中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 1885-1894 DOI: 10.7536/PC200327 Previous Articles   Next Articles

• Review •

Rare-Earth Metal Complexes-Mediated Stereoselective Polymerization of Aromatic Polar Vinyl Monomers

Zehuai Mou1,**(), Yinjun Wang1, Hongyan Xie2,**()   

  1. 1 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
    2 China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314000, China
  • Received: Revised: Online: Published:
  • Contact: Zehuai Mou, Hongyan Xie
  • Supported by:
    the National Natural Science Foundation of China(No. 21805143); the National Natural Science Foundation of China(21801097); the Natural Science Foundation of Ningbo(No. 2018A610118); and the K. C. Wong Magna Fund in Ningbo
Richhtml ( 24 ) PDF ( 800 ) Cited
Export

EndNote

Ris

BibTeX

It has been a long-standing research topic in the field of coordination polymerization to improve the stereoregularity of polymers because the stereoregularity has an important influence on the physical and mechanical properties. Over the past few decades, coordination polymerization has gained great achievement in the field of stereospecific polymerization of nonpolar monomers, such as α-olefins, styrene and conjugated dienes. However, the polyolefins suffer from poor surface properties and compatibility and are difficult to be post-functionalized due to their nonpolar nature and stable chemical properties. Therefore, it is of great significance to introduce polar group into the nonpolar polyolefins via stereoselective polymerization of polar monomers. In traditional coordination polymerization, the polar atom/group on the monomer is readily coordinated to the Lewis-acidic active metal center, consequently the catalyst systems lose stereo-control or even activity. Therefore, the combination of properly chosen ancillary ligand, metal center and polar monomers is of great significance for stereo-controlled polymerization of vinyl monomers. In recent years, a variety of rare-earth metal complexes have been exploited for the stereospecific polymerization of aromatic polar vinyl monomers, e.g. 2-vinyl pyridine, hetero-atom functionalized styrene and boraza(BN) aromatic vinyl monomer, and great breakthrough has been achieved on the stereoregularity control. These interesting results enrich the understanding of the polar atom/group in the coordination polymerization. Herein, the review focuses on the species of the aromatic polar monomers, summarizes the influence of the backbone structure, electronic effect, steric hindrance of the ancillary ligands, rare-earth metal, and solvent effect on polymerization activity and stereo-selectivity, and discusses the proper related polymerization mechanism.

