中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1729-1744 DOI: 10.7536/PC200529 Previous Articles   Next Articles

Discovery and Typical Advances of Chiral Amino Amide Catalysts

Jie Yu2, Liu-Zhu Gong1,**()   

  1. 1. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
    2. Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
  • Online: Published:
  • Contact: Liu-Zhu Gong
  • Supported by:
    the National Natural Science Foundation of China(21831007)
Richhtml ( 43 ) PDF ( 1143 ) Cited
Export

EndNote

Ris

BibTeX

Since L-prolinamide was revealed to have high capacity to catalyze asymmetric aldol reaction, great advances have been made on the design of chiral amino amide catalysts and their applications in asymmetric catalysis. In particular, the “enamine-double hydrogen-bonding activation mode” has turned out to be a general concept for the proliferation of structurally diverse range of organocatalysts. This review mainly describes asymmetric reactions catalyzed by chiral amino amides containing single hydrogen-bonding donor, double hydrogen-bonding donors and multiple hydrogen-bonding donors, including enantioselective direct aldol reaction, Mannich reaction, Michael addition reaction, cycloaddition reaction, tandem cyclization reaction, Biginelli reaction and others.

Contents

1 Introduction

2 Chiral amino amide catalysts without hydrogen-bonding donor

3 Chiral amino amide catalysts with single hydrogen-bonding donor

3.1 Asymmetric direct aldol reaction

3.2 Asymmetric Mannich reaction

3.3 Asymmetric Michael addition

3.4 Asymmetric cascade cyclization

3.5 Asymmetric cycloaddition

3.6 Miscellaneous reactions

4 Chiral amino amide catalysts with double hydrogen-bonding donors

4.1 Asymmetric direct aldol reaction

4.2 Asymmetric Michael addition

4.3 Miscellaneous reactions

5 Chiral amino amide catalysts with multiple hydrogen-bonding donors

6 Conclusion and outlook

Scheme 2 Asymmetric direct aldol reaction catalyzed by L-prolinamides 6[6,7,8]
Scheme 3 Asymmetric Michael addition/aldol condensation cascade enabled by L-prolinamide 9[18]
Scheme 4 Asymmetric direct aldol reaction catalyzed by L-prolinamides 5a~5j[7]
Scheme 5 Asymmetric direct aldol reaction with acetone catalyzed by prolinamides[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]
Scheme 6 Asymmetric direct aldol reaction with cyclic ketones catalyzed by amino amides[35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]
Scheme 7 Asymmetric direct aldol reaction with isatins catalyzed by amino amides[51,52,53,54,55,56]
Scheme 8 Other types of asymmetric direct aldol reactions catalyzed by amino amides[57,58,59,60,61,62]
Scheme 9 Asymmetric Mannich reaction catalyzed by prolinamides[20,63,64]
Scheme 10 Asymmetric intramolecular Michael addition catalyzed by amino amides[65,66,67]
Scheme 11 Asymmetric Michael addition to nitroalkenes catalyzed by prolinamides[68,69,70,71,72,73,74]
Scheme 12 Asymmetric Yamada-Otani condensation catalyzed by prolinamides[76,78]
Scheme 13 Asymmetric tandem oxa-Michael/Henry reaction catalyzed by prolinamides[79,80]
