中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 562-580 DOI: 10.7536/PC190914 Previous Articles   Next Articles

• Review •

Nanopore-Based Biomolecular Detection

Zihan Lin1,3, Huang Chen1, Jiawei Dong1, Daohui Zhao2,**(), Libo Li1,**()   

  1. 1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
    2. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
    3. Chucai College, Hubei University, Wuhan 430062, China
  • Received: Revised: Online: Published:
  • Contact: Daohui Zhao, Libo Li
  • About author:
    ** e-mail: (Daohui Zhao);
  • Supported by:
    National Natural Science Foundation of China(21908046); State Key Laboratory of Pulp and Paper Engineering(SCUT201828); Hubei Natural Science Foundation(2019CFB293); Guangdong Natural Science Foundation(2019A1515011121); Guangzhou Technology Project(201804010219); Fundamental Research Funds for the Central Universities()
Richhtml ( 51 ) PDF ( 844 ) Cited
Export

EndNote

Ris

BibTeX

Nanopore-based single molecular detection technology is a sensing technology that combines the advantages of simple operation, high sensitivity, fast speed, and no labeling. It is widely used in protein detection, gene sequencing, and marker detection. The cost, sensitivity and accuracy are the main challenges in developing such technology, and to develop new nanopore materials is the key to solve them. From the perspective of selecting and designing nanopore materials, the application status of three different nanopores: biological nanopore, solid-state nanopore and novel two-dimensional(2D) material nanopore in biomolecule detection are reviewed. Meanwhile, the differences between biological nanopores and solid-state nanopores are compared in details. The article also emphasizes the experimental and simulation research progress of 2D material nanopores in biomolecule detection. Finally, the future development of nanopore-based detection technology is also discussed.

Contents

1 Introduction

2 Basic principles and molecular simulation methods of nanopore-based single molecule detection technology

2.1 The basic principle of nanopore detection

2.2 Molecular dynamics simulation

3 Application of nanopores in biomolecular detection

3.1 Application of biological nanopore in biomolecule detection

3.2 Application of solid-state nanopores in biomolecule detection

3.3 Comparison of biological nanopores and solid-state nanopores

4 Biomolecular detection with two-dimensional(2D) material nanopore

4.1 Introduction to 2D materials

4.2 Experimental study of 2D nanopore in biomolecule detection

4.3 Simulation study of 2D nanopore in biomolecule detection

5 Conclusion and outlook

Fig. 1 Development of next-generation sequencing technologies during 2004~2015[5]. Reproduced with permission from copyright(2017) Nature Publishing Group
Table 1 Comparison of available sequencing platforms[5]
Fig. 2 Schematic diagram of ionic current blockage method[26]
Table 2 The sensing principles of three electronic sensing technologies[19]. Reproduced with permission from copyright(2014), Royal Society of Chemistry
Fig. 3 Development of nanopore-based single-molecule detection technologies[42]. Reproduced with permission from copyright(2016) Nature Publishing Group
Table 3 Details of commonly utilized biological nanopores
Fig. 4 Applications of biological nanopores for the detection of nucleotides.(a~c) Detection of oligonucleotides(polydeoxyadenines(dAn), n=2, 3, 4, 5, 10) with an aerolysin pore[49]. (a) Schematic illustration of a short oligonucleotide passing through an aerolysin nanopore.(b) Representative current traces recorded without dAn and with the addition of dAn. The red triangles denote typical blockades shown in the insets.(c) Histogram for the blockade events associated with dAn with Gaussian fits.(d~f) Detection of dsDNA with phi29 nanopore[68].(d) Illustration of dsDNA translocating through a phi29 nanopore.(e) Schematic and 2D sequence of 35 bp dsDNA. Typical current trace showing the translocation of 35 bp dsDNA showing single-level events.(f) Schematic and 2D sequences of double crossover DNA(DX-DNA). Typical current trace showing the translocation of DX-DNA showing double-level events. Reproduced with permission from copyright(2016) Nature Publishing Group
Fig. 5 Applications of biological nanopores in detecting proteins. Indirect detection of protein molecules with α-HL. Comparison of current modulations measured for the initial peptide substrate and its cleaved products can be performed to determine trypsin activities[80]. Reproduced with permission from copyright(2016) American Chemical Society
Table 4 Characteristics of solid-state nanopores
Fig. 6 Detection of various dsDNA structures with a 2.5 nm SiNx nanopore[111]. The picture shows the system diagram of DNA products and mismatched DNA products(left), typical current trace(middle), semi-logarithmic plot of residence time(right). Reproduced with permission from copyright(2015) American Chemical Society
Fig. 7 Schematic illustration of different kinds of typical ultrathin 2D nanomaterials[120]. Copyright 2015, American Chemical Society
Fig. 8 Schematic representation of DNA translocation through long channel nanopores and 2D nanopores[125]. Copyright 2016, Royal Society of Chemistry
Table 5 Experiments of biomolecule detection by 2D materials
Fig. 9 Experimental studies on DNA sequencing using graphene nanopores. (a) Dekker lab[97], the non-folded, partially folded and folded dsDNA could be identified by blockade current. Copyright(2010) American Chemical Society.(b) Golovchenko lab[12], the non-folded and folded dsDNA could be identified. Copyright(2010) Nature Publishing Group.(c) Drndic lab[99], the non-folded and folded dsDNA could be identified. Copyright(2010) American Chemical Society.(d) Bashir lab[98]. Copyright(2012) American Chemical Society
Fig. 10 (a) Schematic illustration of DNA sequencing using a MoS2 nanopore[101].(b) Optical image of a freshly exfoliated monolayer MoS2 flake.(c) Optical image after the chosen flake has been transferred to the desired location.(d) A typical trace(in blue) of λ-DNA translocation through a 20 nm MoS2 nanopore. The upper trace(in black) is an example of λ-DNA translocation through a SiN x nanopore.(e) Selected individual events with quantized current drops implying multiple conformations of λ-DNA within the nanopore, i.e., unfolded(1), partially folded(2), folded(3), and bumping event(4). Reproduced with permission from copyright(2014) American Chemical Society
Table 6 Theoretical simulations f biomolecule detection by 2D materials
Material Pore size
(nm)
Simulation method Signal characteristics Molecular size Ion concentration ref
graphene 2.4 MD poly(G-C) > poly(A-T) 45 bases 1 M KCl 142
graphene 1.1~1.5 MD+BD poly(A)≈poly(G)< poly(T) < poly(C) 20 bases 1.7 M KCl 143
graphene 1.6~5.0 MD The SNR increases with the decrease of aperture 45 bases 1.0 M KCl 144
graphene 2.0~3.0 MD Conductivity is related to pore thickness 12 bases 1.0 M NaCl 129
graphene 2.4 MD The fluctuation of signal is related to the DNA structure 48 bases 1.0 M NaCl 145
graphene 1.5 MD Increasing the number of graphene layers can improve the accuracy 45 bases 1.0 M KCl 146
graphene 1.6 MD The charge regulates DNA perforation 20 bases 1.0 M KCl 147
graphene 2.1 MD Hybrid hole can improve the detection accuracy 20 bases 1.0 M NaCl 148
graphene 1.6 MD Ion current + perforation time 15 bases 1.0 M KCl 149
graphene 2.2 MD The perforation rate is related to the type of polypeptide and the number of graphene layers 48 residues 1.0 M KCl 150
graphene 10 MD IgG3 > IgG2 IgG 0.5 M NaCl 151
MoS2 2.3 MD+DFT SNR > 15 16 bases 1.0 M NaCl 130
MoS2 2.5 MD+DFT Pull force + ionic current 6 bases 5 mM KCl 152
h-BN 2.4 MD poly(A-T)40 <poly(G-C)40 40 bases 1.0 M KCl 153
graphene 1.5 SMD Pull force + ionic current Thioredoxin 2 M KCl 154
graphene 1.0 SMD G > A > T > C 11 bases 155
graphene 1.0 SMD G > A > T > C 12 bases 156
graphene 1.1 SMD Dependent on the structure of the hole 6 bases 157
graphene 1.6, 2.4 SMD Independent of pore size and shape 14 bases 1 M KCl 158
Fig. 11 (a) DNA translocation through a MoS2 nanopore.(b) Ionic current for different bases and combination of CG or AT bases through the MoS2 nanopore.(c) Signal-to-noise ratio of MoS2 nanopore for different biases and temperatures[130]. Copyright 2014 American Chemical Society
Fig. 12 Simulation system of DNA methylation detection with 2D material nanopores[161].(a) Schematic showing a CpG dinucleotide site in an mDNA molecule in complex with a MBD1 protein.(b) Schematic of the simulated nanopore device. Reproduced with permission from copyright(2017) Nature Publishing Group
Fig. 13 Schematic diagram of DNA translocation through graphene nanopore by SMD simulations, and the characteristic force peaks for different bases[155]. Reproduced with permission from copyright(2014) American Chemical Society
[1]
Kasianowicz J J , Brandin E , Branton D , Deamer D W . Proc. Natl. Acad. Sci. U. S. A., 1996,93:13770. http://www.pnas.org/cgi/doi/10.1073/pnas.93.24.13770

