中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 604-616 DOI: 10.7536/PC190905 Previous Articles   Next Articles

• Review •

New Ionization Technology for Interface of Liquid Chromatography-Mass Spectrometry

Tian Tian1, Fang Zhang1,**(), Shusheng Zhang1, Chenguo Feng1, Yue Su2,**(), Guoqiang Lin1,3   

  1. 1.The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
    2.Center for Chinese Medicine Therappy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
    3.Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received: Revised: Online: Published:
  • Contact: Fang Zhang, Yue Su
  • About author:
    ** e-mail: (Fang Zhang);
  • Supported by:
    National Natural Science Foundation of China(21672249)
Richhtml ( 30 ) PDF ( 1180 ) Cited
Export

EndNote

Ris

BibTeX

Liquid chromatography-mass spectrometry(LC-MS) combines the high separation efficiency of chromatography with the powerful structural determination of mass spectrometry, which not only enables more accurate analysis for the compounds, but also simplifies the pre-treatment of samples and makes the analysis more convenient. LC-MS, as an important tool for the qualitative and quantitative analysis of organic compounds, has been widely used in various fields such as pharmaceutical analysis, food and environmental monitoring, biological and medical research etc. As the key component of LC-MS, the role of the interface is to introduce and ionize the fractions from LC, and transfer the generated ions into the MS. Therefore, the improvement of ionization technology for the interface directly affects the advance and application of LC-MS. In order to obtain a higher sensitivity and a wider range of applicability, researchers have focused on the ionization technology to promote the desorption of chemicals, improve their ionization and transport efficiency, and reduce the interference of matrix effect. In this work, the development of traditional ionization technologies and the novel technologies reported for the interface of LC-MS in recent years are reviewed, including the ionization principle, interface construction, influencing factors, and the related applications. Their characteristics, advantages and disadvantages are discussed in details. Finally, the trend of ionization technology in development for the interface of LC-MS is prospected.

Contents

1 Introduction

2 Interface ionization technologies in LC-MS

2.1 Electrospray ionization-related techniques

2.2 Plasma-based ionization

2.3 Inlet ionization

2.4 Carbonfiber ionization

2.5 Capillary photoionization

2.6 Capillary vibrating sharp-edge spray ionization

2.7 Liquid electron ionization

2.8 Other ionization techniques

3 Conclusion and outlook

Fig. 1 Glass capillaries for the nESI source[5]
Fig. 2 Literature statistics of LC-nESI MS in 2010~2019
Fig. 3 (a) Photographic image of SAESI apparatus;(b) schematic of SAESI device[4]
Fig. 4 Schematic of DART device[15]
Fig. 5 (a) Schematic of DBDI device;(b) schematic diagram of DBDI interface in LC-MS[23]
Fig. 6 (a) Schematic of SAII device[31];(b) schematic of ESII device[37]
Fig. 7 (a) Schematic of CF emitter[38];(b) schematic of CFI device[40]
Fig. 8 Schematic of CPI device[45]
Fig. 9 Schematic of cVSSI device
Fig. 10 Schematic of LEI device[54]
[1]
Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004,306(5695):471. https://www.sciencemag.org/lookup/doi/10.1126/science.1104404

doi: 10.1126/science.1104404
[2]
Hiraoka K, Nishidate K, Mori K, Asakawa D, Suzuki S. Rapid Commun. Mass Spectrom., 2007,21(18):3139. http://doi.wiley.com/10.1002/%28ISSN%291097-0231

doi: 10.1002/(ISSN)1097-0231
[3]
Wilm M S, Mann M. International J. Mass Spectrom., 1994,136(2/3):167. https://linkinghub.elsevier.com/retrieve/pii/0168117694040249

doi: 10.1016/0168-1176(94)04024-9
[4]
Zhang J T, Wang H Y, Zhu W, Cai T T, Guo Y L. Anal. Chem., 2014,86(18):8937. https://pubs.acs.org/doi/10.1021/ac502656a

doi: 10.1021/ac502656a
[5]
Wilm M, Mann M. Anal. Chem., 1996,68(1):1.
[6]
Schupke H, Hempel R, Eckardt R, Kronbach T. J. Mass Spectrom., 1996,31(12):1371. http://doi.wiley.com/10.1002/%28ISSN%291096-9888

doi: 10.1002/(ISSN)1096-9888
[7]
Mavroudakis L, Mavrakis E, Kouvarakis A, Pergantis S A. Rapid Commun. Mass Spectrom., 2017,31(11):911. http://doi.wiley.com/10.1002/rcm.7866

