中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 665-686 DOI: 10.7536/PC190829 Previous Articles   

• Review •

Metal Borohydride-Based System for Solid-State Hydrogen Storage

Tingting Gu1,2, Jian Gu1,2,**(), Yu Zhang3, Hua Ren1,2   

  1. 1.College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
    2.Institute of Materials Engineering, Nanjing University, Nantong 226019, China
    3.College of Materials and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
  • Received: Revised: Online: Published:
  • Contact: Jian Gu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51701092); Natural Science Foundation of Jiangsu Province(BK20160419); Science and Technology Plan of Nantong City(JC2018111)
Richhtml ( 45 ) PDF ( 1363 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen storage is the key technological problem for a viable hydrogen economy and so far, finding an efficient and safe method of storing hydrogen remains an indomitable challenge. Chemical sorption via solid-state hydrides, offering reliable, compact and high capacity features, is considered one of the most promising avenues for hydrogen storage. Among the diverse hydrides, metal borohydrides are excellent candidates on account of their high gravimetric and volumetric density. However, these hydrides generally suffer from high temperatures of de/rehydrogenation, slow sorption rate, limited reversiblity and poor cyclability due to the intrinsic thermodynamic stability and/or sluggish kinetics. In this review, we summarize recent researches and applications on the aspect of optimizing performance through substitution, composite, doping, and nanostructure, cognizing the relevant reaction mechanism for the metal borohydride-based system. The challenges and countermeasures are illustrated, and the direction to further enhancing the hydrogen storage properties of the system is also pointed out.

Contents

1 Introduction

2 Metal Borohydrides

2.1 Substitution

2.2 Composite

2.3 Doping

2.4 Nanostructure

3 Conclusion and prospect

Table 1 The technical targets set by the DOE for on-board hydrogen based vehicles[16]
Table 2 Hydrogen storage properties for several representative borohydrides
Fig. 1 Schematic illustration of desorption process and two main approaches to tailor the thermodynamic stability of M(BH4) n
Table 3 The synthesis method and purity of the representative mixed-cation borohydrides
Scheme 1 Illustration of the synthesis of mixed-metal borohydrides, M y 3 [M2(BH4) z ], z=x+y. For zinc compounds prepared this way: M1=Li, M2=Zn, M3=Li, Na, K, [Cat]=[Ph4P] or [nBu4N], [An]=[Al{OC(CF3)3}4] or [B{3,5-(CF3)2C6H3}4][94]
Fig. 2 Adsorption van't Hoff plot of the composite 2LiBH4: MgH2: 5 wt% Ni[138]
Fig. 3 Desorption(open marks) and absorption(filled marks) pressure-composition isotherm(PCI) curves of 2LiBH4 + nano-MgH2 composite and 2LiBH4 + commercial MgH2 composite at 360 ℃[140]
Table 4 Summary of the pyrolysis behavior for the eutectic melting composites
Fig. 4 TPD(a) and volumetric dehydrogenation(b) curves of the ball-milled Ca(BH4)2 + 2LiBH4 + 2MgH2,Ca(BH4)2, Ca(BH4)2 + MgH2 and 2LiBH4 + MgH2 systems[174]
Fig. 5 Schematic illustration(a) and equipment(b) of the fabrication procedure for Mg(BH4)2·6NH3 nanoparticles[195]
Fig. 6 A schematic diagram of the nanorodpreparation process[238]
Fig. 7 (a) Schematic illustration of the synthetic procedure of the porous CaB2H7/0.1TiO2 system;(b) TG(lines + symbols)-MS(lines) curves of the pure Ca(BH4)2(1), the as-milled Ca(BH4)2+0.1Ti(OEt)4 mixture(2) and porous CaB2H7/0.1TiO2 system(3) upon heating from RT to 550 ℃[275]
[1]
Balla M , Wietschelb M . In nation Journal of Hydrogen Energy, 2009,34(2):615.
[2]
Edwards P P , Kuznetsov V L , David W I F , Brandon N P . Energy Policy, 2008,36(12):4356.
[3]
Yu Y C . China Automobile Industry Development International BBS. Modern Components, 2017,8(1):18.
[4]
Jacobson M Z . Energy & Environmental Science, 2009,2(2):148.
[5]
Timm W , Christoph H G . European Journal of Operational Research, 2018,264(2):582.
[6]
Goodenough J B , Park K S . Journal of the American Chemical Society, 2013,135(4):1167.
[7]
Yu Z N , Tetard L , Zhai L , Thomas J . Energy & Environmental Science, 2015,8(3):702.
[8]
Sharaf O Z , Orhan M F . Renewable & Sustainable Energy Reviews, 2014,32(1):810.
[9]
Yang J , Sudik A , Wolverton C , Siegel D J . Chemical Society Reviews, 2010,39(2):656.
[10]
Ley M B , Jepsen L H , Lee Y S , Cho Y W , Bellosta C J M , Dornheim M , Rokni M , Jensen J O , Sloth M , Filinchuk Y , Jørgensen J E , Besenbacher F , Jensen T R . Materials Today, 2014,17(3):122.
[11]
Nassivera J . Toyota Hydrogen Fuel Cell Vehicles to be Available in 2016.[ 2019-12-01].. http://www.hngn.com/articles/33584/20140612/toyota-hydrogen-fuel-cell-vehicles-to-be-available-in-2016.htm
[12]
Schlapbach L , Züttel A . Nature, 2001,414(6861):353.
[13]
Balat M . International Journal of Hydrogen Energy, 2008,33(15):4013.
[14]
Hirscher M . Handbook of Hydrogen Storage New Materials for Future Energy Storage. Weinheim: Wiley-VCH-Verl, 2010.
[15]
Muller K . ChemBioEng Reviews, 2019,6(3):1.
[16]
Targets for Onboard Hydrogen Storage Systems for Lightduty Vehicles, Freedom Car and Fuel Partnership, US Department of Energy.[ 2019-12-01].. http://energy.gov/eere/fuelcells/doe-technical-targetsonboard-hydrogen-storage-light-duty-vehicles
[17]
Zhang C , Sun L , Ouyang Y , Xu F , Wei S , Chu H , Zhang H . Sci Sin Chim, 2019,49.
[18]
Reilly J J , Wiswall R H . Inorganic Chemistry, 1968,7(11):2254.
[19]
Buschow K H , Van Mal H H . Journal of the Less Common Metals, 1972,29(2):203.
[20]
Eberle U , Felderhoff M , Schüth F . Angewandte Chemie International Edition, 2009,48(36):6608
[21]
Graetz J . Chemical Society Reviews, 2009,38(1):73.
[22]
Klontzas E , Tylianakis E , Froudakis G E . Nano Letters, 2010,10(2):452.
[23]
Li H , Pan Q Y , Ma Y C . Journal of the American Chemical Society, 2016,138(44):14783.
[24]
Chandrakumar K R S , Ghosh S K . Nano Letters, 2008,8(1):13.
[25]
Prabhakaran P K , Catoire L , Deschamps J . Microporous and Mesoporous Materials, 2017,243(3):214.
[26]
Wang H , Lin H J , Cai W T , Ouyang L Z , Zhu M . Journal of Alloys and Compounds, 2016,658(8):280.
[27]
Ahmed A , Liu Y Y , Purewal J , Tran L D , Wong-Foy A G , Veenstra M , Matzger A J , Siegel D J . Energy & Environmental Science, 2017,10(11):2459.
[28]
Goldsmith J , Wong-Foy A G , Cafarella M J , Siegel D J . Chemistry Materials, 2013,25(16):3373.
[29]
Anton D L , Motyka T . Hydrogen Storage Engineering Center of Excellence, U.S. Department of Energy, Hydrogen and Fuel Cells Program 2015 Annual Merit Review Proceedings. [2019-12-01].. https://www.hydrogen.energy.gov/pdfs/review15/st004_anton_2015_o.pdf.46
[30]
Okada M , Kuriiwa T , Kamegawa A , H Takamura . Materials Science & Engineering A, 2002,329/331(01):305.
[31]
Pan H G , Liu Y F , Gao M X , Zhu Y F , Lei Y Q . International Journal of Hydrogen Energy, 2003,28(11):1219. https://linkinghub.elsevier.com/retrieve/pii/S0360319902002859