doi: 10.1073/pnas.93.24.13770
[2]
Taniguchi M . Anal. Chem., 2015,87:188. https://pubs.acs.org/doi/10.1021/ac504186m

doi: 10.1021/ac504186m
[3]
Watson J . Science, 1990,248:44. https://www.sciencemag.org/lookup/doi/10.1126/science.2181665

doi: 10.1126/science.2181665
[4]
Sanger F , Nicklen S , Coulson A R . Proc. Natl. Acad. Sci. U. S. A., 1977,74:5463. http://www.pnas.org/cgi/doi/10.1073/pnas.74.12.5463

doi: 10.1073/pnas.74.12.5463
[5]
Mardis E R . Nat. Protoc., 2017,12:213. https://doi.org/10.1038/nprot.2016.182

doi: 10.1038/nprot.2016.182
[6]
Akeson M , Branton D , Kasianowicz J J , Brandin E , Deamer D W . Biophys. J., 1999,77:3227. https://linkinghub.elsevier.com/retrieve/pii/S0006349599771535

doi: 10.1016/S0006-3495(99)77153-5
[7]
Cherf G M , Lieberman K R , Rashid H , Lam C E , Karplus K , Akeson M . Nat. Biotechnol., 2012,30:344. https://doi.org/10.1038/nbt.2147

doi: 10.1038/nbt.2147
[8]
Schneider G F , Dekker C . Nat. Biotechnol., 2012,30:326. https://doi.org/10.1038/nbt.2181

doi: 10.1038/nbt.2181
[9]
Manrao E A , Derrington I M , Laszlo A H , Langford K W , Hopper M K , Gillgren N , Pavlenok M , Niederweis M , Gundlach J H . Nat. Biotechnol., 2012,30:349. https://doi.org/10.1038/nbt.2171

doi: 10.1038/nbt.2171
[10]
Li J , Stein D , McMullan C , Branton D , Aziz M J , Golovchenko J A . Nature, 2001,412:166. http://www.nature.com/articles/35084037

doi: 10.1038/35084037
[11]
Storm A J , Chen J H , Ling X S , Zandbergen H W , Dekker C . Nat. Mater., 2003,2:537. https://doi.org/10.1038/nmat941

doi: 10.1038/nmat941
[12]
Garaj S , Hubbard W , Reina A , Kong J , Branton D , Golovchenko J A . Nature, 2010,467:190. https://doi.org/10.1038/nature09379

doi: 10.1038/nature09379
[13]
Liu S , Lu B , Zhao Q , Li J , Gao T , Chen Y , Zhang Y , Liu Z , Fan Z , Yang F , You L , Yu D . Adv. Mater., 2013,25:4549. http://doi.wiley.com/10.1002/adma.201301336

doi: 10.1002/adma.201301336
[14]
Feng J , Liu K , Bulushev R D , Khlybov S , Dumcenco D , Kis A , Radenovic A . Nat. Nanotechnol., 2015,10:1070. https://doi.org/10.1038/nnano.2015.219