doi: 10.1002/rcm.7866
[8]
Wang T W, Nam P K S, Shi H L, Ma Y F. J. Chromatogra. Sci., 2007,45(4):200. https://academic.oup.com/chromsci/article-lookup/doi/10.1093/chromsci/45.4.200

doi: 10.1093/chromsci/45.4.200
[9]
Benijts T, Gunther W, Lambert W, De Leenheer A. Rapid Commun. Mass Spectrom., 2003,17(16):1866. http://doi.wiley.com/10.1002/rcm.1131

doi: 10.1002/rcm.1131
[10]
Huang Y, Zhang Q, Liu Y, Jiang B, Xie J, Gong T, Jia B, Liu X, Yao J, Cao W, Shen H, Yang P. Talanta, 2020,207:120340. https://linkinghub.elsevier.com/retrieve/pii/S0039914019309737

doi: 10.1016/j.talanta.2019.120340
[11]
Rahman M M, Wu D, Chingin K, Xu W, Chen H. Talanta, 2019,202:59. https://linkinghub.elsevier.com/retrieve/pii/S0039914019304412

doi: 10.1016/j.talanta.2019.04.052
[12]
Berg A, Svobodova1 H, Dewberry A, 王勇为(Wang Y W), Valaskovic G. 中国化学会第二届全国质谱分析学术报告会( The 2nd National Conference on Mass Spectrometry Analysis of Chinese Chemical Society), 2015.
[13]
Keating J E, Glish G L. Anal. Chem., 2018,90(15):9117. https://pubs.acs.org/doi/10.1021/acs.analchem.8b01528

doi: 10.1021/acs.analchem.8b01528
[14]
张骏婷(Zhang J T). 中国科学院上海有机化学研究所博士论文( Doctorial Dissertation of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences), 2016.
[15]
Cody R B, Laramee J A, Durst H D. Anal. Chem., 2005,77(8):2297. https://pubs.acs.org/doi/10.1021/ac050162j

doi: 10.1021/ac050162j
[16]
Na N, Zhao M X, Zhang S C, Yang C D, Zhang X R. J. Am. Soc. Mass Spectrome., 2007,18(10):1859. https://pubs.acs.org/doi/10.1021/jasms.8b02797

doi: 10.1016/j.jasms.2007.07.027
[17]
Harper J D, Charipar N A, Mulligan C C, Zhang X R, Cooks R G, Ouyang Z. Anal. Chem., 2008,80(23):9097. https://pubs.acs.org/doi/10.1021/ac801641a

doi: 10.1021/ac801641a
[18]
Badal S P, Michalak S D, Chan G C, You Y, Shelley J T. Anal. Chem., 2016,88(7):3494. https://pubs.acs.org/doi/10.1021/acs.analchem.5b03434

doi: 10.1021/acs.analchem.5b03434
[19]
Ratcliffe L V, Rutten F J M, Barrett D A, Whitmore T, Seymour D, Greenwood C, Aranda-Gonzalvo Y, Robinson S, McCoustra M. Anal. Chem., 2007,79(16):6094. https://pubs.acs.org/doi/10.1021/ac070109q

doi: 10.1021/ac070109q
[20]
Gross J H. Anal. Bioanal. Chem., 2014,406(1):63. http://link.springer.com/10.1007/s00216-013-7316-0

doi: 10.1007/s00216-013-7316-0
[21]
Chang C L, Xu G G, Bai Y, Zhang C S, Li X J, Li M, Liu Y, Liu H W. Anal. Chem., 2013,85(1):170. https://pubs.acs.org/doi/10.1021/ac303450v

doi: 10.1021/ac303450v
[22]
Chang C L, Zhou Z G, Yang Y Y, Han Y H, Bai Y, Zhao M P, Liu H W. Electrophoresis, 2012,33(22):3387. http://dx.doi.org/10.1002/elps.201200122

doi: 10.1002/elps.201200122
[23]
Hayen H, Michels A, Franzke J. Anal. Chem., 2009,81(24):10239. https://pubs.acs.org/doi/10.1021/ac902176k