Scheme 14 Asymmetric aza-Diels-Alder reaction catalyzed by L-proline sulphonamide[81]
Scheme 15 Miscellaneous reactions catalyzed by chiral amino amides[83,84]
Scheme 16 “Enamine-double hydrogen-bonding” transition state model[6,7,8]
Scheme 17 Asymmetric direct aldol reaction catalyzed by chiral amino amides containing double hydrogen-bondings[85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146]
Scheme 18 Asymmetric direct syn-aldol reaction catalyzed by primary amino amides[119,148~152]
Scheme 19 Asymmetric direct aldol reaction with α-keto esters[140,153~158]
Scheme 20 Asymmetric direct aldol reaction with isatins[129,159]
Scheme 21 Immobilized prolinamide catalysts[160,161,162,163,164,165,166,167,168,169,170,171]
Scheme 22 Asymmetric Michael addition catalyzed by prolinamides containing double hydrogen-bonding donors[172,173,174,175]
Scheme 23 Miscellaneous reactions catalyzed by chiral amino amides containing double hydrogen-bondings[177,178,179,180,181,182]
[1]
Eder U, Sauer R , Wiechert R. Angew. Chem. Int. Ed., 1971,10:496.
[2]
Hajos Z G, Parrish D R . Org. Chem., 1974,39:1615.
[3]
( a) List B, Lerner R A, Barbas III C F . J. Am. Chem. Soc., 2000, 122: 2395.;( b) Sakthivel K, Notz W, Bui T, Barbas III C F. J. Am. Chem. Soc., 2001, 123: 5260.;, 2000,122:7386.
[4]
( a) Berkessel A, Groger H . Asymmetric Organocatalysis. Weinheim: Wiley-VCH, 2005.;( b) Dalko P I, Moisan L, Angew. Chem. Int. Ed., 2004, 43: 5138.;, 2007,107:5471.
[5]
( a) Hoang L, Bahmanyar S, Houk K N, List B . J. Am. Chem. Soc., 2003, 125: 16.;( b) Bahmanyar S, Houk K N, Martin H J, List B. J. Am. Chem. Soc., 2003, 125: 2475.;, 2004,37:558.
[6]
Tang Z, Jiang F, Yu L T, Cui X, Gong L Z, Mi A Q, Jiang Y Z, Wu Y D . Am. Chem. Soc., 2003,125:5262.
[7]
Tang Z, Jiang F, Cui X, Gong L Z, Mi A Q, Jiang Y Z , Wu Y D. Proc. Natl. Acad. Sci. U. S. A., 2004,101:5755.
[8]
Tang Z, Yang Z H, Chen X H, Cun L F, Mi A Q, Jang Y Z, Gong L Z . Am. Chem. Soc., 2005,127:9285.
[9]
Liu X, Lin L, Feng X. . Chem. Commun., 2009,6145.
[10]
Chen X H, Yu J , Gong L Z. Chem. Commun., 2010,6437.
[11]
Trost B M , Brindle C S. Chem. Soc. Rev., 2010,39:1600.
[12]
Panday S K . Tetrahedron: Asymmetry, 2011,22:1817.
[13]
Lu L Q, An X L, Chen J R, Xiao W J . Synlett, 2012,23:490.
[14]
Albrecht Ł, Jiang H , Jorgensen K A. Chem. Eur. J., 2014,20:358.
[15]
Liu X, Dong S, Lin L , Feng X. Chin. J. Chem., 2018,36:791.
[16]
Yamashita Y, Yasukawa T, Yoo W J, Kitanosono T , Kobayashi S. Chem. Soc. Rev., 2018,47:4388.
[17]
Yadav G D, Deepa, Singh S . ChemistrySelect, 2019,4:5591.
[18]
( a) Yamada S I, Otani G . Tetrahedron Lett., 1969, 10: 4237.;( b) Otani G, Yamada S I. Chem. Pharm. Bull., 1973,21:2112.
[19]
Berkessel A, Koch B , Lex J. Adv. Synth. Catal., 2004,346:1141.
[20]
Cobb A J A, Shaw D M, Longbottom D A, Gold J B, Ley S V . Org. Biomol. Chem., 2005,3:84.
[21]
Bellis E, Vasilatou K, Kokotos G . Synthesis, 2005,2407.
[22]
( a) Chimni S S, Mahajana D, Babu V V S . Tetrahedron Lett., 2005, 46: 5617.; (b) Chimni S S, Mahajan D. Tetrahedron: Asymmetry, 2006,17:2108.
[23]