Contents

1 Introduction

2 2-vinylpyride stereoselective polymerization

2.1 Bis(phenolate) rare-earth metal complexes

2.2 Amido and imino rare-earth metal complexes

2.3 Bis-metallic rare-earth complexes

2.4 Other rare-earth metal complexes

2.5 Proposed 2-VP polymerization mechanism

3 Heteroatom-containing styrene stereoselective polymerization

3.1 N-containing styrene polymerization

3.2 O/S-containing styrene polymerization

3.3 Halogen-containing styrene polymerization

3.4 Si-containing styrene polymerization

4 Boraza(BN) aromatic vinyl monomers polymerization

5 Conclusion and outlook

Fig.1 Bis(phenolate) rare-earth metal complexes
Fig.2 Amido and imino rare-earth metal complexes
Fig.3 Bis-metallic rare-earth complexes
Fig.4 Other rare-earth metal complexes
Scheme 1 Proposed initiation and propagation mechanism of 2-VP polymerization[24,27]
Fig.5 Computed energy profiles for insertion of the first two 2-VP molecules[36]. Reprinted with permission from Ref[36]. Copyright(2019) Royal Society of Chemistry
Fig.6 Catalysts for hetero-atom functionalized styrene
Fig.7 Representative boraza(BN) aromatic vinyl monomers
Fig.8 Catalysts for BN 2-vinylnaphthalene
[1]
Philipp D M , Muller R P , Goddard W A , Storer J , McAdon M , Mullins M . J. Am. Chem. Soc., 2002, 124: 10198.
[2]
Ishihara N , Seimiya T , Kuramoto M , Uoi M . Macromolecules, 1986, 19: 2464.
[3]
Rodrigues A S , Kirillov E , Carpentier J F . Coord. Chem. Rev., 2008, 252: 2115.
[4]
徐铁齐( Xu T Q ). 化学进展( Progress in Chemistry), 2017, 29( 20): 285.
[5]
Luo J X , Li M C , Xin M H , Sun W F . Macromol. Chem. Phys., 2015, 216: 1646.
[6]
Soum A , Fontanille M . Makromol. Chem., 1982, 183: 1145.
[7]
Hubert P , Soum A , Fontanille M . Macromol. Chem. Phys., 1995, 196: 1023.
[8]
He J H , Zhang Y T , Chen E Y X . Synlett., 2014, 25: 1534.
[9]
Natta G , Mazzanti G , DallAsta G , Longi P . Makromol. Chem., 1960, 37: 160.
[10]
Natta G , Mazzanti G , Longi P , DallAsta G , Bernardini F . J. Polym. Sci., 1961, 51: 487.
[11]
Soum A , Fontanille M . Makromol. Chem., 1980, 181: 799.
[12]
Soum A , Fontanille M . Makromol. Chem., 1981, 182: 1743.
[13]
Deakin L , DenAuwer C , Revol J F , Andrews M P . J. Am. Chem. Soc., 1995, 117: 9915.
[14]
Hogen-Esch T E , Jin Q , Dimov D . J. Phys. Org. Chem., 1995, 8: 222.
[15]
Dimov D K , Hogen-Esch T E . Macromolecules, 1995, 28: 7394.
[16]
Xu T Q , Yang G W , Liu C , Lu X B . Macromolecules, 2017, 50: 515.
[17]
Zhao W , Cui D , Liu X , Chen X . Macromolecules, 2010, 43: 6678.
[18]
Amgoune A , Thomas C M , Roisnel T , Carpentier J F . Chem. Eur. J., 2006, 12: 169.
[19]
Carpentier J F. Macromol. Rapid Commun., 2010, 31: 1696.
[20]
Ligny R , Hanninen M M , Guillaume S M , Carpentier J F . Angew. Chem. Int. Ed., 2017, 56: 10388.
[21]
Altenbuchner P T , Soller B S , Kissling S , Bachmann T , Kronast A , Vagin S I , Rieger B . Macromolecules, 2014, 47: 7742.
[22]
Altenbuchner P T , Adams F , Kronast A , Herdtweck E , Pothig A , Rieger B . Polym. Chem., 2015, 6: 6796.
[23]
Kronast A , Reiter D , Altenbuchner P T , Vagin S I , Rieger B . Macromolecules, 2016, 49: 6260.
[24]
Xu T Q , Yang G W , Lu X B . ACS Catal., 2016, 6: 4907.
[25]
Xu T Q , Yu Z Q , Li C H . Polyhedron, 2019, 165: 68.
[26]
Kaneko H , Nagae H , Tsurugi H , Mashima K . J. Am. Chem. Soc., 2011, 133: 19626.
[27]
Mou Z , Zhuang Q , Xie H , Luo Y , Cui D . Dalton Trans., 2018, 47: 14985.
[28]
Zhuang Q , Mou Z , Gu J , Xie H , Luo Y . Z. Anorg. Allg. Chem., 2020, 646: 70.
[29]
