中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1252-1263 DOI: 10.7536/PC200209 Previous Articles   Next Articles

• Review •

Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor

Ding Jingjing1, Lili Huang1, Haiyan Xie1,**   

  1. 1. School of Life Science, Beijing Institute of Technology, Beijing 100081, China
  • Received: Revised: Online: Published:
  • Contact: Haiyan Xie
  • Supported by:
    the Natural Science Foundation of China(21874011)
Richhtml ( 56 ) PDF ( 770 ) Cited
Export

EndNote

Ris

BibTeX

Optical technology plays a vital role in the field of biomedicine. It not only enables visualization of physiological or pathological processes at the cellular and subcellular dimensions in living subjects, but also improves the specificity and sensitivity of disease treatment. However, ordinary optical technology faces many challenges, including relatively low tissue penetration depth, low signal-to-noise ratio, and autofluorescence of the tissue. To overcome these problems, many researchers have gradually begun to focus on self-luminous technologies, including chemiluminescence, bioluminescence, and Cherenkov luminescence. Among them, chemiluminescence(CL) is a kind of light radiation phenomenon, which is produced by chemical substances in the process of chemical reactions. It has many advantages, including high sensitivity, no need for external light source excitation, breaking through the limit of tissue penetration depth, and improving the signal-to-noise ratio. These characteristics provide new ideas for the further development of optical imaging and treatment technology. However, due to the hydrophobicity of the chemiluminescent substance and other problems, its application in the field of biomedicine has been limited. To solve these problems, researchers have begun to combine nanotechnology with chemiluminescence technology, which not only expands the application range of chemiluminescence, but also further promotes the diagnosis and treatment of diseases. On this basis, the article first analyzes the molecular mechanism of chemiluminescence, secondly summarizes the application of chemiluminescence in the diagnosis and treatment of inflammation and tumor, and discusses the problems encountered in practical applications and the future development direction.

Contents

1 Introduction

2 The molecular mechanisms of chemiluminescence

2.1 Direct chemiluminescence

2.2 Indirect chemiluminescence

3 Application of nanoparticles-based chemiluminescence in inflammation and tumor diagnosis

3.1 Nanoparticles-based luminol chemiluminescence imaging

3.2 Nanoparticles-based oxalate peroxide chemiluminescence imaging

4 Application of nanoparticles-based chemiluminescence in tumor treatment

4.1 Nanoparticles-based luminol luminescence-induced tumor treatment

4.2 Nanoparticles-based oxalate peroxide luminescence-induced tumor treatment

4.3 Combination of chemiluminescence-induced photodynamic therapy and other tumor therapies

5 Conclusion and outlook

Fig.1 Mechanism for luminol chemiluminescence[18~22]
Fig.2 (a) Formation of 1,2-dioxetanedione[26];(b) Schuster’s CIEEL mechanism on the 1,2-dioxetanedione[27,28]
Fig.3 Application of gold nanoparticles in enhancing luminous intensity[40]
Fig.4 (A) The spectrum of Luminol-R;(B) The tumor metastases imaging of Luminol-R nanoparticles[41];(C) Construction and luminescence mechanism of DiI-DiD nanobubbles;(D) The tumor imaging of DiI-DiD nanobubble[42]
Fig.5 (a) FPOC NPs and in vivo CL imaging of arthritis in the LPS induction model[46];(b) Construction of wavelength-tunable nanoparticles and in vivo imaging of arthritis[47]
Fig.6 Construction of SPN-NIR nanoparticles and the imaging of neuroinflammation and peritonitis[52]
Fig.7 (a) Fabrication process of the CSN and its application in intracellular oxidase-catalyzed biomarker detection;(b) Response of G-CSN-labeled cells for insulin sensitizer screening[53]
Fig.8 (a) Construction of the CLP and the mechanism of photodynamic therapy;(b) Tumor suppressive effect[64]
Fig.9 (a) Schematic representation of the mechanism of ROS generation for PDT and fluorescence imaging upon the addition of chemiluminescence substrates;(b) Normalized absorption spectra of m-THPC and HO-Pdots and emission spectra of HO-Pdots and the chemiluminescence of luminol;(c) Comparison of the absorbance change of ABDA by HO-Pdots with or without m-THPC doped as a function of irradiation time[65]
Fig.10 (a) Construction of the CL-induced y-CDs-Ce6 PDT system and the mechanism of photodynamic therapy;(b) Normalized absorption spectra of y-CDs and Ce6 and emission spectra of y-CDs and the luminol-H2O2-HRP CL system;(c) Tumor inhibition of mice after 20 days of treatments[66]
Fig.11 Construction of POCL and the principle of singlet oxygen production and the therapeutic effects [68]
Fig.12 The application of chemiluminescence in drug delivery[69]
Fig.13 Construction of Hb-NPs@liposome and the mechanism of photodynamic and chemotherapy combined therapy[70]
Fig.14 Construction of bionic nanoparticles and the principle of singlet oxygen production and the therapeutic effects in lung metastasis model [71]
[1]
Hercules D M. Accounts of Chemical Research, 1969, 2: 301.https://pubs.acs.org/doi/abs/10.1021/ar50022a003