doi: 10.1038/nnano.2015.219
[15]
Venta K , Shemer G , Puster M , Rodríguez-Manzo J A , Balan A , Rosenstein J K , Shepard K , Drndií M . ACS Nano, 2013,7:4629. https://pubs.acs.org/doi/10.1021/nn4014388

doi: 10.1021/nn4014388
[16]
Ying Y , Gao R , Hu Y , Long Y . Small Methods, 2018,2:1700390. http://doi.wiley.com/10.1002/smtd.v2.6

doi: 10.1002/smtd.v2.6
[17]
McNally B , Singer A , Yu Z , Sun Y , Weng Z , Meller A . Nano Lett., 2010,10:2237. https://pubs.acs.org/doi/10.1021/nl1012147

doi: 10.1021/nl1012147
[18]
Dong Z , Kennedy E , Hokmabadi M , Timp G . ACS Nano, 2017,11:5440. https://pubs.acs.org/doi/10.1021/acsnano.6b08452

doi: 10.1021/acsnano.6b08452
[19]
Yokota K , Tsutsui M , Taniguchi M . RSC Adv., 2014,4:15886. http://xlink.rsc.org/?DOI=C4RA00933A

doi: 10.1039/C4RA00933A
[20]
Weiss S . Science, 1999,283:1676. https://www.sciencemag.org/lookup/doi/10.1126/science.283.5408.1676

doi: 10.1126/science.283.5408.1676
[21]
Ying Y , Cao C , Hu Y , Long Y . Natl. Sci. Rev., 2018,5:450. https://academic.oup.com/nsr/article/5/4/450/4862477

doi: 10.1093/nsr/nwy029
[22]
Coulter W H . Means for Counting Particles Suspended in a Fluid. 1953. US11281949A.
[23]
Cornell B A , Braach-Maksvytis V L B , King L G , Osman P D J , Raguse B , Wieczorek L , Pace R J . Nature, 1997,387:580. http://www.nature.com/articles/42432

doi: 10.1038/42432
[24]
Venkatesan B M , Dorvel B , Yemenicioglu S , Watkins N , Petrov I , Bashir R . Adv. Mater., 2009,21:2771. http://doi.wiley.com/10.1002/adma.200803786

doi: 10.1002/adma.200803786
[25]
Ying Y L , Cao C , Long Y T . Analyst, 2014,139:3826. http://xlink.rsc.org/?DOI=C4AN00706A

doi: 10.1039/C4AN00706A
[26]
Feng Y , Zhang Y , Ying C , Wang D , Du C . Genomics Proteomics Bioinformatics, 2015,13:4. https://linkinghub.elsevier.com/retrieve/pii/S1672022915000133

doi: 10.1016/j.gpb.2015.01.009
[27]
Tsutsui M , Taniguchi M , Yokota K , Kawai T . Nat Nanotechnol, 2010,5:286. https://doi.org/10.1038/nnano.2010.42

doi: 10.1038/nnano.2010.42
[28]
Zwolak M , Di Ventra M . Nano Lett, 2005,5:421. https://pubs.acs.org/doi/10.1021/nl048289w

doi: 10.1021/nl048289w
[29]
Di Ventra M , Taniguchi M . Nat Nanotechnol, 2016,11:117. https://doi.org/10.1038/nnano.2015.320

doi: 10.1038/nnano.2015.320
[30]
Siwy Z S , Howorka S . Chem. Soc. Rev., 2010,39:1115. http://xlink.rsc.org/?DOI=B909105J

doi: 10.1039/B909105J
[31]
Tanaka H , Kawai T . Surf. Sci., 2003,539:L531. https://linkinghub.elsevier.com/retrieve/pii/S0039602803007945

doi: 10.1016/S0039-6028(03)00794-5
[32]
Guo Y D , Yan X H , Xiao Y . J. Phys. Chem. C, 2012,116:21609. https://pubs.acs.org/doi/10.1021/jp305909p

doi: 10.1021/jp305909p
[33]
欧阳芳平(Ouyang F P), 徐慧(Xu H), 郭爱敏(Guo A M) . 生物信息学 (Chinese Journal of Bioinformatics), 2005,3:33.
[34]
Verlet L . Physical Review, 1967,159:98 https://link.aps.org/doi/10.1103/PhysRev.159.98

doi: 10.1103/PhysRev.159.98
[35]
Van Gunsteren W F , Berendsen H . Mol. Simul., 1988,1:173. https://www.tandfonline.com/doi/full/10.1080/08927028808080941

doi: 10.1080/08927028808080941
[36]
Swope W C , Andersen H C , Berens P H , Wilson K R . J. Chem. Phys., 1982,76:637. http://aip.scitation.org/doi/10.1063/1.442716

doi: 10.1063/1.442716
[37]
Jorgensen W L , Tirado-Rives J . J. Am. Chem. Soc., 1988,110:1657. https://pubs.acs.org/doi/abs/10.1021/ja00214a001

doi: 10.1021/ja00214a001
[38]
Cornell W D , Cieplak P , Bayly C I , Gould I R , Merz K M , Ferguson D M , Spellmeyer D C , Fox T , Caldwell J W , Kollman P A . J. Am. Chem. Soc., 1995,117:5179. https://pubs.acs.org/doi/abs/10.1021/ja00124a002

doi: 10.1021/ja00124a002
[39]
MacKerell A D , Bashford D , Bellott M , Dunbrack R L , Evanseck J D , Field M J , Fischer S , Gao J , Guo H , Ha S . J. Phys. Chem. B, 1998,102:3586. https://pubs.acs.org/doi/10.1021/jp973084f

doi: 10.1021/jp973084f
[40]
Schuler L D , Daura X , van Gunsteren W F . J. Comput. Chem., 2001,22:1205. http://doi.wiley.com/10.1002/%28ISSN%291096-987X

doi: 10.1002/(ISSN)1096-987X
[41]
Shi W , Friedman A K , Baker L A . Anal. Chem., 2017,89:157. https://pubs.acs.org/doi/10.1021/acs.analchem.6b04260

doi: 10.1021/acs.analchem.6b04260
[42]
Deamer D , Akeson M , Branton D . Nat. Biotechnol., 2016,34:518. https://doi.org/10.1038/nbt.3423