( a) Gryko D, Lipiński R . Adv. Synth. Catal., 2005, 347: 1948.;( b) Gryko D, Lipiński R. Eur. J. Org. Chem., 2006, 3864.;, 2007,5:2148.
[24]
Guizzetti S, Benaglia M, Pignataro L, Puglisi A . Tetrahedron: Asymmetry, 2006,17:2754.
[25]
Yu G, Ge Z M, Cheng T M , Li R T. Chin. J. Chem., 2008,26:911.
[26]
Sato K, Kuriyama M, Shimazawa R, Morimoto T, Kakiuchi K, Shirai R. Tetrahedron Lett ., 2008,49:2402.
[27]
Rani R, Peddinti R K . Tetrahedron: Asymmetry, 2010,21:775.
[28]
( a) Agarwal J, Peddinti R K . Tetrahedron: Asymmetry, 2010, 21: 1906.;( b) Agarwal J, Peddinti R K. Eur. J. Org. Chem., 2012,6390.
[29]
( a) Hernandez J G, Juaristi E . J. Org. Chem., 2011, 76: 1464.; (b) Hernandez J G, Juaristi E. Tetrahedron, 2011,67:6953.
[30]
Robak M T, Herbage M A, Ellman J A . Tetrahedron, 2011,67:4412.
[31]
De Arriba Á L F, Simón L, Raposo C, Alcázar V, Sanz F, Muñiz F M, Morán J R . Org. Biomol. Chem., 2010,8:2979.
[32]
Xu J, Fu X, Wu C, Hu X . Tetrahedron: Asymmetry, 2011,22:840.
[33]
Reddy B V S, Bhavani K, Raju A, Yadav J S . Tetrahedron: Asymmetry, 2011,22:881.
[34]
Kumar T P, Vavle N C, Patro V, Haribabu K . Tetrahedron: Asymmetry, 2014,25:457.
[35]
Wu Y, Zhang Y, Yu M, Zhao G, Wang S. Org. Lett ., 2006,8:4417.
[36]
( a) Almaşi D, Alonso D A, Nájera C . Adv. Synth. Catal., 2008, 350: 2467.;( b) Almaşi D, Alonso D A, Balaguer A N, Nájera C. Adv. Synth. Catal., 2009,351:1123.
[37]
( a) Chimni S S, Singh S, Mahajan D . Tetrahedron: Asymmetry, 2008, 19: 2276.; (b) Chimni S S, Singh S, Kumar A. Tetrahedron: Asymmetry, 2009,20:1722.
[38]
Doherty S, Knight J G , McRae A, Harrington R W, Clegg W. Eur.[J]. Org. Chem., 2008,1759.
[39]
Li X J, Zhang G W, Wang L, Hua M Q, Ma J A . Synlett, 2008,1255.
[40]
( a) Yang H, Carter R G . Org. Lett., 2008, 10: 4649.;( b) Yang H, Mahapatra S, Cheong P H Y, Carter R G. J. Org. Chem., 2010,75:7279.
[41]
Moorthy J N , Saha S. Eur. J. Org. Chem., 2009,739.
[42]
Yang Y, He Y H, Guan Z , Huang W D. Adv. Synth. Catal., 2010,352:2579.
[43]
Xu J W, Fu X K, Hu X Y , Wu C L. Catal. Lett., 2011,141:1156.
[44]
Mino T, Omura A, Uda Y, Wakui K, Haga Y, Sakamoto M, Fujita T . Tetrahedron: Asymmetry, 2011,22:2024.
[45]
Tang G, Hu X , Altenbach H J. Tetrahedron Lett., 2011,52:7034.
[46]
( a) Hernandez J G, García-Lopez V, Juaristi E . Tetrahedron, 2012, 68: 92.;( b) Machuca E, Juaristi E. Tetrahedron Lett., 2015,56:1144.
[47]
Bisticha A, Triandafillidi I, Kokotos C G . Tetrahedron: Asymmetry, 2015,26:102.
[48]
Shen C, Liao H, Shen F, Zhang P. Catal. Commun ., 2013,41:106.
[49]
Patti A , Pedotti S. Eur. J. Org. Chem., 2014,624.
[50]
Owolabi I A , Reddy U V S, Chennapuram M, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Takeshita M, Nakano H. Tetrahedron, 2018,74:4705.
[51]
( a) Luppi G, Cozzi P G, Monari M, Kaptein B, Broxterman Q B, Tomasini C . J. Org. Chem., 2005, 70: 7418.;( b) Luppi G, Monari M, Corrêa R J, Violante F A, Pinto A C, Kaptein B, Broxterman Q B, Garden S J, Tomasini C. Tetrahedron, 2006, 62: 12017.;, 2009,50:814.
[52]
( a) Nakamura S, Hara N, Nakashima H, Kubo K, Shibata N, Toru T . Chem. Eur. J., 2008, 14: 8079.;( b) Hara N, Nakamura S, Shibata N, Toru T. Chem. Eur. J., 2009, 15: 6790.;, 2010,352:1621.