doi: 10.1021/ar50022a003
[2]
Rodríguez E , Nilges M , Weissleder R , Chen J W. J. Am. Chem. Soc., 2009, 132: 168.https://pubs.acs.org/doi/10.1021/ja905274f

doi: 10.1021/ja905274f
[3]
Lin J M , Shan X , Hanaoka S , Yamada M. Analytical Chemistry, 2001, 73: 5043.https://pubs.acs.org/doi/10.1021/ac010573%2B

doi: 10.1021/ac010573+
[4]
Gu X , Kwok R K , Lam J W Y, Tang B Z.Biomaterials, 2017, 146: 115.https://linkinghub.elsevier.com/retrieve/pii/S0142961217305677

doi: 10.1016/j.biomaterials.2017.09.004
[5]
Dios A S , Diaz-Garcia M E.Anal. Chim. Acta, 2010, 666(1/2): 1.https://linkinghub.elsevier.com/retrieve/pii/S0003267010003211

doi: 10.1016/j.aca.2010.03.038
[6]
Maeda H , Nakamura H , Fang J. Adv. Drug. Deliv. Rev., 2013, 65(1): 71.https://linkinghub.elsevier.com/retrieve/pii/S0169409X12003201

doi: 10.1016/j.addr.2012.10.002
[7]
Zhang F , Zhao L , Wang S , Yang J , Lu G , Luo N , Gao X , Ma G , Xie H Y , Wei W. Advanced Functional Materials, 2018, 28(1): 1703326.http://doi.wiley.com/10.1002/adfm.v28.1

doi: 10.1002/adfm.v28.1
[8]
Zou Y , Liu Y , Yang Z , Zhang D , Lu Y , Zheng M , Xue X , Geng J , Chung R , Shi B. Adv. Mater., 2018, 30(51): e1803717.
[9]
Gu Z , Chen X. Advanced Drug Delivery Reviews, 2018, 127: 1.https://linkinghub.elsevier.com/retrieve/pii/S0169409X18300978

doi: 10.1016/j.addr.2018.05.004
[10]
Zhang Z F , Cui H , Lai C Z , Liu L J. Analytical Chemistry, 2005, 77(10): 3324.https://pubs.acs.org/doi/10.1021/ac050036f

doi: 10.1021/ac050036f
[11]
Liu Y , Shen W , Li Q , Shu J , Gao L , Ma M. Nat. Commun., 2017, 8: 1003.http://www.nature.com/articles/s41467-017-01101-6

doi: 10.1038/s41467-017-01101-6
[12]
Wu Y , Yuan M , Song J , Chen X , Yang H. ACS Nano, 2019, 13: 8505.https://pubs.acs.org/doi/10.1021/acsnano.9b05124

doi: 10.1021/acsnano.9b05124
[13]
Biparva P , Abedirad S M , Kazemi S Y. Spectrochim. Acta. A Mol. Biomo. Spectrosc., 2015, 145: 454.https://linkinghub.elsevier.com/retrieve/pii/S1386142515003157

doi: 10.1016/j.saa.2015.03.019
[14]
Giokas D L , Vlessidis A G , Tsogas G Z , Evmiridis N P. TrAC Trends in Analytical Chemistry, 2010, 29: 1113.https://linkinghub.elsevier.com/retrieve/pii/S0165993610001883

doi: 10.1016/j.trac.2010.07.001
[15]
Yan Y , Shi P , Song W , Bi S. Theranostics, 2019, 9: 4047.http://www.thno.org/v09p4047.htm

doi: 10.7150/thno.33228
[16]
Lind J , Merenyi G , Eriksen T E. J.Am. Chem. Soc., 1983, 105: 7655.https://pubs.acs.org/doi/abs/10.1021/ja00364a032

doi: 10.1021/ja00364a032
[17]
Nakamura H , Kishi Y , Shimomura O , David Morse , Woodland H. J. Am. Chem. Soc., 1989, 111: 7607.https://pubs.acs.org/doi/abs/10.1021/ja00201a050

doi: 10.1021/ja00201a050
[18]
Gaikwad A , Silva M , Pérez-Bendito D. Analytica Chimica Acta, 1995, 302: 275.https://linkinghub.elsevier.com/retrieve/pii/000326709400497A

doi: 10.1016/0003-2670(94)00497-A
[19]
Rose A L , Waite T D. Analytical Chemistry, 2001, 73: 5909.https://pubs.acs.org/doi/10.1021/ac015547q