doi: 10.1021/ac902176k
[24]
Gilbert-Lopez B, Lara-Ortega F J, Robles-Molina J, Brandt S, Schutz A, Moreno-Gonzalez D, Garcia-Reyes J F, Molina-Diaz A, Franzke J. Anal. Bioanal. Chem., 2019,41(19):4785.
[25]
Gilbert-Lopez B, Garcia-Reyes J F, Meyer C, Michels A, Franzke J, Molina-Diaz A, Hayen H. Analyst, 2012,137(22):5403. http://dx.doi.org/10.1039/c2an35705d

doi: 10.1039/c2an35705d
[26]
Covey T R, Thomson B A, Schneider B B. Mass Spectrom. Rev., 2009,28(6):870. http://doi.wiley.com/10.1002/mas.v28%3A6

doi: 10.1002/mas.v28:6
[27]
Page J S, Kelly R T, Tang K, Smith R D. J. Am. Soc. Mass Spectrom., 2007,18(9):1582. https://pubs.acs.org/doi/10.1021/jasms.8b03007

doi: 10.1016/j.jasms.2007.05.018
[28]
Kelly R T, Tolmachev A V, Page J S, Tang K, Smith R D. Mass Spectrom. Rev., 2010,29(2):294.
[29]
Trimpin S, Inutan E D, Herath T N, McEwen C N. Mol. Cell Proteomics, 2010,9(2):362. http://www.mcponline.org/lookup/doi/10.1074/mcp.M900527-MCP200

doi: 10.1074/mcp.M900527-MCP200
[30]
Trimpin S, Inutan E D, Herath T N, McEwen C N. Anal. Chem., 2010,82(1):11. https://pubs.acs.org/doi/10.1021/ac902066s

doi: 10.1021/ac902066s
[31]
Pagnotti V S, Inutan E D, Marshall D D, McEwen C N, Trimpin S. Anal. Chem., 2011,83(20):7591. https://pubs.acs.org/doi/10.1021/ac201982r

doi: 10.1021/ac201982r
[32]
Vestal M L. Mass Spectrom. Rev., 1983,2(4):447. http://doi.wiley.com/10.1002/%28ISSN%291098-2787

doi: 10.1002/(ISSN)1098-2787
[33]
Pagnotti V S, Chubatyi N D, McEwen C N. Anal. Chem., 2011,83(11):3981. https://pubs.acs.org/doi/10.1021/ac200556z

doi: 10.1021/ac200556z
[34]
Pagnotti V S, Chakrabarty S, Harron A F, McEwen C N. Anal. Chem., 2012,84(15):6828. https://pubs.acs.org/doi/10.1021/ac3014115

doi: 10.1021/ac3014115
[35]
Chubatyi N D, Pagnotti V S, Bentzley C M, McEwen C N. Rapid Commun. Mass Spectrom., 2012,26(8):887. http://doi.wiley.com/10.1002/rcm.6179

doi: 10.1002/rcm.6179
[36]
Wang B X, Inutan E D, Trimpin S. J. Am. Soc. Mass Spectrom., 2012,23(3):442. https://pubs.acs.org/doi/10.1021/jasms.8b04246

doi: 10.1007/s13361-011-0320-8
[37]
Fenner M A, Chakrabarty S, Wang B, Pagnotti V S, Hoang K, Trimpin S, McEwen C N. Anal. Chem., 2017,89(9):4798. https://pubs.acs.org/doi/10.1021/acs.analchem.6b05172

doi: 10.1021/acs.analchem.6b05172
[38]
Liu J, Ro K W, Busman M, Knapp D R. Anal. Chem., 2004,76(13):3599. https://pubs.acs.org/doi/10.1021/ac030419i

doi: 10.1021/ac030419i
[39]
Ro K W, Liu H, Busman M, Knapp D R. J. Chromatogra. A, 2004,1047(1):49. https://linkinghub.elsevier.com/retrieve/pii/S0021967304010878

doi: 10.1016/j.chroma.2004.06.115
[40]
Wu M X, Wang H Y, Zhang J T, Guo Y L. Anal. Chem., 2016,88(19):9547. https://pubs.acs.org/doi/10.1021/acs.analchem.6b02166

doi: 10.1021/acs.analchem.6b02166
[41]
Wu M L, Chen T Y, Chen Y C, Chen Y C. Anal. Chem., 2017,89(24):13458. https://pubs.acs.org/doi/10.1021/acs.analchem.7b03736

doi: 10.1021/acs.analchem.7b03736
[42]
吴梦茜(Wu M X). 中国科学院上海有机化学研究所博士论文( Doctorial Dissertation of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences), 2017.
[43]
Robb D B, Covey T R, Bruins A P. Anal. Chem., 2000,72(15):3653. https://pubs.acs.org/doi/10.1021/ac0001636

