中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1158-1171 DOI: 10.7536/PC200433 Previous Articles   Next Articles

• Review •

Solvent-Free or Less-Solvent Solid State Reactions

Lixu Lei1,*(), Yiming Zhou2   

  1. 1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
    2. School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Lixu Lei
  • About author:
Richhtml ( 29 ) PDF ( 1923 ) Cited
Export

EndNote

Ris

BibTeX

According to thermodynamics, solid state reactions will generally proceed to their 100% completion once they start; however, they may stop at the equilibrium state in case that there is a solid solution with continuously changing concentration. Solid state reactions also have the following characteristics:(1) they could produce stereoselective products;(2) the particle size of the products could be very small(nano-sized);(3) there is the lowest temperature for the reaction to be initiated. Here, it is particularly pointed out that a little solvent can be employed to accelerate solid state reactions with consequent safety and effectivity, but not the equilibrium; also, the solvent can make the solid mixture more fluidized, thus the mass transportation can be speeded up by a proper blender. In addition, solid state reactions can be used to assemble materials step by step, since any complex reactions can be decomposed to a series of reactions of two reactants. Consequently, studies on solid state reactions can lead to greener chemical processes. All those are demonstrated in this paper with solid state coordination reactions, which are the reactions of solid inorganic metal compounds and solid organic or inorganic ligands. The solid state coordination reactions are well known that they take place at near room temperature up to 300 ℃ without the help of solvents, just like the solid state organic reactions.

Contents

1 Introduction: how to develop a greener chemical process

1.1 Definition of greener chemical process

1.2 Greener chemical processes based on solid-state reactions

1.3 Brief history of solid-state coordination reactions

2 Physical chemistry of solid-state reactions

2.1 Thermodynamics of solid-state reactions

2.2 Thermodynamics of less solvent reactions

2.3 Kinetics of solid-state reactions

3 Syntheses based on solid-state coordination reactions

3.1 Syntheses based on non-solvation

3.2 Syntheses of nanoparticles based on diffusion difficulty in solids

4 Less solvent reactions and their applications in industrialization of solid-state reactions at near room temperatures

4.1 Examples of a few less solvent reactions

4.2 Problems in industrialization of solid-state reactions at near room temperatures

5 Conclusion and outlook

Fig.1 The relationship of Gibbs free energy of the system to the amount of solvent used. The blue curve at the bottom is for the solution reaction, in which there is an equilibrium point; the red straight line at the top is for solvent-free solid state reaction, where there will be no equilibrium; and the green spoon-like curve in the middle correspond to the less solvent reaction, which may follow the dashed line if the solvent is removed at the end of the reaction
Fig.2 The diffusion coefficients of silver for bulky dif-fusion Db, grain boundary diffusion Dg and surficial dif-fusion Ds[16]
Fig.3 Data from the reaction of CuCl2·2H2O and 2,2'-bipyridyl (adapted from ref[43]). A: XRD pattern of (a) the reaction mixture of 1∶2 molar ratio when it aggregated, in which diffraction peaks of Cu(bipy)Cl2 can be found; (b) the final product; B: DSC curve of the 1∶1 reaction; C: DSC curve of the 1∶2 reaction; and D: DSC curves of the 1∶1 reaction (a) and Cu(bipy)Cl2 and bipy in 1:1 molar ratio
Fig.4 Data of the solid state reaction of FeSO4·7H2O and o-phenanthroline[45]. A: XRD patterns of (a) phen;(b)FeSO4·7H2O;(c)Fe(H2O)3(phen)SO4;(d)Fe(H2O)3(phen)SO4·5H2O;B:XRD patterns of the initial reaction mixture of Fe(H2O)3(phen)SO4·5H2O and phen in 1∶2 molar ratio (a) and the final (b);C:The EDXRD of the solid state reaction of FeSO4·7H2O and phen in 1∶1 molar ratio as a function of time;D:The intensity of main XRD peak as the function of time at different temperatures
Fig.5 The changes of particles of reactants and products during a solid state reaction
Fig.6 The framework of 2 ~ 7 nuclear clusters formed from the reaction of (NH4)2MoS4 and CuX(X = Cl, Br, I, CN, SCN)[49, 52]
Fig.7 The octahedral Mg(H2O)62+, Cl-(green ball) and NH4+ (blue ball) in crystals of (a)[Mg(H2O)6]Cl2 and (b) NH4[Mg(H2O)6]Cl3
[1]
Galuszka A, Migaszewski Z, Namiesnik J. Trac-Trends Anal.Chem., 2013,50:78.
[2]
Anastas P, Eghbali N. Chem. Soc. Rev., 2010,39(1):301. https://www.ncbi.nlm.nih.gov/pubmed/20023854