doi: 10.1038/nbt.3423
[43]
Ying Y L , Zhang J , Gao R , Long Y T . Angew. Chem., Int. Ed., 2013,52:13154. http://doi.wiley.com/10.1002/anie.201303529

doi: 10.1002/anie.201303529
[44]
Ayub M , Bayley H . Curr. Opin. Chem. Biol., 2016,34:117. https://linkinghub.elsevier.com/retrieve/pii/S1367593116301028

doi: 10.1016/j.cbpa.2016.08.005
[45]
Song L , Hobaugh M R , Shustak C , Cheley S , Bayley H , Gouaux J E . Gouaux. Science, 1996,274:1859.
[46]
Ayub M , Stoddart D , Bayley H . ACS Nano, 2015,9:7895. https://pubs.acs.org/doi/10.1021/nn5060317

doi: 10.1021/nn5060317
[47]
Butler T Z , Pavlenok M , Derrington I M , Niederweis M , Gundlach J H . Proc. Natl. Acad. Sci. U. S. A., 2008,105:20647. http://www.pnas.org/cgi/doi/10.1073/pnas.0807514106

doi: 10.1073/pnas.0807514106
[48]
Meng F N , Ying Y L , Yang J , Long Y T . Anal. Chem., 2019,91:9910. https://pubs.acs.org/doi/10.1021/acs.analchem.9b01570

doi: 10.1021/acs.analchem.9b01570
[49]
Cao C , Ying Y , Hu Z , Liao D , Tian H , Long Y . Nat. Nanotechnol., 2016,11:713. https://doi.org/10.1038/nnano.2016.66

doi: 10.1038/nnano.2016.66
[50]
Cao C , Liao D , Yu J , Tian H , Long Y . Nat. Protoc., 2017,12:1901. http://www.nature.com/articles/nprot.2017.077

doi: 10.1038/nprot.2017.077
[51]
Faller M , Niederweis M , Schulz G E . Science, 2004,303:1189. https://www.sciencemag.org/lookup/doi/10.1126/science.1094114

doi: 10.1126/science.1094114
[52]
Stefureac R , Long Y T , Kraatz H B , Howard P , Lee J S . Biochemistry, 2006,45:9172. https://pubs.acs.org/doi/10.1021/bi0604835

doi: 10.1021/bi0604835
[53]
Iacovache I , De Carlo S , Cirauqui N , Dal Peraro M , van der Goot F G , Zuber B . Nat. Commun., 2016,7:12062. https://doi.org/10.1038/ncomms12062

doi: 10.1038/ncomms12062
[54]
Parker M W , Buckley J T , Postma J P , Tucker A D , Leonard K , Pattus F , Tsernoglou D . Nature, 1994,367:292. https://doi.org/10.1038/367292a0

doi: 10.1038/367292a0
[55]
Li S , Cao C , Yang J , Long Y T . ChemElectroChem, 2019,6:126. http://doi.wiley.com/10.1002/celc.v6.1

doi: 10.1002/celc.v6.1
[56]
Lu Y , Wu X Y , Ying Y L , Long Y T . Chem. Commun., 2019,55:9311. http://xlink.rsc.org/?DOI=C9CC04077C

doi: 10.1039/C9CC04077C
[57]
曹婵(Cao C), 廖冬芳(Liao D F), 应佚伦(Ying Y L), 龙亿涛(Long Y T) . 化学学报 (Acta Chimica Sinica), 2016,74:734. http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract345663.shtml

doi: 10.6023/A16070352
[58]
Hu Z L , Li M Y , Liu S C , Ying Y L , Long Y T . Chem Sci, 2019,10:354. http://xlink.rsc.org/?DOI=C8SC03927E

doi: 10.1039/C8SC03927E
[59]
Wu X Y , Wang M B , Wang Y Q , Li M Y , Ying Y L , Huang J , Long Y T . CCS Chemistry, 2019,1:304.
[60]
Yang J , Wang Y , Li M , Ying Y , Long Y . Langmuir, 2018,34:14940. https://pubs.acs.org/doi/10.1021/acs.langmuir.8b03264

doi: 10.1021/acs.langmuir.8b03264
[61]
Zhou B , Wang Y , Cao C , Li D , Long Y . Sci. China Chem., 2018,61:1385. https://doi.org/10.1007/s11426-018-9231-2

doi: 10.1007/s11426-018-9231-2
[62]
Subbarao G V , van den Berg B . J. Mol. Biol., 2006,360:750. https://linkinghub.elsevier.com/retrieve/pii/S0022283606006450

doi: 10.1016/j.jmb.2006.05.045
[63]
Mohammad M M , Iyer R , Howard K R , McPike M P , Borer P N , Movileanu L . J. Am. Chem. Soc., 2012,134:9521. http://dx.doi.org/10.1021/ja3043646

doi: 10.1021/ja3043646
[64]
Wendell D , Jing P , Geng J , Subramaniam V , Lee T J , Montemagno C , Guo P . Nat. Nanotechnol., 2009,4:765. https://doi.org/10.1038/nnano.2009.259

doi: 10.1038/nnano.2009.259
[65]
Dgany O , Gonzalez A , Sofer O , Wang W , Zolotnitsky G , Wolf A , Shoham Y , Altman A , Wolf S G , Shoseyov O , Almog O . J. Biol. Chem., 2004,279:51516. http://www.jbc.org/lookup/doi/10.1074/jbc.M409952200

doi: 10.1074/jbc.M409952200
[66]
Mueller M , Grauschopf U , Maier T , Glockshuber R , Ban N . Nature, 2009,459:726. https://doi.org/10.1038/nature08026

doi: 10.1038/nature08026
[67]
Bayrhuber M , Meins T , Habeck M , Becker S , Giller K , Villinger S , Vonrhein C , Griesinger C , Zweckstetter M , Zeth K . Proc. Natl. Acad. Sci. U. S. A., 2008,105:15370. http://www.pnas.org/lookup/doi/10.1073/pnas.0808115105

doi: 10.1073/pnas.0808115105
[68]
Haque F , Wang S , Stites C , Chen L , Wang C , Guo P . Biomaterials, 2015,53:744. https://linkinghub.elsevier.com/retrieve/pii/S0142961215002422