doi: 10.1021/ac0001636
[44]
Kersten H, Derpmann V, Barnes I, Brockmann K J, O’Brien R, Benter T. J. Am. Soc. Mass Spectrom., 2011,22(11):2070. https://pubs.acs.org/doi/10.1021/jasms.8b03917

doi: 10.1007/s13361-011-0212-y
[45]
Haapala M, Suominen T, Kostiainen R. Anal. Chem., 2013,85(12):5715. https://pubs.acs.org/doi/10.1021/ac4002673

doi: 10.1021/ac4002673
[46]
Poho P, Vaikkinen A, Haapala M, Kylli P, Kostiainen R. Analyst, 2019,144(9):2867. http://xlink.rsc.org/?DOI=C9AN00258H

doi: 10.1039/C9AN00258H
[47]
Li X J, Attanayake K, Valentine S J, Li P. Rapid Commun. Mass Spectrom., 2018.
[48]
Ranganathan N, Li C, Suder T, Karanji A K, Li X J, He Z Y, Valentine S J, Li P. J. Am. Soc. Mass Spectrom., 2019,30(5):824. https://doi.org/10.1007/s13361-019-02147-0

doi: 10.1007/s13361-019-02147-0
[49]
Heron S R, Wilson R, Shaffer S A, Goodlett D R, Cooper J M. Anal. Chem., 2010,82(10):3985. https://pubs.acs.org/doi/10.1021/ac100372c

doi: 10.1021/ac100372c
[50]
Amirav A, Granot O. J. Am. Soc. Mass Spectrom., 2000,11(6):587. https://pubs.acs.org/doi/10.1021/jasms.8b01488

doi: 10.1016/S1044-0305(00)00125-2
[51]
Cappiello A, Balogh M, Famiglini G, Mangani F, Palma P. Anal. Chem., 2000,72(16):3841. https://pubs.acs.org/doi/10.1021/ac991493x

doi: 10.1021/ac991493x
[52]
Cappiello A, Famiglini G, Mangani F, Palma P. Mass Spectrom. Rev., 2001,20(2):88. http://doi.wiley.com/10.1002/%28ISSN%291098-2787

doi: 10.1002/(ISSN)1098-2787
[53]
Tomasini D, Cacciola F, Rigano F, Sciarrone D, Donato P, Beccaria M, Caramao E B, Dugo P, Mondello L. Anal. Chem., 2014,86(22):11255. https://pubs.acs.org/doi/10.1021/ac5038957

doi: 10.1021/ac5038957
[54]
Termopoli V, Famiglini G, Palma P, Piergiovanni M, Cappiello A. Anal. Chem., 2017,89(3):2049. https://pubs.acs.org/doi/10.1021/acs.analchem.6b04646

doi: 10.1021/acs.analchem.6b04646
[55]
Cappiello A, Famiglini G, Palma P, Pierini E, Trufelli H, Maggi C, Manfra L, Mannozzi M. Chemosphere, 2007,69(4):554. https://linkinghub.elsevier.com/retrieve/pii/S0045653507003943

doi: 10.1016/j.chemosphere.2007.03.026
[56]
Cappiello A, Famiglini G, Palma P, Pierini E, Termopoli V, Trufelli H. Mass Spectrom. Rev., 2011,30(6):1242. http://dx.doi.org/10.1002/mas.20329

doi: 10.1002/mas.20329
[57]
Palma P, Famiglini G, Trufelli H, Pierini E, Termopoli V, Cappiello A. Anal. Bioanal. Chem., 2011,399(8):2683. http://link.springer.com/10.1007/s00216-010-4637-0

doi: 10.1007/s00216-010-4637-0
[58]
Cappiello A, Famiglini G, Termopoli V, Trufelli H, Zazzeroni R, Jacquoilleot S, Radici L, Saib O. Anal. Chem., 2011,83(22):8537. https://pubs.acs.org/doi/10.1021/ac201839x

doi: 10.1021/ac201839x
[59]
Trufelli H, Famiglini G, Termopoli V, Cappiello A. Anal. Bioanal. Chem., 2011,400(9):2933. http://link.springer.com/10.1007/s00216-011-4955-x

