中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (4): 361-370 DOI: 10.7536/PC200106   Next Articles

Construction and Optoelectrical Properties of Chiral Perovskite Nanomaterials

Minghao Zhou1,2, Shuang Jiang1, Tianyong Zhang1,**(), Yonghong Shi2, Xue Jin2, Pengfei Duan2,3,**()   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2. Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
  • Received: Revised: Online: Published:
  • Contact: Tianyong Zhang, Pengfei Duan
  • Supported by:
    the National Natural Science Foundation of China(21802027, 91856115, 51673050)
Richhtml ( 202 ) PDF ( 2327 ) Cited
Export

EndNote

Ris

BibTeX

Metal halide perovskite has become a promising semiconductor material due to its diverse chemical structure and excellent optoelectronic properties. After introducing organic chiral molecule into the perovskite framework, chiral perovskite nanomaterials can be obtained, which has greatly promoted the rapid development of smart optoelectronic materials and spin electronic devices. This paper reviews the latest research progress in the construction of chiral perovskite nanomaterials, including one-dimensional chiral perovskite nanowires, two-dimensional and quasi-two-dimensional chiral organic-inorganic hybrid perovskite nanosheets, three-dimensional chiral perovskite nanocrystals, chiral perovskite nanocrystals induced in supramolecular assembly system and the mechanism for the formation of chirality. It is worth noting that different types of chiral perovskite nanomaterials show excellent optoelectronic properties and huge application prospects in terms of circular dichroism, circularly polarized luminescence, ferroelectricity and spintronics. However, the research on chiral perovskite nanomaterials is still in its infancy, and many of its mechanisms are still controversial, and many basic and applied work needs to be carried out.

Contents

1 Introduction

2 Construction strategy of chiral perovskite

3 Research progresses of the chiral perovskites in different dimensions

3.1 1D chiral perovskite nanowires

3.2 2D chiral perovskite film

3.3 Quasi-2D chiral perovskite film

3.4 3D chiral perovskite nanocrystals

3.5 Co-assembly of supramolecular gel and achiral perovskite nanocrystals

4 Conclusion and outlook

Fig. 1 (a) Schematic diagram of chiral perovskite structure with different dimensions; (b) Chiral amine cations participate in crystallization of perovskite; (c) Surface chiral ligand-induced perovskite nanocrystals; (d) Chiral perovskite nanocrystals induced in supramolecular assembly system
Fig. 2 [(S)-Phenethylammonium][PbBr3] 1D chiral perovskite single crystal (a) viewed along the b axis; (b) viewed along the a axis[16]; (c) Distorted PbCl6 octahedron with inhomogeneous Pb—Cl bond lengths in 1D chiral perovskite C5H14N2PbCl4·H2O; (d) Infinite double-chain formed by distorted PbCl6 octahedra; (e) Packing framework of C5H14N2PbCl4·H2O; (f) Photoluminescence photographs and corresponding chromaticity coordinates of C5H14N2PbCl4·H2O excited at 330 nm, 344 nm, and 360 nm[27]
Fig. 3 (a) Molecular structures of R-MBA and S-MBA (up), crystalline structures of (R-MBA)2PbI4 and (S-MBA)2PbI4 (down); (b) Transmission CD spectra (up), and normalized extinction spectra (down) of (R-MBA)2PbI4, (S-MBA)2PbI4 and (rac-MBA)2PbI4 [30]
Fig. 4 (a) Up: Packing views of the crystal structures of R-LIPF and S-LIPF, showing a mirror-image relationship, down: Hydrogen-bonding and halogen-halogen interactions between the organic cations and inorganic layers[33]; Circularly polarized photoluminescence in 2D chiral perovskites (R- and S-MBA)2PbI4: (b) Statistical histogram of the degree of circularly polarized PL |P| for (R- and S-MBA)2PbI4 excited by a 473 nm laser at 77 K; (c) Degree of circularly polarized PL (P) as a function of temperature of two microplates for each type of chiral 2D perovskites[34]
Fig. 5 (a) Schematic illustration of the structures of RDCPs with different inorganic layers (<n>). Chirality decreases with increasing <n> layers; (b) Degree of photoluminescence polarization for rac-RDCP, R-RDCP, and S-RDCP with magnetic field varied from -7 T to 7 T[42]
Fig. 6 (a) Single-photon or two-photon circularly polarized emission of perovskite nanocrystals; (b)Two-photon upconverted circularly polarized luminescence (TP-UCPL) spectra of chiral perovskite nanocrystals in PMMA film; (c) Schematic illustration of the origin of chirality in chiral CsPbBr3 perovskite[47]; (d) Ligand exchange on an OA-capped perovskite NC using pure enantiomers of DACH: OA-capped perovskite NC in n-hexane (left) and S-DACH-capped perovskite NC in n-hexane obtained by ligand exchange (right)[24]
Fig. 7 (a) Illustration of the possible co-assembly-induced chirality of perovskite NCs in chiral gels; (b) Mirror-image CPL spectra of the corresponding coassembly samples, λex=310 nm[25]
[1]
Mitzi D B , Feild C A , Harrison W T A , Guloy A M Nature, 1994,369:467.