doi: 10.1016/j.biomaterials.2015.02.104
[69]
Guasch A , Pous J , Ibarra B , Gomis-Rüth F X , Valpuesta J M , Sousa N , Carrascosa J L , Coll M . J. Mol. Biol., 2002,315:663. https://linkinghub.elsevier.com/retrieve/pii/S0022283601952787

doi: 10.1006/jmbi.2001.5278
[70]
Geng J , Wang S , Fang H , Guo P . ACS Nano, 2013,7:3315. https://pubs.acs.org/doi/10.1021/nn400020z

doi: 10.1021/nn400020z
[71]
Kukwikila M , Howorka S . Anal. Chem., 2015,87:9149. https://pubs.acs.org/doi/10.1021/acs.analchem.5b01764

doi: 10.1021/acs.analchem.5b01764
[72]
Piguet F , Ouldali H , Pastoriza-Gallego M , Manivet P , Pelta J , Oukhaled A . Nat. Commun., 2018,9:966. https://doi.org/10.1038/s41467-018-03418-2

doi: 10.1038/s41467-018-03418-2
[73]
Sutherland T C , Long Y T , Stefureac R I , Bediako-Amoa I , Kraatz H B , Lee J S . Nano Lett., 2004,4:1273. https://pubs.acs.org/doi/10.1021/nl049413e

doi: 10.1021/nl049413e
[74]
Biesemans A , Soskine M , Maglia G . Nano Lett., 2015,15:6076. https://pubs.acs.org/doi/10.1021/acs.nanolett.5b02309

doi: 10.1021/acs.nanolett.5b02309
[75]
Ying Y , Wang H , Sutherland T C , Long Y . Small, 2011,7:87. http://dx.doi.org/10.1002/smll.201001428

doi: 10.1002/smll.201001428
[76]
Wang H Y , Gu Z , Cao C , Wang J , Long Y T . Anal. Chem., 2013,85:8254. https://pubs.acs.org/doi/10.1021/ac401496x

doi: 10.1021/ac401496x
[77]
Hu Y X , Ying Y L , Gu Z , Cao C , Yan B Y , Wang H F , Long Y T . Chem. Commun., 2016,52:5542. http://xlink.rsc.org/?DOI=C6CC01292B

doi: 10.1039/C6CC01292B
[78]
Wang H Y , Ying Y L , Li Y , Kraatz H B , Long Y T . Anal. Chem., 2011,83:1746. https://pubs.acs.org/doi/10.1021/ac1029874

doi: 10.1021/ac1029874
[79]
Wang L , Han Y , Zhou S , Guan X . Biosens. Bioelectron., 2014,62:158. https://linkinghub.elsevier.com/retrieve/pii/S0956566314004540

doi: 10.1016/j.bios.2014.06.041
[80]
Zhou S , Wang L , Chen X , Guan X . ACS Sens., 2016,1:607. https://pubs.acs.org/doi/10.1021/acssensors.6b00043

doi: 10.1021/acssensors.6b00043
[81]
Nivala J , Marks D B , Akeson M . Nat. Biotechnol., 2013,31:247. https://doi.org/10.1038/nbt.2503

doi: 10.1038/nbt.2503
[82]
Pastoriza-Gallego M , Rabah L , Gibrat G , Thiebot B , van der Goot F G , Auvray L , Betton J M , Pelta J . J. Am. Chem. Soc., 2011,133:2923. http://dx.doi.org/10.1021/ja1073245

doi: 10.1021/ja1073245
[83]
Laszlo A H , Derrington I M , Brinkerhoff H , Langford K W , Nova I C , Samson J M , Bartlett J J , Pavlenok M , Gundlach J H . Proc. Natl. Acad. Sci. U. S. A., 2013,110:18904. http://www.pnas.org/cgi/doi/10.1073/pnas.1310240110

doi: 10.1073/pnas.1310240110
[84]
Craig J M , Laszlo A H , Derrington I M , Ross B C , Brinkerhoff H , Nova I C , Doering K , Tickman B I , Svet M T , Gundlach J H . PLoS One, 2015,10:e0143253. https://dx.plos.org/10.1371/journal.pone.0143253

doi: 10.1371/journal.pone.0143253
[85]
Liu S C , Li Q , Ying Y L , Long Y T . Electrophoresis, 2019,40:2112. https://onlinelibrary.wiley.com/toc/15222683/40/16-17

doi: 10.1002/elps.v40.16-17
[86]
Lin Y , Shi X , Liu S C , Ying Y L , Li Q , Gao R , Fathi F , Long Y T , Tian H . Chem. Commun., 2017,53:3539. http://xlink.rsc.org/?DOI=C7CC00060J

doi: 10.1039/C7CC00060J
[87]
Shi X , Li Q , Gao R , Si W , Liu S C , Aksimentiev A , Long Y T . J. Phys. Chem. Lett., 2018,9:4686. https://pubs.acs.org/doi/10.1021/acs.jpclett.8b01755

doi: 10.1021/acs.jpclett.8b01755
[88]
林瑶(Lin Y), 应佚伦(Ying Y L), 高瑞(Gao R), 王慧锋(Wang H F), 龙亿涛(Long Y T) . 化学学报 (Acta Chimica Sinica), 2017,75:675. http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract346135.shtml

doi: 10.6023/A17040191
[89]
Cao Y , Lin Y , Qian R C , Ying Y L , Si W , Sha J , Chen Y , Long Y T . Chem. Commun., 2016,52:5230. http://xlink.rsc.org/?DOI=C6CC00694A

doi: 10.1039/C6CC00694A
[90]
Lin Y , Ying Y L , Shi X , Liu S C , Long Y T . Chem. Commun., 2017,53:11564. http://xlink.rsc.org/?DOI=C7CC06775E

doi: 10.1039/C7CC06775E
[91]
Li Q , Ying Y L , Liu S C , Lin Y , Long Y T . ACS Sensors, 2019,4:1185. https://pubs.acs.org/doi/10.1021/acssensors.9b00228

doi: 10.1021/acssensors.9b00228
[92]
Shasha C , Henley R Y , Stoloff D H , Rynearson K D , Hermann T , Wanunu M . ACS Nano, 2014,8:6425. https://pubs.acs.org/doi/10.1021/nn501969r