[53]
Kinsella M, Duggan P G, Lennon C M . Tetrahedron: Asymmetry, 2011,22:1423.
[54]
Wang J, Liu Q, Hao Q, Sun Y, Luo Y, Yang H . Chirality, 2015,27:314.
[55]
Kumar T P, Manjula N, Katragunt K . Tetrahedron: Asymmetry, 2015,26:1281.
[56]
Kimura J , Reddy U V S, Kohari Y, Seki C, Mawatari Y, Uwai K, Okuyama Y, Kwon E, Tokiwa M, Takeshita M, Iwasa T, Nakano H. Eur.[J]. Org. Chem., 2016,3748.
[57]
He L, Tang Z, Cun L F, Mi A Q, Jiang Y Z, Gong L Z . Tetrahedron, 2006,62:346.
[58]
Silva F, Sawicki M, Gouverneur V. Org. Lett ., 2006,8:5417.
[59]
Dodda R , Zhao C G. Org. Lett., 2006,8:4911.
[60]
Wang X J, Zhao Y , Liu J T. Org. Lett., 2007,9:1343.
[61]
Liu J, Yang Z, Wang Z, Wang F, Chen X, Liu X, Feng X, Su Z, Hu C . Am. Chem. Soc., 2008,130:5654.
[62]
Hara N, Tamura R, Funahashi Y, Nakamura S. Org. Lett ., 2011,13:1662.
[63]
Yang H, Carter R G . Org. Chem., 2009,74:2246.
[64]
Veverkova E, Štrasserova J, Šebesta R, Toma Š . Tetrahedron: Asymmetry, 2010,21:58.
[65]
Hayashi Y, Gotoh H, Tamura T, Yamaguchi H, Masui R, Shoji M . Am. Chem. Soc., 2005,127:16028.
[66]
Bournaud C, Marchal E, Quintard A, Sulzer-Mossé S, Alexakis A . Tetrahedron: Asymmetry, 2010,21:1666.
[67]
Yang H, Carter R G . Org. Chem., 2010,75:4929.
[68]
Palomo C, Vera S, Mielgo A , Gómez-Bengoa E. Angew. Chem. Int. Ed., 2006,45:5984.
[69]
Reddy R J, Kuan H H, Chou T Y , Chen K. Chem. Eur. J., 2009,15:9294.
[70]
Kelleher F, Kelly S, Watts J , McKee V. Tetrahedron, 2010,66:3525.
[71]
Wang Y, Lin J, Wei K . Tetrahedron: Asymmetry, 2014,25:1599.
[72]
Wang Y, Li D, Lin J, Wei K. RSC Adv ., 2015,5:5863.
[73]
Rani R, Peddinti R K . Tetrahedron: Asymmetry, 2010,21:2487.
[74]
Agarwal J , Peddinti R K. Tetrahedron Lett., 2011,52:117.
[75]
Wang C M, Xiao J A, Wang J, Wang S S, Deng Z X, Yang H . Org. Chem., 2016,81:8001.
[76]
( a) Yang H, Carter R G . Org. Lett., 2010, 12: 3108.;( b) Yang H, Banerjee S, Carter R G. Org. Biomol. Chem., 2012,10:4851.
[77]
Pierce M D, Johnston R C, Mahapatra S, Yang H, Carter R G , Cheong P H Y.[J]. Am. Chem. Soc., 2012,134:13624.
[78]
Goswami S, Harada K , El-Mansy M F, Lingampally R, Carter R G. Angew. Chem. Int. Ed., 2018,57:9117.
[79]
Yin G, Zhang R, Li L, Tian J , Chen L. Eur. J. Org. Chem., 2013,5431.
[80]
Mohanta R, Bez G . Org. Chem., 2020,85:4627.
[81]
( a) Yang H, Carter R G . J. Org. Chem., 2009, 74: 5151.; (b) Yang H, Carter R G. Tetrahedron, 2010,66:4854.
[82]
( a) Xiao J A, Liu Q, Ren J W, Liu J, Carter R G, Chen X Q, Yang H . Eur. J. Org. Chem., 2014, 5700.;( b) Ren J W, Zhou Z F, Xiao J A, Chen X Q, Yang H. Eur. J. Org. Chem., 2016, 1264.;, 2017,82:6441.
[83]
Sundén H, Dahlin N, Ibrahem I, Adolfsson H, Córdova A. Tetrahedron Lett ., 2005,46:3385.
[84]
Xin J, Chang L, Hou Z, Shang D, Liu X , Feng X. Chem. Eur. J., 2008,14:3177.
[85]
Tanimori S, Naka T, Kirihata M. Synth. Commun ., 2004,34:4043.
[86]
Chen X H, Luo S W, Tang Z, Cun L F, Mi A Q, Jiang Y Z , Gong L Z. Chem. Eur. J., 2007,13:689.
[87]
Xu X Y, Wang Y Z, Cun L F, Gong L Z . Tetrahedron: Asymmetry, 2007,18:237.
[88]
