 2011, 4(4): 1147.
[8]
Liao W N , Jiang F J , Zhang Y , Zhou X J , He Z Q. Renewable energy, 2020, 152: 1310.
[9]
Li Y , Xu T W. Journal of Chemical Industry and Engineering, 2015, 9: 37.
( 李彦,徐铜文. 化工学报, 2015, 9: 37.).
[10]
Wang B G. Membrane Science and Technology, 2020, 40(1): 178.
( 王保国 膜科学与技术, 2020, 40(1): 178.).
[11]
Mauritz K A , Moore R B. Chem. Rev., 2004, 104(10): 4535.
[12]
Kusoglu A , Weber A Z. Chem. Rev., 2017, 117(3): 987.
[13]
Shi Y , Eze C K , Xiong B Y , He W D , Zhang H , Lim T M , Ukil A , Zhao J Y. Appl. Energy, 2019, 238: 202.
[14]
Jiang B , Wu L T , Yu L H , Qiu X P , Xi J Y. J. Membr. Sci., 2016, 510: 18.
[15]
Jiang F J , Zhang Y , Tong Y J , Yu Q C , Hu M R. Polym. Test., 2017, 59: 423.
[16]
Xi J Y , Wu Z H , Qiu X P , Chen L Q. J. Power Sources, 2007, 166(2): 531.
[17]
Teng X G , Zhao Y T , Xi J Y , Wu Z H , Qiu X P , Chen L Q. J. Power Source, 2009, 189: 1240.
[18]
Teng X G , Zhao Y T , Xi J Y , Wu Z H , Qiu X P , Chen L Q. . J. Power Sources, 2009, 341: 149.
[19]
Sang S B , Wu Q M , Huang K L. J. Membr. Sci., 2007, 3051/2: 118.
[20]
Shul Y G , Chu Y H. Sci. Adv. Mater., 2014, 6(7): 1445.
[21]
Hossain S I , Aziz M A , Shanmugam S. ACS Sustainable Chem. Eng., 2020, 8(4): 1998.
[22]
grosse Austing J , Nunes Kirchner C , Komsiyska L , Wittstock G. J. Membr. Sci., 2016, 510: 259.
[23]
Ma J , Wang S J , Peng J , Yuan J , Yu C H , Li J Q , Ju X C , Zhai M L. Eur. Polym. J., 2013, 49(7): 1832.
[24]
Mai Z S , Zhang H M , Li X F , Xiao S H , Zhang H Z. J. Power Sources, 2011, 196(13): 5737.
[25]
Li L Y , Kim S , Wang W , Vijayakumar M , Nie Z M , Chen B W , Zhang J L , Xia G G , Hu J Z , Graff G , Liu J , Yang Z G. Adv. Energy Mater., 2011, 1(3): 394.
[26]
Schwenzer B , Zhang J L , Kim S , Li L Y , Liu J , Yang Z G. ChemSusChem, 2011, 4(10): 1388.
[27]
Xie C X , Liu Y , Lu W J , Zhang H M , Li X F. Energy Environ. Sci., 2019, 12(6): 1834.
[28]
Darling R M , Gallagher K G , Kowalski J A , Ha S , Brushett F R. Energy Environ. Sci., 2014, 7(11): 3459.
[29]
Luo X L , Lu Z Z , Xi J Y , Wu Z H , Zhu W T , Chen L Q , Qiu X P. J. Phys. Chem. B, 2005, 109(43): 20310.
[30]
Qiu J Y , Zhai M L , Chen J H , Wang Y , Peng J , Xu L , Li J Q , Wei G S. J. Membr. Sci., 2009, 3421/2: 215.
[31]
Ling L , Xiao M , Han D M , Ren S , Wang S J , Meng Y Z. J. Membr. Sci., 2019, 585: 230.
[32]
Lai Y M , Wan L , Wang B G. Membranes, 2019, 9(7): 89.
[33]
Lee W , Jung M , Serhiichuk D , Noh C , Gupta G , Harms C , Kwon Y , Henkensmeier D. J. Membr. Sci., 2019, 591: 117333.
[34]
Xue R , Jiang F J , Wang F R , Zhou X J. J. Power Sources, 2020, 449: 227475.
[35]
Summers G J , Kasiama M G , Summers C A. Polym. Int., 2016, 65(7): 798.
[36]
Sun C Y , Zhang H , Luo X D , Chen N. Ionics, 2019, 25(9): 4219.
[37]
Li J C , Yuan X D , Liu S Q , He Z , Zhou Z , Li A K. ACS Appl. Mater. Interfaces, 2017, 9(38): 32643.
[38]
Ding L M , Song X P , Wang L H , Zhao Z P. J. Membr. Sci., 2019, 578: 126.
[39]
Liu J M , Yu L W , Cai X K , Khan U , Cai Z Y , Xi J Y , Liu B L , Kang F Y. ACS Nano, 2019: acsnano. 8b08680.
[40]
Ye J Y , Cheng Y H , Sun L D , Ding M , Wu C , Yuan D , Zhao X L , Xiang C J , Jia C K. J. Membr. Sci., 2019, 572: 110.
[41]
Xia Y F , Liu B , Wang Y H. J. Power Sources, 2019, 433: 126680.
[42]
Song X P , Ding L M , Wang L H , He M , Han X T. Electrochimica Acta, 2019, 295: 1034.
[43]
Zhou X J , Xue R , Zhong Y G , Zhang Y , Jiang F J. J. Membr. Sci., 2020, 595: 117614.
[44]
Hu M , Ding L , Shehzad M A , Ge Q Q , Liu Y H , Yang Z J , Wu L , Xu T W. J. Membr. Sci., 2019, 585: 150.