doi: 10.1039/b918763b pmid: 20023854
[3]
Kaupp G. Top. Curr.Chem., 2005. 254:95.
[4]
Tanaka K, Toda F. Chem. Rev., 2000,100(3):1025. https://www.ncbi.nlm.nih.gov/pubmed/11749257

pmid: 11749257
[5]
李道华(Li D H), 叶向荣(Ye X R), 忻新泉(Xin X Q). 化学研究与应用(Chemical Research and Application), 1999,11(4):415.
[6]
李道华(Li D H), 叶向荣(Ye X R), 忻新泉(Xin X Q). 应用化学(Chinese Journal of Applied Chemistry), 1999,16(5):97.
[7]
Guillena G, del Carmen Hita M, Najera C, Viozquez S F. Org. Chem., 2008,73(15):5933. https://pubs.acs.org/doi/10.1021/jo800773q

doi: 10.1021/jo800773q
[8]
Walsh P J, Li H, Anaya de Parrodi C. Chem. Rev., 2007,107(6):2503. https://www.ncbi.nlm.nih.gov/pubmed/17530908

doi: 10.1021/cr0509556 pmid: 17530908
[9]
余富朝(Yu F Z), 严胜骄(Yan S J), 林军(Lin J). 有机化学(Chin. J. Org. Chem.), 2010,30(10):1421.
[10]
Kalita P, Kumar R. Micro. Meso. Mater., 2012,149(1):1.
[11]
Singh M S, Chowdhury S. RSC Advances, 2012,2(11):4547.
[12]
杨翠凤(Yang C F), 刘文(Liu W), 林双政(Lin S Z), 徐泽刚(Xu Z G), 陈涛(Chen T), 卫天琪(Wei T Q), 李秉擘(Li B B). 合成化学(Chin. J. Syn. Chem.), 2016,24(5):464.
[13]
Sarkar A, Santra S, Kundu S K, Hajra A, Zyryanov G V, Chupakhin O N, Charushin V N, Majee A. Green Chem., 2016,18(16):4475.
[14]
忻新泉(Xin X Q), 郑丽敏(Zheng L M). 大学化学(University Chemistry), 1994,9(6):1.
[15]
龙德良(Long D L), 梁斌(Liang B), 忻新泉(Xin X Q). 应用化学(Chinese Journal of Applied Chemistry), 1996,13(6):1.
[16]
雷立旭(Lei L X), 忻新泉(Xin X Q). 化学通报(Chemistry Bulletin), 1997,(2):1.
[17]
周益明(Zhou Y M), 忻新泉(Xin X Q). 无机化学学报(Chin. J. Inorg. Chem.), 1999,15(3):273.
[18]
金春飞(Jin C F), 景苏(Jing S), 忻新泉(Xin X Q). 无机化学学报(Chin. J. Inorg. Chem.), 2002,18(9):859.
[19]
Adell B.Z. Anorg. Allg. Chem., 1952,271:49.
[20]
Wendlandt W W, Stembridge C H. Inorg. Nucl. Chem., 1965,27(3):575.
[21]
Baker D J, Hauge S, Gerloch M, Lewis J. J. Chem. Soc. A, 1969,(8):1322.
[22]
Udupa M R, Aravamudan G. Curr. Sci., 1969,38(1):14.
[23]
Kutal C, Bailar J C. Phys. Chem., 1972,76(1):119.
[24]
Hennig H, Hempel K, Thomas P.Z. Chem., 1973,13(11):438.
[25]
Tsuchiya R, Murakami T, Kyuno E. Bull. Chem. Soc. Jap., 1973,46(10):3119. http://www.journal.csj.jp/doi/10.1246/bcsj.46.3119

doi: 10.1246/bcsj.46.3119
[26]
Tanaka K, Miyauchi Y, Tanaka T. Inorg. Chem., 1975,14(7):1545. https://pubs.acs.org/doi/abs/10.1021/ic50149a020