Samanta S, Liu J, Dodda R , Zhao C G. Org. Lett., 2005,7:5321.
[89]
( a) Chen J R, Lu H H, Li X Y, Cheng L, Wan J, Xiao W J . Org. Lett., 2005, 7: 4543.;( b) Chen J R, Li X Y, Xing X N, Xiao W J. J. Org. Chem., 2006, 71: 8198.;, 2007,85:208.
[90]
Guan Z, Luo Y, Zhang B Q, Heinen K, Yang D C, He Y H . Tetrahedron: Asymmetry, 2014,25:802.
[91]
( a) Raj M, Maya V, Ginotra S K, Singh V K . Org. Lett., 2006, 8: 4097.;( b) Maya V, Raj M, Singh V K. Org. Lett., 2007,9:2593.
[92]
( a) Baer K, Krauβer M, Burda E, Hummel W, Berkessel A, Gröger H . Angew. Chem. Int. Ed., 2009, 48: 9355.; (b) Rulli G, Duangdee N, Baer K, Hummel W, Berkessel A, Gröger H. Angew. Chem. Int. Ed., 2011, 50: 7944.; (c) Heidlindemann M, Berkessel A, Gröger H. ChemCatChem, 2017,9:1383.
[93]
Okuyama Y, Nakano H, Watanabe Y, Makabe M, Takeshita M, Uwai K, Kabuto C, Kwon E. Tetrahedron Lett ., 2009,50:193.
[94]
( a) Cheng C, Sun J, Wang C, Zhang Y, Wei S, Jiang F, Wu Y . Chem. Commun., 2006, 215.; (b) Cheng C, Wei S, Sun[J]. Synlett, 2006,2419.
[95]
Cheng C , Wang W. Chin. J. Chem., 2011,29:196.
[96]
( a) Guillena G, Hita M C, Nájera C . Tetrahedron: Asymmetry, 2006, 17: 729.;( b) Guillena G, Hita M C, Nájera C. Tetrahedron: Asymmetry, 2006, 17: 1493.;, 2008,73:5933.
[97]
Gryko D, Kowalczyk B, Zawadzki Ł . Synlett, 2006,1059.
[98]
Ma G N, Zhang Y P, Shi M . Synthesis, 2007,197.
[99]
Guizzetti S, Benaglia M, Raimondi L, Celentano G. Org. Lett ., 2007,9:1247.
[100]
Fu Y Q, Li Z C, Ding L N, Tao J C, Zhang S H, Tang M S . Tetrahedron: Asymmetry, 2006,17:3351.
[101]
Sathapornvajana S, Vilaivan T . Tetrahedron, 2007,63:10253.
[102]
Zhang S P, Fu X K , Fu S D. Tetrahedron Lett., 2009,50:1173.
[103]
Saha S , Moorthy J N. Tetrahedron Lett., 2010,51:912.
[104]
Zhang T, Zhang Y, Li Z, Song Z, Liu H , Tao J. Chin. J. Chem., 2013,31:247.
[105]
( a) Russo A, Botta G, Lattanzi A . Synlett, 2007, 795.; (b) Russo A, Botta G, Lattanzi A. Tetrahedron, 2007,63:11886.
[106]
Jiang J, He L, Luo S W, Cun L F , Gong L Z. Chem. Commun., 2007,736.
[107]
( a) He L, Jiang J, Tang Z, Cui X, Mi A Q, Jiang Y Z, Gong L Z . Tetrahedron: Asymmetry, 2007, 18: 265.;( b) Zhao J F, He L, Jiang J, Tang Z, Cun L F, Gong L Z. Tetrahedron Lett., 2008,49:3372.
[108]
Chen J R, An X L, Zhu X Y, Wang X F, Xiao W J . Org. Chem., 2008,73:6006.
[109]
Zhao J, Chen A , Liu Q. Chin. J. Chem., 2009,27:930.
[110]
Chen F, Huang S, Zhang H, Liu F, Peng Y . Tetrahedron, 2008,64:9585.
[111]
Gandhi S, Singh V K . Org. Chem., 2008,73:9411.
[112]
Vishnumaya M R, Singh V K . Org. Chem., 2009,74:4289.
[113]
Rambo R S, Schneider P H . Tetrahedron: Asymmetry, 2010,21:2254.
[114]
Wang B, Chen G H, Liu L Y, Chang W X , Li J. Adv. Synth. Catal., 2009,351:2441.
[115]
Wang B, Liu X W, Liu L Y, Chang W X , Li J. Eur. J. Org. Chem., 2010,5951.
[116]
Tsandi E, Kokotos C G, Kousidou S, Ragoussis V, Kokotos G . Tetrahedron, 2009,65:1444.
[117]
Chandrasekhar S, Johny K, Reddy C R . Tetrahedron: Asymmetry, 2009,20:1742.
[118]
Jia Y N, Wu F C, Ma X, Zhu G J , Da C S. Tetrahedron Lett., 2009,50:3059.
[119]
Da C S, Che L P, Guo Q P, Wu F C, Ma X, Jia Y N . Org. Chem., 2009,74:2541.
[120]