doi: 10.1021/nn501969r
[93]
Singer A , Rapireddy S , Ly D H , Meller A . Nano Lett., 2012,12:1722. https://pubs.acs.org/doi/10.1021/nl300372a

doi: 10.1021/nl300372a
[94]
Raillon C , Cousin P , Traversi F , Garcia-Cordero E , Hernandez N , Radenovic A . Nano Lett., 2012,12:1157. https://pubs.acs.org/doi/10.1021/nl3002827

doi: 10.1021/nl3002827
[95]
Soni G V , Dekker C . Nano Lett., 2012,12:3180. https://pubs.acs.org/doi/10.1021/nl301163m

doi: 10.1021/nl301163m
[96]
Larkin J , Henley R , Bell D C , Cohen-Karni T , Rosenstein J K , Wanunu M . ACS Nano, 2013,7:10121. https://pubs.acs.org/doi/10.1021/nn404326f

doi: 10.1021/nn404326f
[97]
Schneider G F , Kowalczyk S W , Calado V E , Pandraud G , Zandbergen H W , Vandersypen L M , Dekker C . Nano Lett., 2010,10:3163. https://pubs.acs.org/doi/10.1021/nl102069z

doi: 10.1021/nl102069z
[98]
Venkatesan B M , Estrada D , Banerjee S , Jin X , Dorgan V E , Bae M H , Aluru N R , Pop E , Bashir R . ACS Nano, 2012,6:441. https://pubs.acs.org/doi/10.1021/nn203769e

doi: 10.1021/nn203769e
[99]
Merchant C A , Healy K , Wanunu M , Ray V , Peterman N , Bartel J , Fischbein M D , Venta K , Luo Z , Johnson A T , Drndic M . Nano Lett., 2010,10:2915. https://pubs.acs.org/doi/10.1021/nl101046t

doi: 10.1021/nl101046t
[100]
Schneider G F , Xu Q , Hage S , Luik S , Spoor J N , Malladi S , Zandbergen H , Dekker C . Nat. Commun., 2013,4:2619. https://doi.org/10.1038/ncomms3619

doi: 10.1038/ncomms3619
[101]
Liu K , Feng J , Kis A , Radenovic A . ACS Nano, 2014,8:2504. https://pubs.acs.org/doi/10.1021/nn406102h

doi: 10.1021/nn406102h
[102]
Bell N A , Engst C R , Ablay M , Divitini G , Ducati C , Liedl T , Keyser U F . Nano Lett., 2012,12:512. https://pubs.acs.org/doi/10.1021/nl204098n

doi: 10.1021/nl204098n
[103]
Kowalczyk S W , Kapinos L , Blosser T R , Magalhaes T , van Nies P , Lim R Y , Dekker C . Nat. Nanotechnol., 2011,6:433. https://doi.org/10.1038/nnano.2011.88

doi: 10.1038/nnano.2011.88
[104]
Wei R , Gatterdam V , Wieneke R , Tampe R , Rant U . Nat. Nanotechnol., 2012,7:257. https://doi.org/10.1038/nnano.2012.24

doi: 10.1038/nnano.2012.24
[105]
Verschueren D V , Jonsson M P , Dekker C . Nanotechnology, 2015,26:234004. https://iopscience.iop.org/article/10.1088/0957-4484/26/23/234004

doi: 10.1088/0957-4484/26/23/234004
[106]
Carlsen A T , Zahid O K , Ruzicka J , Taylor E W , Hall A R . ACS Nano, 2014,8:4754. https://pubs.acs.org/doi/10.1021/nn501694n

doi: 10.1021/nn501694n
[107]
Carson S , Wilson J , Aksimentiev A , Wanunu M . Biol. J., 2014,107:2381.
[108]
Galla L , Meyer A J , Spiering A , Sischka A , Mayer M , Hall A R , Reimann P , Anselmetti D . Nano Lett., 2014,14:4176. https://pubs.acs.org/doi/10.1021/nl501909t

doi: 10.1021/nl501909t
[109]
Sischka A , Galla L , Meyer A J , Spiering A , Knust S , Mayer M , Hall A R , Beyer A , Reimann P , Golzhauser A , Anselmetti D . Analyst, 2015,140:4843. http://xlink.rsc.org/?DOI=C4AN02319F

doi: 10.1039/C4AN02319F
[110]
Plesa C , van Loo N , Ketterer P , Dietz H , Dekker C . Nano Lett., 2015,15:732. https://pubs.acs.org/doi/10.1021/nl504375c

doi: 10.1021/nl504375c
[111]
Carson S , Wick S T , Carr P A , Wanunu M , Aguilar C A . ACS Nano, 2015,9:12417. https://pubs.acs.org/doi/10.1021/acsnano.5b05782

doi: 10.1021/acsnano.5b05782
[112]
Plesa C , Verschueren D , Pud S , van der Torre J , Ruitenberg J W , Witteveen M J , Jonsson M P , Grosberg A Y , Rabin Y , Dekker C . Nat. Nanotechnol., 2016,11:1093. https://doi.org/10.1038/nnano.2016.153

doi: 10.1038/nnano.2016.153
[113]
Plesa C , Kowalczyk S W , Zinsmeester R , Grosberg A Y , Rabin Y , Dekker C . Nano Lett., 2013,13:658. https://pubs.acs.org/doi/10.1021/nl3042678

doi: 10.1021/nl3042678
[114]
Pedone D , Firnkes M , Rant U . Anal. Chem., 2009,81:9689. https://pubs.acs.org/doi/10.1021/ac901877z

doi: 10.1021/ac901877z
[115]
Nir I , Huttner D , Meller A . Biol. J., 2015,108:2340.
[116]
Wang C , Fu Q , Wang X , Kong D , Sheng Q , Wang Y , Chen Q , Xue J . Anal. Chem., 2015,87:8227. https://pubs.acs.org/doi/10.1021/acs.analchem.5b01501