doi: 10.1021/ac015547q
[20]
Koo J Y , Schuster G B. J. Am. Chem. Soc., 1977, 99: 6107.https://pubs.acs.org/doi/abs/10.1021/ja00460a050

doi: 10.1021/ja00460a050
[21]
Magalhaes C M , da Silva J C G E, da Silva L P .ChemPhysChem, 2016, 17: 2286.http://doi.wiley.com/10.1002/cphc.v17.15

doi: 10.1002/cphc.v17.15
[22]
Vacher M , Fdez Galvan I , Ding B W , Schramm S , BerraudPache R, Naumov P, Ferre N, Liu Y J, Navizet I, Sanjuan D, Baader W J, Lindh R.Chem. Rev., 2018, 118: 6927.https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00649

doi: 10.1021/acs.chemrev.7b00649
[23]
Chandross E A. Tetrahedron Letters, 1963, 4: 761.https://linkinghub.elsevier.com/retrieve/pii/S0040403901907129

doi: 10.1016/S0040-4039(01)90712-9
[24]
Li Z , Zhu B , Duan X , Tang W. Analytical Methods, 2019, 11(21): 2763.http://xlink.rsc.org/?DOI=C9AY00625G

doi: 10.1039/C9AY00625G
[25]
Delafresnaye L , Bloesser F R , Kockler K B , Schmitt C W , Irshadeen I M , Barner-Kowollik C. Chemistry, 2020, 26(1): 114.
[26]
Rauhut M M , Roberts B G , Semsel A M. J. Am. Chem. Soc., 1966, 88: 3604.https://pubs.acs.org/doi/abs/10.1021/ja00967a025

doi: 10.1021/ja00967a025
[27]
Koo J Y , Schuster G B. J.Am. Chem. Soc., 1978,100: 4496.https://pubs.acs.org/doi/abs/10.1021/ja00482a030

doi: 10.1021/ja00482a030
[28]
Ciscato L F , Bartoloni F H , Bastos E L , Baader W J. J. Org. Chem., 2009, 74: 8974.https://pubs.acs.org/doi/10.1021/jo901402k

doi: 10.1021/jo901402k
[29]
Choi H S , Gibbs S L , Lee J H , Kim S H , Ashitate Y , Liu F. Nat. Biotechnol., 2013, 31: 148.https://doi.org/10.1038/nbt.2468

doi: 10.1038/nbt.2468
[30]
Gioux S , Choi H S , Frangioni J V. Molecular Imaging, 2010, 9: 7290.
[31]
Hsu C Y , Chen C W , Yu H P , Lin Y F , Lai P S. Biomaterials, 2013, 34: 1204.d86f1ad5-bcf2-4580-97d9-e824f438708dhttp://dx.doi.org/10.1016/j.biomaterials.2012.08.044

doi: 10.1016/j.biomaterials.2012.08.044
[32]
Diao S , Hong G , Robinson J T , Jiao L , Antaris A L , Wu J Z. J. Am. Chem. Soc., 2012, 134: 16971.48657153-faac-4075-9bce-b5831f43985ahttp://dx.doi.org/10.1021/ja307966u

doi: 10.1021/ja307966u
[33]
Green O , Gnaim S , Blau R , Eldar-Boock A , Satchi-Fainaro R , Shabat D N. J. Am. Chem. Soc., 2017, 139: 13243.https://pubs.acs.org/doi/10.1021/jacs.7b08446

doi: 10.1021/jacs.7b08446
[34]
Kuchimaru T , Suka T , Hirota K , Kadonosono T , Kizaka-Kondoh S. Sci. Rep., 2016, 6: 34311.https://doi.org/10.1038/srep34311

doi: 10.1038/srep34311
[35]
Kotagiri N , Sudlow G P , Akers W J , Achilefu S. Nat. Nanotechnol., 2015, 10: 370.https://doi.org/10.1038/nnano.2015.17

doi: 10.1038/nnano.2015.17
[36]
Duan C , Cui H , Zhang Z , Liu B , Guo J , Wang W. Journal of Physical Chemistry C, 2007, 111(12): 4561.https://pubs.acs.org/doi/10.1021/jp068801x

doi: 10.1021/jp068801x
[37]
Guo J Z , Cui H , Zhou W , Wang W. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193: 89.https://linkinghub.elsevier.com/retrieve/pii/S1010603007003267