Nisco M D, Pedatella S, Ullah H, Zaidi J H, Naviglio D, Özdamar Ö, Caputo R . Org. Chem., 2009,74:9562.
[121]
( a) Pedrosa R, Andrés J M, Manzano R, Rodríguez P . Eur. J. Org. Chem., 2010, 5310.;( b) Pedrosa R, Andrés J M, Manzano R, Román D, Téllez S. Org. Biomol. Chem., 2011,9:935.
[122]
Pearson A J, Panda S . Tetrahedron, 2011,67:3969.
[123]
Siyutkin D E, Kucherenko A S, Frolova L L, Kuchin A V, Zlotin S G . Tetrahedron: Asymmetry, 2011,22:1320.
[124]
Tian H, Gao J L, Xu H, Zheng L Y, Huang W B, Liu Q W, Zhang S Q . Tetrahedron: Asymmetry, 2011,22:1074.
[125]
Delaney J P , Henderson L C. Adv. Synth. Catal., 2012,354:197.
[126]
Maycock C D, Ventura M R . Tetrahedron: Asymmetry, 2012,23:1262
[127]
Shen C, Shen F, Zhou G, Xia H, Chen X, Liu X, Zhang P. Catal. Commun ., 2012,26:6.
[128]
Tang G, Gün Ü, Altenbach H J . Tetrahedron, 2012,68:10230.
[129]
Zhang F, Li C, Qi C . Tetrahedron: Asymmetry, 2013,24:380.
[130]
Zhao H W, Yue Y Y, Li H L, Song X Q, Sheng Z H, Yang Z, Meng W, Yang Z . Synlett, 2013,24:2160.
[131]
Psarra A, Kokotos C G, Moutevelis-Minakakis P . Tetrahedron, 2014,70:608.
[132]
Huang X R, Liu Q, Wang J, Xiao J A, Yang H . Tetrahedron: Asymmetry, 2014,25:1590.
[133]
Gong Z, Wei C, Shi Y, Zheng Q, Song Z, Liu Z . Tetrahedron, 2014,70:1827.
[134]
Yolacan C, Mavis M E, Aydogan F . Tetrahedron, 2014,70:3707.
[135]
Naresh T, Kumar T P, Haribabu K, Chandrasekhar S . Tetrahedron: Asymmetry, 2014,25:1340.
[136]
Song X, Liu A X, Liu S S, Gao W C, Wang M C, Chang J . Tetrahedron, 2014,70:1464.
[137]
Cabrera H R, Huelgas G , Pérez J M H, Walsh P J, Somanathan R, de Parrodi C A. Tetrahedron: Asymmetry, 2015,26:163.
[138]
Bayat S, Salleh A B, Malek E A, Yousefi S , Rahman M B A. Catal. Lett., 2015,145:1750.
[139]
Vizcaíno-Milla P, Sansano J M, Nájera C, Fiser B , Gómez-Bengoa E. Eur. J. Org. Chem., 2015,2614.
[140]
Lisnyak V G, Kucherenko A S, Valeev E F, Zlotin S G . Org. Chem., 2015,80:9570.
[141]
Hu X M, Zhang D X, Zhang S Y , Wang P A. RSC Adv., 2015,5:39557.
[142]
Vlasserou I, Sfetsa M, Gerokonstantis D T, Kokotos C G, Moutevelis-Minakakis P . Tetrahedron, 2018,74:2338.
[143]
Ruíz-Pérez K M, Quiroz-García B, Hernández-Rodríguez M . Eur.[J]. Org. Chem., 2018,5763.
[144]
Wang R, Wei Z, Guo J, Feng Y, Xu E, Duan H, Lin Y, Yang Q, Du J , Li Y. Chem. Res. Chin. Univ., 2018,34:180.
[145]
Wang R, Xu E, Su Z, Duan H, Wang J, Xue L, Lin Y, Li Y, Wei Z, Yang Q. RSC Adv ., 2018,8:28376.
[146]
Cruz-Hernández C, Landeros J M, Juaristi E. New J . Chem, 2019,43:5455.
[147]
( a) Ramasastry S S V, Zhang H, Tanaka F, Barbas III C F . J. Am. Chem. Soc., 2007, 129: 288.;( b) Luo S, Xu H, Li J, Zhang L, Cheng J P. J. Am. Chem. Soc., 2007, 129: 3074.;, 2007,349:812.
[148]
Xu X Y, Wang Y Z , Gong L Z. Org. Lett., 2007,9:4247.
[149]
Zhu M K, Xu X Y , Gong L Z. Adv. Synth. Catal., 2008,350:1390.
[150]
Ramasastry S S V, Albertshofer K, Utsumi N, Barbas III C F . Org. Lett., 2008,10:1621.
[151]
Wu X, Ma Z, Ye Z, Qian S , Zhao G. Adv. Synth. Catal., 2009,351:158.
[152]
Sarkar D, Harman K, Ghosh S, Headley A D . Tetrahedron: Asymmetry, 2011,22:1051.
[153]