Li M , Wang C , Chen J , Guo Z , Mou Z , Luo Y . Dalton Trans., 2018, 47: 15967.
[30]
Oishi M , Yoshimura R , Nomura N . Inorg. Chem., 2019, 58: 13755.
[31]
Wang C , Chen J , Xu W , Mou Z , Yao Y , Luo Y . Inorg. Chem., 2020, 59: 3132.
[32]
Zhang N , Salzinger S , Soller B S , Rieger B . J. Am. Chem. Soc., 2013, 135: 8810.
[33]
Yan C , Xu T Q , Lu X B . Macromolecules, 2018, 51: 2240.
[34]
Yan C , Liu Z X , Xu T Q . Polym. Chem., 2020, 11: 2044.
[35]
Yang J , Yu Y , Qu J , Luo Y . Dalton Trans., 2017, 46: 16993.
[36]
Zhao Y , Lu H , Luo G , Kang X , Hou Z , Luo Y . Catal. Sci. Technol., 2019, 9: 6227.
[37]
Kawabe M , Murata M . Macromol. Chem. Phys., 2001, 202: 3157.
[38]
Kim Y , Do Y . Macromol. Rapid Commun., 2000, 21: 1148.
[39]
Kim Y , Park S , Han Y , Do Y . Bull. Korean Chem. Soc., 2004, 25: 1648.
[40]
Grassi A , Longo P , Proto A , Zambelli A . Macromolecules, 1989, 22: 104.
[41]
Shi Z , Guo F , Li Y , Hou Z . J. Polym. Sci., Part A: Polym. Chem., 2015, 53: 5.
[42]
Liu D , Wang R , Wang M , Wu C , Wang Z , Yao C , Liu B , Wan X , Cui D . Chem. Commun., 2015, 51: 4685.
[43]
Wang Z , Liu D , Cui D . Macromolecules, 2016, 49: 781.
[44]
Liu D , Yao C , Wang R , Wang M , Wang Z , Wu C , Lin F , Li S , Wan X , Cui D . Angew. Chem. Int. Ed., 2015, 54: 5205.
[45]
Chai Y , Wang L , Liu D , Wang Z , Run M , Cui D . Chem. Eur. J., 2019, 25: 2043.
[46]
Liu D , Wang M , Chai Y , Wan X , Cui D . ACS Catal., 2019, 9: 2618.
[47]
Guo F , Jiao N , Jiang L , Li Y , Hou Z . Macromolecules, 2017, 50: 8398.
[48]
Zhao Y , Luo G , Kang X , Guo F , Zhu X , Zheng R , Hou Z , Luo Y . Chem. Commun., 2019, 55: 6689.
[49]
Wang Z C , Wang M Y , Liu J Y , Liu D T , Cui D M . Chem. Eur. J., 2017, 23: 18151.
[50]
Wang T T , Liu D T , Cui D M . Macromolecules, 2019, 52: 9555.
[51]
Guo F , Wang B , Ma H , Li T , Li Y . J. Polym. Sci., Part A: Polym. Chem., 2016, 54: 735.
[52]
Yu H , Yang K , Niu H , Yu J , Dong J , Wang J , Li Y . Macromol. Rapid Commun., 2019, 40: 1900048.
[53]
Lin H , McConnell C R , Jilus B , Liu S Y , Jäkle F . Macromolecules, 2019, 52: 4500.
[54]
van de Wouw H L, Lee J Y , Awuyah E C , Klausen R S. Angew. Chem. Int. Ed., 2018, 57: 1673.
[55]
van de Wouw H L, Awuyah E C , Baris J I , Klausen R S. Macromolecules, 2018, 51: 6359.
[56]
van de Wouw H L, Lee J Y , Klausen R S. Chem. Commun., 2017, 53: 7262.
[57]
Thiedemann B , Gliese P J , Hoffmann J , Lawrence P G , Sönnichsen F D , Staubitz A . Chem. Commun., 2017, 53: 7258.
[58]
Wan W M , Baggett A W , Cheng F , Lin H , Liu S Y , Jäkle F . Chem. Commun., 2016, 52: 13616.
[59]
Mendis S N , Zhou T , Klausen R S . Macromolecules, 2018, 51: 6859.
[60]
Huang J , Jiang Y , Zhang Z , Li S , Cui D . Macromol. Rapid Commun., 2020, 41( 10): 2000038.
[1] He Qiao, Yin Zhongqiong, Chen Huabao, Zhang Zumin, Wang Xianxiang, Yue Guizhou. Catalytic Asymmetric Syntheses of Indenes and Their Derivatives [J]. Progress in Chemistry, 2016, 28(6): 801-813.
[2] Wang Jiandong, Xu Jiaxi. Stereoselective Models for the Electrophilic Addition on the Double Bond Adjacent to A Chiral Centre [J]. Progress in Chemistry, 2016, 28(6): 784-800.
[3] Jiang Kun, Chen Yingchun. The Development of Asymmetric Trienamine Catalysis [J]. Progress in Chemistry, 2015, 27(2/3): 137-145.
[4] Zhu Yingguang, Di Changwei, Hu Wenhao. Asymmetric Multicomponent Reactions [J]. Progress in Chemistry, 2010, 22(07): 1380-1396.
[5] Xu Jiaxi**. Microwave Irradiation and Selectivities in Organic Reactions [J]. Progress in Chemistry, 2007, 19(05): 700-712.