doi: 10.1016/j.jphotochem.2007.04.034
[38]
Xu S L , Cui H. Luminescence, 2007, 22: 77.
[39]
Yuan H , Chong H , Wang B , Zhu C , Liu L , Yang Q. J. Am. Chem. Soc., 2012, 134: 13184.
[40]
Du J , Jin J , Liu Y , Li J , Tokatlian T , Lu Z , Segura T , Yuan X , Yang X , Lu Y. ACS Nano, 2014, 8: 9964.
[41]
Zhang N , Francis K P , Prakash A , Ansaldi D. Nat. Med., 2013, 19: 500.
[42]
Liu R , Tang J , Xu Y , Dai Z. ACS Nano, 2019, 13: 5124.
[43]
Zhang K , Kaufman R J. Nature, 2008, 454: 455.
[44]
Giorgio M , Trinei M , Migliaccio E , Pelicci P G. Nature, 2007, 8: 722.
[45]
Lee D , Khaja S , Velasquez-Castano J C, Dasari M, Sun C, Petros J.Nat. Mater., 2007, 6: 765.
[46]
Lim C K , Lee Y D , Na J , Oh J M , Her S , Kim K. Advanced Functional Materials, 2010, 20: 2644.
[47]
Lee Y D , Lim C K , Singh A , Koh J , Kim J , Kwon I , Kim S. ACS Nano, 2012, 6: 6759.
[48]
Tang W , Lu A Y. Drug MeTab. Rev., 2010, 42: 225.
[49]
Shuhendler A J , Pu K , Cui L , Uetrecht J P , Rao J. Nat. Biotechnol., 2014, 32: 373.
[50]
Seo Y H , Cho M J , Cheong O J , Jang W D , Ohulchanskyy T Y , Lee S. Biomaterials, 2015, 39: 225.
[51]
Seo Y H , Singh A , Cho H J , Kim Y , Heo J , Lim C K. Biomaterials, 2016, 84: 111.
[52]
Zhen X , Zhang C , Xie C , Miao Q , Lim K L , Pu K. ACS Nano, 2016, 10: 6400.
[53]
Jie X , Yang H , Wang M , Zhang Y , Wei W , Xia Z. Angew. Chem. Int. Ed. Engl., 2017, 56: 14596.
[54]
Chatterjee D K , Fong L S , Zhang Y. Adv. Drug. Deliv. Rev. 2008, 60(15): 1627.
[55]
Fan W , Yung B , Huang P , Chen X. Chem. Rev., 2017, 117(22): 13566.
[56]
Yano S , Hirohara S , Obata M , Hagiya Y , Ogura S , Ikeda A , Kataoka H , Tanaka M , Joh T. Journal of Photochemistry and Photobiology C, 2011, 12: 46.
[57]
Sztandera K , Gorzkiewicz M , Klajnert-Maculewicz B. Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 1509.
[58]
Shi X , Zhang CY , Gao J , Wang Z. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11.
[59]
Zhao J , Duan L , Wang A , Fei J , Li J. Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 1583.
[60]
Lucky S S , Soo K C , Zhang Y. Chem. Rev., 2015, 115: 1990.
[61]
Qian H S , Guo H C , Ho P C , Mahendran R , Zhang Y. Small, 2009, 5: 2285.
[62]
Clement S , Deng W , Camilleri E , Wilson B C , Goldys E M. Sci. Rep., 2016, 6: 19954.
[63]
Aldo R , Massimo G , Elisa M , Mara M , Patrizia P. Analytical Chemistry, 2003, 1: 462.
[64]
Xu X , An H , Zhang D , Tao H , Dou Y , Li X H , Huang J , Zhang J. Sci. Adv., 2019, 5: 2953.
[65]
Zhang Y , Pang, L, Ma C , Tu Q , Zhang R , Saeed E , Mahmoud A E , Wang J. Anal. Chem., 2014, 86(6): 3092.
[66]
Yang K , Wang C , Wei X , Ding S , Liu C , Tian F , Li F. Bioconjugate Chem., 2020, 31(3): 595.
[67]
Mao D , Wu W , Ji S , Chen C , Hu F , Kong D , Ding D , Liu B. Chem., 2017, 3: 991.
[68]
Wu M , Wu L , Li J , Zhang D , Zhang X , Lin X , Liu G , Liu X , Liu J L. Theranostics, 2019, 9: 20.
[69]
Tang Y , Lu X , Yin C , Zhao H , Hu X , Yang Z , Lu F , Fan Q , Huang W. Chemical Science, 2019, 10: 1401.
[70]
Jiang L , Bai H , Liu L , Lv F , Ren X , Wang S. Angew. Chem. Int. Ed. Engl., 2019, 58: 10660.
[71]
Yu Z , Zhou P , Pan W , Li N , Tang B. Nat. Comm., 2018, 9: 5044.
[72]
Chen Y , Chen H , Shi J. Adv. Mater., 2013, 25(23): 3144.
[73]
Nel A , Ruoslahti E , Meng H. ACS Nano, 2017, 11(10): 9567.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[4] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[7] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[8] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[9] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[10] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[11] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[12] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[13] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[14] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[15] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.