doi: 10.1038/369467a0
[2]
Mitzi D B , Wang S , Feild C A , Chess C A , Guloy A M . Science, 1995,267:1473.
[3]
Stranks S D , Eperon G E , Grancini G , Menelaou C , Alcocer M J P , Leijtens T , Herz L M , Petrozza A , Snaith H J . Science, 2013,342:341. dbbaf605-4077-441c-9cb4-4be4cf785581

doi: 10.1126/science.1243982
[4]
Juarez-Perez E J , Sanchez R S , Badia L , Garcia-Belmonte G , Kang Y S , Mora-Sero I , Bisquert J . J Phys. Chem. Lett., 2014,5:2390. 2c3b219e-d68e-44b8-886b-74009800f03f http://dx.doi.org/10.1021/jz5011169

doi: 10.1021/jz5011169
[5]
Shi D , Adinolfi V , Comin R , Yuan M , Alarousu E , Buin A , Chen Y , Hoogland S , Rothenberger A , Katsiev K , Losovyj Y , Zhang X , Dowben P A , Mohammed O F , Sargent E H , Bakr O M . Science, 2015,347:519. https://www.sciencemag.org/lookup/doi/10.1126/science.aaa2725

doi: 10.1126/science.aaa2725
[6]
Zhu H , Fu Y , Meng F , Wu X , Gong Z , Ding Q , Gustafsson M V , Trinh M T , Jin S , Zhu X Y . Nature Materials, 2015,14:636.
[7]
Eperon G E , Leijtens T , Bush K A , Prasanna R , Green T , Wang J T W , McMeekin D P , Volonakis G , Milot R L , May R , Palmstrom A , Slotcavage D J , Belisle R A , Patel J B , Parrott E S , Sutton R J , Ma W , Moghadam F , Conings B , Babayigit A , Boyen H G , Bent S , Giustino F , Herz L M , Johnston M B , McGehee M D , Snaith H J . Science, 2016,354:861. https://www.sciencemag.org/lookup/doi/10.1126/science.aaf9717

doi: 10.1126/science.aaf9717
[8]
Tsai H , Nie W , Blancon J C , Stoumpos C C , Asadpour R , Harutyunyan B , Neukirch A J , Verduzco R , Crochet J J , Tretiak S , Pedesseau L , Even J , Alam M A , Gupta G , Lou J , Ajayan P M , Bedzyk M J , Kanatzidis M G , Mohite A D . Nature, 2016,536:312. https://doi.org/10.1038/nature18306

doi: 10.1038/nature18306
[9]
Bi D , Yi C , Luo J , Décoppet J D , Zhang F , Zakeeruddin Shaik M , Li X , Hagfeldt A , Grätzel M . Nature Energy, 2016,1:16142. https://doi.org/10.1038/nenergy.2016.142