doi: 10.1007/s00216-011-4955-x
[60]
Cappiello A, Famiglini G, Palma P, Termopoli V, Trufelli H. J. Chromatogr. A, 2012,1255:286. http://dx.doi.org/10.1016/j.chroma.2011.12.068

doi: 10.1016/j.chroma.2011.12.068
[61]
Cappiello A, Tirillini B, Famiglini G, Trufelli H, Termopoli V, Flender C. Phytochem. Anal., 2012,23(3):191. http://doi.wiley.com/10.1002/pca.v23.3

doi: 10.1002/pca.v23.3
[62]
Famiglini G, Termopoli V, Palma P, Capriotti F, Cappiello A. Electrophoresis, 2014,35(9):1339. http://onlinelibrary.wiley.com/doi/10.1002/elps.201300462/abstract

doi: 10.1002/elps.201300462
[63]
Termopoli V, Famiglini G, Palma P, Piergiovanni M, Rocio-Bautista P, Ottaviani M F, Cappiello A, Saeed M, Perry S. J. Chromatogr. A, 2019,1591:120. https://linkinghub.elsevier.com/retrieve/pii/S0021967319300494

doi: 10.1016/j.chroma.2019.01.034
[64]
Popov R S, Ivanchina N V, Kicha A A, Malyarenko T V, Dmitrenok P S. J. Am. Soc. Mass Spectrom., 2019,30(5):743. https://doi.org/10.1007/s13361-019-02136-3

doi: 10.1007/s13361-019-02136-3
[65]
Cheng H Y, Zhang W W, Wang Y C, Liu J H. J. Chromatogr. A, 2018,1575:59. https://linkinghub.elsevier.com/retrieve/pii/S0021967318311749

doi: 10.1016/j.chroma.2018.09.023
[66]
Dahal U P, Jones J P, Davis J A, Rock D A. Drug MeTab. Dispos., 2011,39(12):2355. http://dx.doi.org/10.1124/dmd.111.040865

doi: 10.1124/dmd.111.040865
[67]
Rappel C, Schaumloffel D. J. Anal. At. Spectrom., 2010,25(12):1963. http://xlink.rsc.org/?DOI=c0ja00050g

doi: 10.1039/c0ja00050g
[68]
Giusti P, Lobinski R, Szpunar J, Schaumloffel D. Anal. Chem., 2006,78(3):965. https://pubs.acs.org/doi/10.1021/ac051656j

doi: 10.1021/ac051656j
[69]
Shen L H, Sun J N, Cheng H Y, Liu J H, Xu Z G, Mu J X. J. Anal. At. Spectrom., 2015,30(9):1927. http://xlink.rsc.org/?DOI=C5JA00198F

doi: 10.1039/C5JA00198F
[70]
Zhou Y M, Zhang N, Li Y F, Xiong C Q, Chen S M, Chen Y T, Nie Z X. Analyst, 2014,139(21):5387. http://dx.doi.org/10.1039/c4an00979g

doi: 10.1039/c4an00979g
[71]
Ai W P, Nie H G, Song S Y, Liu X Y, Bai Y, Liu H W. J. Am. Soc. Mass Spectrom., 2018,29(7):1408. https://doi.org/10.1007/s13361-018-1949-3

doi: 10.1007/s13361-018-1949-3
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[4] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[5] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[6] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[7] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[8] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[9] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[10] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[11] Xiaoyu Yang, Shanshan Jia, Juan Zhang, Yinghua Qi, Xuewen Hu, Baojie Shen, Hongying Zhong. Photo Ionization and Dissociation in Mass Spectrometry for Structural Identification of Biological Molecules [J]. Progress in Chemistry, 2021, 33(12): 2316-2333.
[12] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[13] Luanluan Xue, Huizeng Li, An Li, Zhipeng Zhao, Yanlin Song. Droplet Self-Propulsion Based on Heterogeneous Surfaces [J]. Progress in Chemistry, 2021, 33(1): 78-86.
[14] Sicheng Yuan, Dan Lin, Xiguang Zhang, Huaiyuan Wang. Fabrication and Application of Slippery Liquid Infused Porous Functional Surface [J]. Progress in Chemistry, 2021, 33(1): 87-96.
[15] Hang Jia, Yue Qiao, Yu Zhang, Qingxin Meng, Cheng Liu, Xigao Jian. Interface Modification Strategy of Basalt Fiber Reinforced Resin Matrix Composites [J]. Progress in Chemistry, 2020, 32(9): 1307-1315.