[45]
Leung P K , Xu Q , Zhao T S , Zeng L , Zhang C. Electrochimica Acta, 2013, 105: 584.
[46]
Ren J , Dong Y C , Dai J C , Hu H L , Zhu Y M , Teng X G. J. Membr. Sci., 2017, 544: 186.
[47]
Jung M S J , Parrondo J , Arges C G , Ramani V. J. Mater. Chem. A, 2013, 1(35): 10458.
[48]
Chen Y , Liu Z C , Lin M J , Lin Q L , Tong B H , Chen D Y. Sci. China Chem., 2019, 62(4): 479.
[49]
Si J J , Lv Y , Lu S F , Xiang Y. J. Power Sources, 2019, 428: 88.
[50]
Ma Y J , Li L , Ma L L , Qaisrani N A , Gong S T , Li P Y , Zhang F X , He G H. J. Membr. Sci., 2019, 586: 98.
[51]
Zhang H Q , Yan X M , Gao L , Hu L , Ruan X H , Zheng W J , He G H. ACS Appl. Mater. Interfaces, 2019, 11(5): 5003.
[52]
Oldenburg F J , Schmidt T J , Gubler L. J. Power Sources, 2017, 368: 68.
[53]
Chen D J , Chen X L , Ding L F , Li X F. J. Membr. Sci., 2018, 553: 25.
[54]
Wang L , Yu L H , Mu D , Yu L W , Wang L , Xi J Y. J. Membr. Sci., 2018, 552: 167.
[55]
Kim S , Tighe T B , Schwenzer B , Yan J L , Zhang J L , Liu J , Yang Z G , Hickner M A. J. Appl. Electrochem., 2011, 41(10): 1201.
[56]
Xi J Y , Jiang B , Yu L H , Liu L. J. Membr. Sci., 2017, 522: 45.
[57]
Yuan Z Z , Li X F , Hu J B , Xu W X , Cao J Y , Zhang H M. Phys. Chem. Chem. Phys., 2014, 16(37): 19841.
[58]
Zhang Y , Zhou X J , Xue R , Yu Q C , Jiang F J , Zhong Y G. Int. J. Hydrog. Energy, 2019, 44(12): 5997.
[59]
Liu S , Sang X X , Wang L H , Zhang J L , Song J L , Han B X. Electrochimica Acta, 2017, 257: 243.
[60]
Zhang Y , Zhong Y G , Bian W J , Liao W N , Zhou X J , Jiang F J. Int. J. Hydrog. Energy, 2020, 45(16): 9803.
[61]
Luo T , David O , Gendel Y , Wessling M. J. Power Sources, 2016, 312: 45.
[62]
Shi M L , Liu L , Tong Y J , Huang L K , Li W X , Xing W H. J. Appl. Polym. Sci., 2019, 136(28): 47752.
[63]
Zhang H Z , Zhang H M , Li X F , Mai Z S , Zhang J L. Energy Environ. Sci., 2011, 4(5): 1676.
[64]
Cao J Y , Zhang H M , Xu W X , Li X F. J. Power Sources, 2014, 249: 84.
[65]
Wei W P , Zhang H M , Li X F , Zhang H Z , Li Y , Vankelecom I. Phys. Chem. Chem. Phys., 2013, 15(6): 1766.
[66]
Qiao L , Zhang H M , Lu W J , Xiao C H , Fu Q , Li X F , Vankelecom I F J. Nano Energy, 2018, 54: 73.
[67]
Lu W J , Yuan Z Z , Zhao Y Y , Li X F , Zhang H M , Vankelecom I F J. Energy Environ. Sci., 2016, 9(7): 2319.
[68]
Zhang F X , Zhang H M , Qu C. ChemSusChem, 2013, 6(12): 2290.
[69]
Lu W J , Yuan Z Z , Li M R , Li X F , Zhang H M , Vankelecom I. Adv. Funct. Mater., 2017, 27(4): 1604587.
[70]
Zhao Y Y , Zhang H M , Xiao C H , Qiao L , Fu Q , Li X F. Nano Energy, 2018, 48: 353.
[71]
Dai Q , Lu W J , Zhao Y Y , Zhang H M , Zhu X X , Li X F. J. Membr. Sci., 2020, 595: 117569.
[72]
Lu W J , Shi D Q , Zhang H M , Li X F. Energy Storage Mater., 2019, 17: 325.
[73]
Chen D J , Li D D , Li X F. J. Power Sources, 2017, 353: 11.
[74]
Li B Y , Wang B G , Liu Z H , Qing G. J. Membr. Sci., 2016, 517: 111.
[1] Qingbai Chen, Yu Liu, Jinli Zhao, Pengfei Li, Jianyou Wang. Emerging Ion Exchange Membrane Process-Based Zero Liquid Discharge Technology for Saline Wastewater [J]. Progress in Chemistry, 2019, 31(12): 1669-1680.
[2] Wang Gang, Chen Jinwei, Zhu Shifu, Zhang Jie, Liu Xiaojiang, Wang Ruilin. Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2015, 27(10): 1343-1355.
[3] Wang Gang, Chen Jinwei, Wang Xueqin, Tian Jing, Liu Xiaojiang, Wang Ruilin. Electrolyte for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2013, 25(07): 1102-1112.
[4] . Preparation and Applications of Hybrid Ion Exchange Membranes [J]. Progress in Chemistry, 2010, 22(10): 2003-2013.
[5] . Membranes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2010, 22(0203): 384-387.
[6] Yaping Zhang Tongwen Xu . Development of the Membrane Potential Across Charged Membranes [J]. Progress in Chemistry, 2006, 18(12): 1592-1598.