doi: 10.1021/ic50149a020
[27]
Tsuchiya R, Uehara A, Otsuka K, Kyuno E. Chem. Lett., 1974,(8):833.
[28]
D’Ascenzo G, Ceipidor U B, Marino A. Thermochim. Acta, 1976,16(1):69. https://linkinghub.elsevier.com/retrieve/pii/0040603176850447

doi: 10.1016/0040-6031(76)85044-7
[29]
Hennig H, Hempel K, Ackermann M, Thomas P.Z. Anorg. Allg. Chem., 1976,422(1):65.
[30]
忻新泉(Xin X Q), 汪信(Wang X), 张雪芹(Zhang X Q), 戴安邦(Dai A B). 化学学报(Acta Chimica Sinica), 1982,40(12):1111. f08de6e0-615e-46f1-8992-3ae3ef922b0bhttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract342167.shtml
[31]
袁进华(Yuan J H), 忻新泉(Xin X Q), 戴安邦(Dai A B), 张毓昌(Zhang Y C). 无机化学学报(Chinese Journal of Inorganic Chemistry), 1988,4(2):82. bf2558f6-2df9-4d58-9cfd-ae129c2f3c86http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=19880211&flag=1
[32]
Cohn G. Chem. Rev., 1948,42(3):527. https://www.ncbi.nlm.nih.gov/pubmed/18871233

pmid: 18871233
[33]
景苏(Jing S), 忻新泉(Xin X Q). 化学学报(Acta Chimica Sinica), 1995,53(1):26. 7f33dc21-a400-4661-9225-1c910b689edchttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract328650.shtml
[34]
李道华(Li D H), 忻新泉(Xin X Q). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2004,20(7):873. fb322518-6a15-4fbe-82c0-72b61653a276http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20040724&flag=1
[35]
Hedvall J A. Z. Anorg. Allg. Chem., 1916,96(1):64.
[36]
Tammann G, Mansurl Q A. Z. Anorg. Allg. Chem., 1923,126(1/2):119.
[37]
Tammann G.Z Anorg. Allg. Chem., 1925,149(1/3):21.
[38]
赖芝(Lai Z), 忻新泉(Xin X Q), 周衡南(Zhou H N). 无机化学学报(Chinese Journal of Inorganic Chemistry), 1997,13(3):330.
[39]
周益明(Zhou Y M), 叶向荣(Ye X R), 李道华(Li D H), 忻新泉(Xin X Q). 高等学校化学学报(Chemical Journal of Chinese Universities), 1999,20(3):361.
[40]
贾殿赠(Jia D Z), 李昌雄(Li C X), 忻新泉(Xin X Q). 应用化学(Chinese Journal of Applied Chemistry), 1993,10(1):110.
[41]
Li C X, Lei L X, Xin X Q. 科学通报(Chin. Sci. Bull.), 1994. 39:349.
[42]
李昌雄(Li C X), 忻新泉(Xin X Q). 科学通报(Chin. Sci. Bull.), 1995,39(23):2204.
[43]
Lei L X, Xin X Q. Solid State Chem., 1995,119(2):299.
[44]
Lei L X, Xin X Q. Thermochim. Acta, 1996,273:61. https://linkinghub.elsevier.com/retrieve/pii/0040603195026835