doi: 10.1038/nenergy.2016.142
[10]
琚成功(Ju C G), 张宝(Zhang B), 冯亚青(Feng Y Q) . 化学进展(Prog. Chem.), 2016,28: 219. 2654eb94-56de-4922-9b02-98c2367cd1d2 http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC150311

doi: 10.7536/PC150311
[11]
闫业玲(Yan Y L), 曹俊媚(Cao J M), 孟凡宁(Meng F N), 王宁(Wang N), 高立国(Gao L G), 马廷丽(Ma T L) . 化学进展(Prog. Chem.), 2019,31:1031. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC181202

doi: 10.7536/PC181202
[12]
Yuan M , Quan L N , Comin R , Walters G , Sabatini R , Voznyy O , Hoogland S , Zhao Y , Beauregard E M , Kanjanaboos P , Lu Z , Kim D H , Sargent E H . Nature Nanotechnology, 2016,11:872. https://doi.org/10.1038/nnano.2016.110

doi: 10.1038/nnano.2016.110
[13]
Wang N , Cheng L , Ge R , Zhang S , Miao Y , Zou W , Yi C , Sun Y , Cao Y , Yang R , Wei Y , Guo Q , Ke Y , Yu M , Jin Y , Liu Y , Ding Q , Di D , Yang L , Xing G , Tian H , Jin C , Gao F , Friend R H , Wang J , Huang W . Nat. Photonics., 2016,10:699. https://doi.org/10.1038/nphoton.2016.185

doi: 10.1038/nphoton.2016.185
[14]
Lin Q , Armin A , Burn P L , Meredith P . Nat. Photonics., 2015,9:687. https://doi.org/10.1038/nphoton.2015.175

doi: 10.1038/nphoton.2015.175
[15]
Wei H , Fang Y , Mulligan P , Chuirazzi W , Fang H H , Wang C , Ecker B R , Gao Y , Loi M A , Cao L , Huang J . Nat. Photonics., 2016,10:333. https://doi.org/10.1038/nphoton.2016.41

doi: 10.1038/nphoton.2016.41
[16]
Billing D G , Lemmerer A . Acta Crystallographica Section E, 2003,59:m381. http://scripts.iucr.org/cgi-bin/paper?S1600536803010985

doi: 10.1107/S1600536803010985
[17]
Billing D G , Lemmerer A . CrystEngComm, 2006,8:686. http://xlink.rsc.org/?DOI=B606987H

doi: 10.1039/B606987H
[18]
Ben-Moshe A , Govorov A O , Markovich G. Angew. Chem. Int. Ed., 2013,52:1275. http://doi.wiley.com/10.1002/anie.201207489

doi: 10.1002/anie.201207489
[19]
Ben-Moshe A , Wolf S G , Sadan M B , Houben L , Fan Z , Govorov A O , Markovich G . Nat. Commun., 2014,5:4302. https://doi.org/10.1038/ncomms5302

doi: 10.1038/ncomms5302
[20]
Elliott S D , Moloney M P , Gun’ko Y K. Nano Lett., 2008,8:2452. https://pubs.acs.org/doi/10.1021/nl801453g

doi: 10.1021/nl801453g
[21]
Zhou Y , Yang M , Sun K , Tang Z , Kotov N A .J Am. Chem. Soc., 2010,132:6006. https://pubs.acs.org/doi/10.1021/ja906894r

doi: 10.1021/ja906894r
[22]
Mukhina M V , Maslov V G , Baranov A V , Fedorov A V , Orlova A O , Purcell-Milton F , Govan J , Gun’ko Y K. Nano Lett., 2015,15:2844. https://pubs.acs.org/doi/10.1021/nl504439w

doi: 10.1021/nl504439w
[23]
Tohgha U , Deol K K , Porter A G , Bartko S G , Choi J K , Leonard B M , Varga K , Kubelka J , Muller G , Balaz M . ACS Nano, 2013,7:11094. https://pubs.acs.org/doi/10.1021/nn404832f