Tang Z, Cun L F, Cui X, Mi A Q, Jiang Y Z , Gong L Z. Org. Lett., 2006,8:1263.
[154]
Xu X Y, Tang Z, Wang Y Z, Luo S W, Cun L F, Gong L Z . Org. Chem., 2007,72:9905.
[155]
Wang F, Xiong Y, Liu X, Feng X, Adv. Synth. Catal ., 2007,349:2665.
[156]
Jiang J, Chen X, Wang J, Hui Y, Liu X, Lin L , Feng X. Org. Biomol. Chem., 2009,7:4355.
[157]
Viózquez S F, Bañón-Caballero A, Guillena G, Nájera C , Gómez-Bengoa E. Org. Biomol. Chem., 2012,10:4029.
[158]
Moles F J N, Guillena G, Nájera C . RSC Adv., 2014,4:9963.
[159]
Chen J R, Liu X P, Zhu X Y, Li L, Qiao Y F, Zhang J M, Xiao W J . Tetrahedron, 2007,63:10437.
[160]
Gruttadauria M, Giacalone F, Marculescu A M , Noto R. Adv. Synth. Catal., 2008,350:1397.
[161]
Gruttadauria M , P Salvo A M, Giacalone F, Agrigento P, Noto R. Eur.[J]. Org. Chem., 2009,5437.
[162]
Gao J, Liu J, Jiang D, Xiao B, Yang Q . J. Mol. Catal. A: Chem., 2009,313:79.
[163]
Gao J, Liu J, Tang J, Jiang D, Li B , Yang Q. Chem. Eur. J., 2010,16:7852.
[164]
Bañón-Caballero A, Guillena G, Nájera C. Green Chem ., 2010,12:1599.
[165]
Bañón-Caballero A, Guillena G, Nájera C. Helv. Chim . Acta, 2012,95:1831.
[166]
Bañón-Caballero A, Guillena G, Nájera C, Faggi E, Sebastián R M, Vallribera A . Tetrahedron, 2013,69:1307.
[167]
Siyutkin D E, Kucherenko A S, Zlotin S G . Tetrahedron, 2010,66:513.
[168]
Kucherenko A S, Gerasimchuk V V, Lisnyak V G, Nelyubina Y V , Zlotin S G. Eur. J. Org. Chem., 2015,5649.
[169]
Kochetkov S V, Kucherenko A S , Zlotin S G. Eur. J. Org. Chem., 2011,6128.
[170]
Pedrosa R, Andrés J M, Gamarra A, Manzano R, Pérez-López C . Tetrahedron, 2013,69:10811.
[171]
Heidlindemann M, Rulli G, Berkessel A, Hummel W, Gröger H. ACS Catal ., 2014,4:1099.
[172]
Almaşi D, Alonso D A, Nájera C . Tetrahedron: Asymmetry, 2006,17:2064.
[173]
Almaşi D, Alonso D A, Gómez-Bengoa E, Nagel Y , Nájera C. Eur. J. Org. Chem., 2007,2328.
[174]
Huang Y C , Uang B J. Chem. Asian J., 2014,9:2444.
[175]
Xu D, Wang J, Yan L, Yuan M, Xie X, Wang Y . Tetrahedron: Asymmetry, 2016,27:1121.
[176]
( a) Zhong G . Angew. Chem. Int. Ed., 2003, 42: 4247.;( b) Brown S P, Brochu M P, Sinz C J, MacMillan D W C. J. Am. Chem. Soc., 2003, 125: 10808.;, 2004,10:3673.
[177]
Guo H M, Cheng L, Cun L F, Gong L Z, Mi A Q , Jiang Y Z. Chem. Commun., 2006,429.
[178]
Zhang H, Zhang S, Liu L, Luo G, Duan W, Wang W . Org. Chem., 2010,75:368.
[179]
Saha S, Moorthy J N . Org. Chem., 2011,76:396.
[180]
Bañón-Caballero A, Guillena G, Nájera C . Org. Chem., 2013,78:5349.
[181]
Witzig R M, Fäseke V C, Häussinger D, Sparr C. Nat. Catal ., 2019,2:925.
[182]
Bourgeois F, Medlock J A, Bonrath W, Sparr C. Org. Lett ., 2020,22:110.
[183]
Tang Z, Yang Z H, Cun L F, Gong L Z, Mi A Q , Jiang Y Z. Org. Lett., 2004,6:2285.
[184]
Wu F C, Da C S, Du Z X, Guo Q P, Li W P, Yi L, Jia Y N, Ma X . Org. Chem. 2009,74:4812.
[185]
Krattiger P, Kovasy R, Revell J D, Ivan S, Wennemers H. Org. Lett ., 2005,7:1101.
[186]
( a) Arakawa Y, Wiesner M, Wennemers H . Adv. Synth. Catal., 2011, 353: 1201.;( b) Duschmalé J, Wennemers H. Chem. Eur. J., 2012, 18: 1111.;, 2020,11:1943.
[187]
Tzeng Z H, Chen H Y, Reddy R J, Huang C T, Chen K . Tetrahedron, 2009,65:2879.