doi: 10.1021/acs.analchem.5b01501
[117]
Yusko E C , Johnson J M , Majd S , Prangkio P , Rollings R C , Li J , Yang J , Mayer M . Nat. Nanotechnol., 2011,6:253. https://doi.org/10.1038/nnano.2011.12

doi: 10.1038/nnano.2011.12
[118]
Postma H W . Nano Lett., 2010,10:420. https://pubs.acs.org/doi/10.1021/nl9029237

doi: 10.1021/nl9029237
[119]
Ivanov A P , Instuli E , McGilvery C M , Baldwin G , McComb D W , Albrecht T , Edel J B . Nano Lett., 2011,11:279. https://pubs.acs.org/doi/10.1021/nl103873a

doi: 10.1021/nl103873a
[120]
Zhang H . ACS Nano, 2015,9:9451. https://pubs.acs.org/doi/10.1021/acsnano.5b05040

doi: 10.1021/acsnano.5b05040
[121]
Novoselov K S , Geim A K , Morozov S V , Jiang D , Zhang Y , Dubonos S V , Grigorieva I V , Firsov A A . Science, 2004,306:666. https://www.sciencemag.org/lookup/doi/10.1126/science.1102896

doi: 10.1126/science.1102896
[122]
Radisavljevic B , Radenovic A , Brivio J , Giacometti V , Kis A . Nat. Nanotechnol., 2011,6:147. https://doi.org/10.1038/nnano.2010.279

doi: 10.1038/nnano.2010.279
[123]
Zhou J , Wang Q , Sun Q , Jena P . Phys. Rev. B, 2010, 81:
[124]
Miles B N , Ivanov A P , Wilson K A , Dogan F , Japrung D , Edel J B . Chem. Soc. Rev., 2013,42:15. http://xlink.rsc.org/?DOI=C2CS35286A

doi: 10.1039/C2CS35286A
[125]
Arjmandi-Tash H , Belyaeva L A , Schneider G F . Chem. Soc. Rev., 2016,45:476. http://xlink.rsc.org/?DOI=C5CS00512D

doi: 10.1039/C5CS00512D
[126]
Wang H , Maiyalagan T , Wang X . ACS Catal., 2012,2:781. http://dx.doi.org/10.1021/cs200652y

doi: 10.1021/cs200652y
[127]
Geim A K , Novoselov K S . Nat. Mater., 2007,6:183. https://doi.org/10.1038/nmat1849

doi: 10.1038/nmat1849
[128]
Mas-Balleste R , Gomez-Navarro C , Gomez-Herrero J , Zamora F . Nanoscale, 2011,3:20. http://xlink.rsc.org/?DOI=C0NR00323A

doi: 10.1039/C0NR00323A
[129]
Lv W , Chen M , Wu R A . Soft Matter, 2013,9:960. http://xlink.rsc.org/?DOI=C2SM26476E

doi: 10.1039/C2SM26476E
[130]
Farimani A B , Min K , Aluru N R . ACS Nano, 2014,8:7914. https://pubs.acs.org/doi/10.1021/nn5029295

doi: 10.1021/nn5029295
[131]
Kowalczyk S W , Wells D B , Aksimentiev A , Dekker C . Nano Lett., 2012,12:1038. https://pubs.acs.org/doi/10.1021/nl204273h

doi: 10.1021/nl204273h
[132]
Traversi F , Raillon C , Benameur S M , Liu K , Khlybov S , Tosun M , Krasnozhon D , Kis A , Radenovic A . Nat. Nanotechnol., 2013,8:939. http://www.nature.com/articles/nnano.2013.240

doi: 10.1038/nnano.2013.240
[133]
Garaj S , Liu S , Golovchenko J A , Branton D . Proc. Natl. Acad. Sci. U. S. A., 2013,110:12192. http://www.pnas.org/cgi/doi/10.1073/pnas.1220012110

doi: 10.1073/pnas.1220012110
[134]
Chen Y S , Lee C H , Hung M Y , Pan H A , Chiou J C , Huang G S . Nat. Nanotechnol., 2013,8:452. https://doi.org/10.1038/nnano.2013.71

doi: 10.1038/nnano.2013.71
[135]
Zhi C , Bando Y , Tang C , Kuwahara H , Golberg D . Adv. Mater., 2009,21:2889. http://doi.wiley.com/10.1002/adma.v21%3A28

doi: 10.1002/adma.v21:28
[136]
Zhou Z , Hu Y , Wang H , Xu Z , Wang W , Bai X , Shan X , Lu X . Sci. Rep., 2013,3:3287. https://doi.org/10.1038/srep03287

doi: 10.1038/srep03287
[137]
Park K , Kim H , Kim H , Han S A , Lee K H , Kim S , Kim K . Nanoscale, 2016,8:5755. http://xlink.rsc.org/?DOI=C5NR09085G

doi: 10.1039/C5NR09085G
[138]
Danda G , Masih Das P , Chou Y C , Mlack J T , Parkin W M , Naylor C H , Fujisawa K , Zhang T , Fulton L B , Terrones M , Johnson A T C , Drndić M . ACS Nano, 2017,11:1937. https://pubs.acs.org/doi/10.1021/acsnano.6b08028

doi: 10.1021/acsnano.6b08028
[139]
Mojtabavi M , VahidMohammadi A , Liang W , Beidaghi M , Wanunu M . ACS Nano, 2019,13:3042.
[140]
Chen H , Li L , Zhang T , Qiao Z W , Tang J , Zhou J . J. Phys. Chem. C, 2018,122:2070. https://pubs.acs.org/doi/10.1021/acs.jpcc.7b07842

doi: 10.1021/acs.jpcc.7b07842
[141]
Luan B , Zhou R . ACS Nano, 2018,12:3886. https://pubs.acs.org/doi/10.1021/acsnano.8b01297

doi: 10.1021/acsnano.8b01297
[142]
Sathe C , Zou X , Leburton J P , Schulten K . ACS Nano, 2011,5:8842. https://pubs.acs.org/doi/10.1021/nn202989w

doi: 10.1021/nn202989w
[143]
Wells D B , Belkin M , Comer J , Aksimentiev A . Nano Lett., 2012,12:4117. https://pubs.acs.org/doi/10.1021/nl301655d