doi: 10.1021/nn404832f
[24]
He T , Li J , Li X , Ren C , Luo Y , Zhao F , Chen R , Lin X , Zhang J. Appl. Phys. Lett., 2017,111:151102. http://aip.scitation.org/doi/10.1063/1.5001151

doi: 10.1063/1.5001151
[25]
Shi Y , Duan P , Huo S , Li Y , Liu M . Adv. Mater., 2018,30:1705011. http://doi.wiley.com/10.1002/adma.v30.12

doi: 10.1002/adma.v30.12
[26]
Hu T , Smith M D , Dohner E R , Sher M J , Wu X , Trinh M T , Fisher A , Corbett J , Zhu X Y , Karunadasa H I , Lindenberg A M .J Phys. Chem. Lett., 2016,7:2258. https://pubs.acs.org/doi/10.1021/acs.jpclett.6b00793

doi: 10.1021/acs.jpclett.6b00793
[27]
Peng Y , Yao Y , Li L , Wu Z , Wang S , Luo J . J. Phys. Chem. C, 2018,6:6033.
[28]
王宏磊(Wang H L), 吕文珍(Lu W Z), 唐星星(Tang X X), 陈铃峰(Chen L F), 陈润锋(Chen R F), 黄维(Huang W) . 化学进展(Prog. Chem.), 2017,29:859. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC170512
[29]
Yang Y , da Costa R C , Fuchter M J , Campbell A J . Nat. Photonics., 2013,7:634. https://doi.org/10.1038/nphoton.2013.176

doi: 10.1038/nphoton.2013.176
[30]
Ahn J , Lee E , Tan J , Yang W , Kim B , Moon J . Mater. Horizons, 2017,4:851.
[31]
Yuan C , Li X , Semin S , Feng Y , Rasing T , Xu J . Nano Lett., 2018,18:5411. https://pubs.acs.org/doi/10.1021/acs.nanolett.8b01616

doi: 10.1021/acs.nanolett.8b01616
[32]
Georgieva Z N , Bloom B P , Ghosh S , Waldeck D H. Adv. Mater., 2018,30:1800097. http://doi.wiley.com/10.1002/adma.201800097

doi: 10.1002/adma.201800097
[33]
Yang C K , Chen W N , Ding Y T , Wang J , Rao Y , Liao W Q , Tang Y Y , Li P F , Wang Z X , Xiong R G. Adv. Mater., 2019,31:1808088. https://onlinelibrary.wiley.com/toc/15214095/31/16

doi: 10.1002/adma.v31.16
[34]
Ma J , Fang C , Chen C , Jin L , Wang J , Wang S , Tang J , Li D . ACS Nano, 2019,13:3659. https://pubs.acs.org/doi/10.1021/acsnano.9b00302

doi: 10.1021/acsnano.9b00302
[35]
Xing G , Wu B , Wu X , Li M , Du B , Wei Q , Guo J , Yeow E K L , Sum T C , Huang W Nat. Commun., 2017,8:14558. https://doi.org/10.1038/ncomms14558

doi: 10.1038/ncomms14558
[36]
&#x017D;uti&#x0117; I , Fabian J , Das Sarma S . Reviews of Modern Physics, 2004,76:323. https://link.aps.org/doi/10.1103/RevModPhys.76.323

doi: 10.1103/RevModPhys.76.323
[37]
Naaman R , Waldeck D H .J Phys. Chem. Lett., 2012,3:2178. e42acfcd-6e2f-42e9-9929-a8ef4a7a9a05 http://dx.doi.org/10.1021/jz300793y

doi: 10.1021/jz300793y
[38]
Canneson D , Shornikova E V , Yakovlev D R , Rogge T , Mitioglu A A , Ballottin M V , Christianen P C M , Lhuillier E , Bayer M , Biadala L Nano Lett., 2017,17:6177. https://pubs.acs.org/doi/10.1021/acs.nanolett.7b02827