[188]
Pearson A J, Panda S. Org. Lett ., 2011,13:5548.
[189]
Fotaras S, Kokotos C G, Tsandi E , Kokotos G. Eur. J. Org. Chem., 2011,1310.
[190]
Revelou P, Kokotos C G, Moutevelis-Minakakis P . Tetrahedron, 2012,68:8732.
[191]
Fotaras S, Kokotos C G , Kokotos G. Org. Biomol. Chem., 2012,10:5613.
[192]
Kokotos C G . Org. Chem., 2012,77:1131.
[193]
Li Y, Yang Q C, Xu X Y, Zhou Y, Bai J F, Wang F Y , Wang L X. Can. J. Chem., 2011,89:1312.
[194]
Monge-Marcet A, Pleixats R, Cattoën X , Man M W C, Alonso D A, Nájera C. New[J]. Chem., 2011,35:2766.
[195]
Zhao H W, Sheng Z H, Meng W, Yue Y Y, Li H L, Song X Q, Yang Z . Synlett, 2013,24:2743.
[196]
Xu E J, Song Y, Wei Z L, Wang R, Duan H F, Lin Y J, Yang Q B , Li Y X. Can. J. Chem., 2019,97:352.
[197]
Martins R S, Pereira M P, Castro P P, Bombonato F I . Tetrahedron, 2020,76:130855.
[198]
Kon K, Kohari Y, Murata M. Tetrahedron Lett ., 2019,60:415.
[199]
Fu J Y, Xu X Y, Li Y C, Huang Q C , Wang L X. Org. Biomol. Chem., 2010,8:4524.
[1] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[2] Li Luyao, Xu Xinyao, Zhu Bo, Xu Xinyao. Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions [J]. Progress in Chemistry, 2020, 32(11): 1710-1728.
[3] Xiangyan Yi, Fei Huang, Jonathan B. Baell, He Huang, Yang Yu. The Formation of C(sp3)-C(sp3) by Visible-Light Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 505-515.
[4] Mengya Yuan, Xiaoyun Chen*, Shengling Lin*. Synthesis of the Functionalized Enamine [J]. Progress in Chemistry, 2018, 30(8): 1082-1096.
[5] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[6] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[7] Yu Zhang, Xiaohua Liu, Lili Lin, Xiaoming Feng*. Recent Advance in Catalytic Asymmetric Friedel-Crafts Reactions [J]. Progress in Chemistry, 2018, 30(5): 491-504.
[8] Zhiyong Han, Liuzhu Gong*. Asymmetric Organo/Palladium Combined Catalysis [J]. Progress in Chemistry, 2018, 30(5): 505-512.
[9] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[10] Jiang Kun, Chen Yingchun. The Development of Asymmetric Trienamine Catalysis [J]. Progress in Chemistry, 2015, 27(2/3): 137-145.
[11] Zhang Yongli, Zhang Rui, Chang Honghong, Wei Wenlong, Li Xing. Asymmetric Carbonyl-ene Reactions Promoted by Chiral Catalysts [J]. Progress in Chemistry, 2014, 26(09): 1492-1505.
[12] Jin Qingxian, Li Jing, Li Xiaogang, Zhang Li, Fang Shaoming, Liu Minghua. Function and Application of Supramolecular Gels:Chiral Molecular Recognition and Asymmetric Catalysis [J]. Progress in Chemistry, 2014, 26(06): 919-930.
[13] Yang Yong, Dou Dandan. Triply and Quadruply Hydrogen Bonded Systems:Design, Structure and Application [J]. Progress in Chemistry, 2014, 26(05): 706-726.
[14] Wang Sai, Wu Bin, Duan Junfei, Fang Jianglin*, Chen Dongzhong. Functional Supramolecular Gels Self-Assembled by Hydrogen Bonding Among Urea-Based Gelators [J]. Progress in Chemistry, 2014, 26(01): 125-139.
[15] Yu Lide, Cui Hanfeng*, Fan Hao, Ren Shuhui, Lin Yan. Chiral Quaternary Phosphonium Salts in Asymmetric Catalysis [J]. Progress in Chemistry, 2013, 25(05): 744-751.