doi: 10.1021/nl301655d
[144]
Liang L , Cui P , Wang Q , Wu T , Ågren H , Tu Y . RSC Adv., 2013,3:2445. http://xlink.rsc.org/?DOI=c2ra22109h

doi: 10.1039/c2ra22109h
[145]
Lv W , Liu S , Li X , Wu R . Electrophoresis, 2014,35:1144. http://onlinelibrary.wiley.com/doi/10.1002/elps.201300501/abstract

doi: 10.1002/elps.201300501
[146]
Liang L , Zhang Z , Shen J , Zhe K , Wang Q , Wu T , Ågren H , Tu Y . RSC Adv., 2014,4:50494. http://xlink.rsc.org/?DOI=C4RA05909C

doi: 10.1039/C4RA05909C
[147]
Shankla M , Aksimentiev A . Nat. Commun., 2014,5:5171. https://doi.org/10.1038/ncomms6171

doi: 10.1038/ncomms6171
[148]
Barati Farimani A , Dibaeinia P , Aluru N R . ACS Appl. Mater. Interfaces, 2016
[149]
Shi, C , Kong Z , Sun T , Liang L , Shen J , Zhao Z , Wang Q , Kang Z , Ågren H , Tu Y . RSC Adv., 2015,5:9389. http://xlink.rsc.org/?DOI=C4RA12530D

doi: 10.1039/C4RA12530D
[150]
Wilson J , Sloman L , He Z , Aksimentiev A . Adv. Funct. Mater., 2016,26:4830. http://doi.wiley.com/10.1002/adfm.201601272

doi: 10.1002/adfm.201601272
[151]
Barati Farimani A , Heiranian M , Min K , Aluru N R . J. Chem. Phys. Lett., 2017,8:1670. https://pubs.acs.org/doi/10.1021/acs.jpclett.7b00385

doi: 10.1021/acs.jpclett.7b00385
[152]
Smolyanitsky A , Yakobson B I , Wassenaar T A , Paulechka E , Kroenlein K . ACS Nano, 2016,10:9009. https://pubs.acs.org/doi/10.1021/acsnano.6b05274

doi: 10.1021/acsnano.6b05274
[153]
Gu Z , Zhang Y , Luan B , Zhou R . Soft Matter, 2016,12:817. http://xlink.rsc.org/?DOI=C5SM02197A

doi: 10.1039/C5SM02197A
[154]
Bonome E L , Lepore R , Raimondo D , Cecconi F , Tramontano A , Chinappi M . J. Phys. Chem. B, 2015,119:5815. https://pubs.acs.org/doi/10.1021/acs.jpcb.5b02172

doi: 10.1021/acs.jpcb.5b02172
[155]
Zhang Z , Shen J , Wang H , Wang Q , Zhang J , Liang L , Agren H , Tu Y . J. Chem. Phys. Lett., 2014,5:1602. https://pubs.acs.org/doi/10.1021/jz500498c

doi: 10.1021/jz500498c
[156]
Qiu H , Guo W . Appl. Phys. Lett., 2012,100:083106. http://aip.scitation.org/doi/10.1063/1.3686921

doi: 10.1063/1.3686921
[157]
Satarifard V , Foroutan M , Ejtehadi M R . Physics, 2015
[158]
Qiu H , Sarathy A , Leburton J P , Schulten K . Nano Lett., 2015,15:8322. https://pubs.acs.org/doi/10.1021/acs.nanolett.5b03963

doi: 10.1021/acs.nanolett.5b03963
[159]
Heerema S J , Schneider G F , Rozemuller M , Vicarelli L , Zandbergen H W , Dekker C . Nanotechnology, 2015,26:074001. https://iopscience.iop.org/article/10.1088/0957-4484/26/7/074001

doi: 10.1088/0957-4484/26/7/074001
[160]
Carson S , Wanunu M . Nanotechnology, 2015,26:074004. https://iopscience.iop.org/article/10.1088/0957-4484/26/7/074004

doi: 10.1088/0957-4484/26/7/074004
[161]
Qiu H , Sarathy A , Schulten K , Leburton J P . NPJ 2D Mater. Appl., 2017,1:3. http://www.nature.com/articles/s41699-017-0005-7

doi: 10.1038/s41699-017-0005-7
[1] Qian Zhou, Na Li, Kun Li, Xiaoqi Yu. Detection of 5-Formylpyrimidines in DNA Based on Chemoselective Labeling [J]. Progress in Chemistry, 2020, 32(11): 1634-1650.
[2] Jiang Yu, Tan Lianjiang, Yin Yan, Shen Yu-Mei, Gong Bing, Shao Zhifeng. Cleavable Linkers in DNA Sequencing by Synthesis [J]. Progress in Chemistry, 2016, 28(1): 58-66.
[3] Liu Xiaobo, Kou Zongkui, Mu Shichun. Porous Graphene Materials [J]. Progress in Chemistry, 2015, 27(11): 1566-1577.
[4] Lin Xiangqin, Li Guoxia. Preparation and Application of Nanopores for Single Molecule Detection [J]. Progress in Chemistry, 2011, 23(4): 800-809.
[5] Guo Zhijun, Wang Jiahai, Hu Yaohui, Wang Erkang. Application of Biomimetic Nanopore Fabricated in Self-Supported Membrane in Analytical Chemistry [J]. Progress in Chemistry, 2011, 23(10): 2103-2112.
[6] He Fang Wang Shu. Water-Soluble Conjugated Polymers for Protein Detections [J]. Progress in Chemistry, 2009, 21(11): 2372-2378.
[7] Xiao Shoujun Chen Ling Xu Ning. Biochip Development [J]. Progress in Chemistry, 2009, 21(11): 2397-2410.
[8]

Hu Mingqian|Cai Jiye**

. Scanning Near-field Optical Microscope and Its Applications in the Field of Single Molecules Detection [J]. Progress in Chemistry, 2008, 20(06): 984-988.
[9] Yang Bingcheng,Guan Yafeng*,Tan Feng. Laser-Induced Fluorescence Detection in Ultratrace Analysis [J]. Progress in Chemistry, 2004, 16(06): 870-.
Viewed
Full text


Abstract

Nanopore-Based Biomolecular Detection