doi: 10.1021/acs.nanolett.7b02827
[39]
Odenthal P , Talmadge W , Gundlach N , Wang R , Zhang C , Sun D , Yu Z G , Valy Vardeny Z , Li Y S . Nature Physics, 2017,13:894. http://www.nature.com/articles/nphys4145

doi: 10.1038/nphys4145
[40]
Bode M , Heide M , von Bergmann K , Ferriani P , Heinze S , Bihlmayer G , Kubetzka A , Pietzsch O , Blügel S , Wiesendanger R Nature, 2007,447:190. https://doi.org/10.1038/nature05802

doi: 10.1038/nature05802
[41]
Emori S , Bauer U , Ahn S M , Martinez E , Beach G S D Nature Materials, 2013,12:611. https://doi.org/10.1038/nmat3675

doi: 10.1038/nmat3675
[42]
Long G , Jiang C , Sabatini R , Yang Z , Wei M , Quan L N , Liang Q , Rasmita A , Askerka M , Walters G , Gong X , Xing J , Wen X , Quintero-Bermudez R , Yuan H , Xing G , Wang X R , Song D , Voznyy O , Zhang M , Hoogland S , Gao W , Xiong Q , Sargent E H. , Nat. Photonics., 2018,12:528. https://doi.org/10.1038/s41566-018-0220-6

doi: 10.1038/s41566-018-0220-6
[43]
Michaeli K , Kantor-Uriel N , Naaman R , Waldeck D H. Chem. Soc. Rev., 2016,45:6478. http://xlink.rsc.org/?DOI=C6CS00369A

doi: 10.1039/C6CS00369A
[44]
Becker M , Klüner T , Wark M . Dalton T., 2017,46:3500.
[45]
Xing G , Mathews N , Sun S , Lim S S , Lam Y M , Grätzel M , Mhaisalkar S , Sum T C . Science, 2013,342:344. d592c998-f16f-4dc4-b208-4ae0b71f548e http://dx.doi.org/10.1126/science.1243167

doi: 10.1126/science.1243167
[46]
Long G , Zhou Y , Zhang M , Sabatini R , Rasmita A , Huang L , Lakhwani G , Gao W . Adv. Mater., 2019,31:1807628. https://onlinelibrary.wiley.com/toc/15214095/31/17

doi: 10.1002/adma.v31.17
[47]
Chen W , Zhang S , Zhou M , Zhao T , Qin X , Liu X , Liu M , Duan P . J Phys. Chem. Lett., 2019,10:3290. https://pubs.acs.org/doi/10.1021/acs.jpclett.9b01224

doi: 10.1021/acs.jpclett.9b01224
[48]
Naito M , Iwahori K , Miura A , Yamane M , Yamashita I. Angew. Chem. Int. Ed., 2010,49:7006. http://doi.wiley.com/10.1002/anie.201002552

doi: 10.1002/anie.201002552
[49]
Han B . Acta Physico-Chimica Sinica, 2019,35:1177. lt;![CDATA[http://www.whxb.pku.edu.cn/EN/10.3866/PKU.WHXB201904088]]>

doi: 10.3866/PKU.WHXB201904088
[50]
Huo S , Duan P , Jiao T , Peng Q , Liu M. Angew. Chem. Int. Ed., 2017,56:12174. http://doi.wiley.com/10.1002/anie.201706308

doi: 10.1002/anie.201706308
[51]
Jin X , Sang Y , Shi Y , Li Y , Zhu X , Duan P , Liu M . ACS Nano, 2019,13:2804. https://pubs.acs.org/doi/10.1021/acsnano.8b08273

doi: 10.1021/acsnano.8b08273
[52]
Han B . Acta Physico-Chimica Sinica, 2017,33:2325.
[1] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[2] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[5] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[6] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[9] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[10] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[11] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[12] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[13] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[14] Jingjing Xiao, Mu Wang, Weijie Zhang, Xiuying Zhao, Anchao Feng, Liqun Zhang. Preparation and Application of Lead Halide Perovskite-Polymer Composites [J]. Progress in Chemistry, 2021, 33(10): 1731-1740.
[15] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.