doi: 10.1016/0040-6031(95)02683-5
[45]
Lei L X, Jing S, Walton R I, Xin X Q, O’Hare D. J. Chem. Soc., Dalton Trans., 2002,(18):3477.
[46]
朱慧珍(Zhu H Z), 丛蓉娟(Cong R J), 忻新泉(Xin X Q), 戴安邦(Dai A B), 段永恒(Duan Y H), 马礼敦(Ma L D). 无机化学学报(Chinese Journal of Inorganic Chemistry), 1988,4(3):1. 72be61e6-9467-47e5-bd91-790e9a9d630chttp://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=19880301&flag=1
[47]
刘世雄(Liu S X), 黄金陵(Huang J L), 高逢君(Gao F J), 朱慧珍(Zhu H Z), 忻新泉(Xin X Q). 高等学校化学学报(Chemical Journal of Chinese Universities), 1990,11(7):667. 2b2de9ac-d21f-4f7b-806b-748dcb87762dhttp://www.cjcu.jlu.edu.cn/CN/abstract/abstract21653.shtml
[48]
Muller A, Bogge H, Schimanski U. Inorganica Chimica Acta-Articles, 1983,69:5.
[49]
郎建平(Lang J P), 忻新泉(Xin X Q). 化学学报(Acta Chimica Sinica), 1996,54(5):461. a39ab69c-35a0-4062-8000-e7c16637b2ddhttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract327834.shtml
[50]
Li J G, Xin X Q, Zhou Z Y, Yu K B. J. Chem. Soc., Chem. Commun, 1991,(4):249.
[51]
张有才(Zhang Y C), 梁凯(Liang K), 陈秋云(Chen Q Y), 郑和根(Zheng H G), 忻新泉(Xin X Q). 无机化学学报(Chin. J. Inorg. Chem.), 2005,21(6):783. dbec7d8e-b634-4c7a-91cc-251896474b92http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20050601&flag=1
[52]
Hou H W, Xin X Q, Shi S. Coord. Chem. Rev., 1996,153:25. https://linkinghub.elsevier.com/retrieve/pii/0010854595012249

doi: 10.1016/0010-8545(95)01224-9
[53]
Yao X B, Zheng L M, Xin X Q. Solid State Chem., 1995,117(2):333. https://linkinghub.elsevier.com/retrieve/pii/S0022459685712819

doi: 10.1006/jssc.1995.1281
[54]
张蔚玲(Zhang W L), 郑丽敏(Zheng L M), 雷立旭(Lei L X), 忻新泉(Xin X Q). 高等学校化学学报(Chemical Journal of Chinese Universities), 1994,15(10):1443. d59dc3e0-ac7b-43b4-b8a1-a504b8a08d68http://www.cjcu.jlu.edu.cn/CN/abstract/abstract19800.shtml
[55]
Liang B, Dai Q, Xin X Q. Synth. React. Inorg. Met.-Org. Chem., 1998,28(2):165. http://www.tandfonline.com/doi/abs/10.1080/00945719809351896

doi: 10.1080/00945719809351896
[56]
陈金喜(Chen J X), 潘涛(Pan T), 刘明光(Liu M GZZ), 林少凡(Lin S F), 忻新泉(Xin X Q). 化学学报(Acta Chimica Sinica), 2002,60(1):60. 2faa9510-7775-4ae4-b75e-9dbcdf98dcfehttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract335517.shtml
[57]
贾殿赠(Jia D Z), 忻新泉(Xin X Q). 化学学报(Acta Chimica Sinica), 1993,51(4):358. 60180af1-4ddd-42a0-932f-8a752bdd3c87http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract329681.shtml
[58]
成全(Cheng Q), 贾殿赠(Jia D Z), 缪强(Miao Q), 忻新泉(Xin X Q). 应用化学(Chinese Journal of Applied Chemistry), 1991,8(5):77.
[59]
Matsuda R. Bull. Chem. Soc. Jpn., 2013,86(10):1117. http://www.journal.csj.jp/doi/10.1246/bcsj.20130157

doi: 10.1246/bcsj.20130157
[60]
Kole G K, Vittal J J. Chem. Soc. Rev., 2013,42(4):1755. https://www.ncbi.nlm.nih.gov/pubmed/23034597

doi: 10.1039/c2cs35234f pmid: 23034597
[61]
Lang J P, Liu J, Chen M Q, Lu J M, Bian G Q, Xin X Q. J. Chem. Soc. ,Chem. Commun., 1994,(23):2665.
[62]
Chen J, Yin P, Zhang Q, Li C, Xin X. Spectrochim. Acta, Part A, 2001,57A(12):2485.
[63]
Chen J, Zhang R. Chem. Let., 2011,40(1):56. http://www.journal.csj.jp/doi/10.1246/cl.2011.56

doi: 10.1246/cl.2011.56
[64]
Chen J X(陈金喜), Zhang R B(张若冰). 东南大学学报,自然科学版(Journal of Southeast University (Natural Science Edition)), 2011,41(4):889.
[65]
Pichon A, James S L. Crystengcomm, 2008,10(12):1839. http://xlink.rsc.org/?DOI=b810857a

doi: 10.1039/b810857a
[66]
杨彧(Yang Y), 贾殿赠(Jia D Z), 葛炜炜(Ge W W), 金春飞(Jin C F), 忻新泉(Xin X Q). 无机化学学报(Chin. J. Inorg. Chem.), 2004,20(8):881. b719f42d-283e-4831-b06f-2bccea2817cbhttp://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20040801&flag=1
[67]
Ye X R, Jia D Z, Yu J Q, Xin X Q, Xue Z L. Adv. Mater., 1999,11(11):941. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095
[68]
Xu J F, Ji W, Shen Z X, Tang S H, Ye X R, Jia D Z, Xin X Q. Solid State Chem., 1999,147(2):516. https://linkinghub.elsevier.com/retrieve/pii/S0022459699984098

doi: 10.1006/jssc.1999.8409
[69]
沈茹娟(Shen R J), 贾殿赠(Jia D Z), 梁凯(Liang K), 忻新泉(Xin X Q), 王疆瑛(Wang J Y). 无机化学学报(Chin. J. Inorg. Chem.), 2000,16(6):906. 18fec11f-4144-43a6-9986-65f53d077167http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20000608&flag=1
[70]
Li F, Chen L Y, Chen Z Q, Xu J Q, Zhu J M, Xin X Q. Mater. Chem. Phys., 2002,73(2/3):335. https://linkinghub.elsevier.com/retrieve/pii/S0254058401003571

doi: 10.1016/S0254-0584(01)00357-1
[71]
雷立旭(Lei L X), 范珍珍(Fan Z Z), 李小恒(Li X H). CN201710601232 6, 2017.
[72]
雷立旭(Lei L X), 张东(Zhang D), 邰建(Tai J) 魏会敏(Wei H M), 范珍珍(Fan Z Z), 周言庆(Zhou Y Q). CN201810418574. 9, 2019.
[1] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[2] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[3] Chao Xie, Bo Zhou, Ling Zhou, Yujie Wu, Shuangyin Wang. Defect with Catalysis [J]. Progress in Chemistry, 2020, 32(8): 1172-1183.
[4] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[5] Wang Ailing, Zheng Xueliang, Zhao Zhuangzhi, Li Changping, Zheng Xuefang. Deep Eutectic Solvents to Organic Synthesis [J]. Progress in Chemistry, 2014, 26(05): 784-795.
[6] . New Advances of Knoevenagel Reaction Assisted with Physical Technologies [J]. Progress in Chemistry, 2010, 22(11): 2126-2133.
[7] Feng Chao Liu Saiwen Peng Shengming Yi Bing Deng Guojun. Decarboxylative C-C Bond Formations [J]. Progress in Chemistry, 2010, 22(07): 1403-1413.
[8] Li Nan, Liu Weijun, Gong Liuzhu. Asymmetric Organocatalysis [J]. Progress in Chemistry, 2010, 22(07): 1362-1379.
[9] Wu Suxiang Fan Honglei Cheng Yan Wang Qian Han Buxing. Catalytic Organic Reactions in CO2/H2O Medium [J]. Progress in Chemistry, 2010, 22(07): 1286-1294.
[10] Zhang Xiaochun, Zhang Suojiang, Zuo Yong, Zhao Guoyang, Zhang Xiangping. Preparation and Applications of Ionic Liquids [J]. Progress in Chemistry, 2010, 22(07): 1499-1508.
[11] Ding Ling He Tianxi Xiong Yun Wu Jiafeng Chen Ligong Chen Guoxu. Ionic Liquids as Novel Lubricants [J]. Progress in Chemistry, 2010, 22(0203): 298-308.
[12] Cai Weiquan Cheng Bei Zhang guangxu Liu Xiaoping. Developing the Green Chemistry Principles [J]. Progress in Chemistry, 2009, 21(10): 2001-2008.
[13] Huang Qiang Wang Lili Zheng Baozhong Long Quan. Green Organic Reactions in Phosphonium Salt Ionic Liquid Media [J]. Progress in Chemistry, 2009, 21(09): 1782-1791.
[14] Xu Feng|Peng Changlan|Lv Hongxia. Applications of Polysaccharides in Synthesis of Metal Nanomaterials [J]. Progress in Chemistry, 2008, 20(0203): 273-279.
[15] Kou Yuan** |He Ling. Ionic Liquids in Green Chemistry: Today's Solvent or Tomorrow's Solution? [J]. Progress in Chemistry, 2008, 20(01): 6-10.