doi: 10.1016/S0360-3199(02)00285-9
[32]
Rusman N A A , Dahari M . International Journal of Hydrogen Energy, 2016,41(28):12108.
[33]
Gandhi K , Dixit D K , Dixit B K . Physica B: Condensed Matter, 2010,405(15):3075.
[34]
Bogdanovic B , Bohmhammel K , Christ B , Reiser A . Journal of Alloys and Compounds, 1999,282(1/2):84.
[35]
Jain I P , Lal C , Jain A . International Journal of Hydrogen Energy, 2010,35(10):5133.
[36]
Liu T , Wang C , Wu Y . International Journal of Hydrogen Energy, 2014,32(16):14262.
[37]
Hanada N , Ichikawa T , FuJii H . The Journal of Physical Chemistry B, 2005,109(15):7188.
[38]
Sadhasivam T , Kim H T , Jung S , Roh S H , Park J H , Jung H Y . Renewable and Sustainable Energy Reviews, 2017,72(1):523.
[39]
Liu Y , Zou J , Zeng X , Wu X , Tian H , Ding W , Wang J , Walter A . International Journal of Hydrogen Energy, 2013,38(13):5302.
[40]
Jeon K J , Moon H R , Ruminski A M , Jiang B , Kisielowski C , Bardhan R , Urban J J . Nature Materials, 2011,10(4):286.
[41]
Bogdanovic B , Schwickardi M . Journal of Alloys and Compounds, 1997,253(1):1.
[42]
Srinivasan S S , Brinks H W , Hauback B C , Sun D , Jensen C M . Journal of Alloys and Compounds, 2004,377(1/2):283.
[43]
Wang J , Ebner A D , Ritter J A . Journal of the American Chemical Society, 2006,128(17):5949.
[44]
Fichtner M , Fuhr O , Kircher O . Journal of Alloys and Compounds, 2003,356/357(2):418.
[45]
Chen P , Xiong Z T , Luo J Z , Lin J Y , Tan K L . Nature, 2002,420(6913):302.
[46]
Chen P , Xiong Z T , Wu G T , Liu Y F , Hu J J , Luo W F . Scripta Materialia, 2007,56(10):817.
[47]
Leng H , Ichikawa T , FuJii H . The Journal of Physical Chemistry B, 2006,110(26):12964.
[48]
Li C , Liu Y F , Yang Y J , Gao M X . Journal of Materials Chemistry A, 2014,2(20):7345.
[49]
Liu Y F , Zhong K , Luo K , Gao M X , Pan H G , Wang Q D . Journal of the American Chemical Society, 2009,131(5):1862.
[50]
Xiong Z T , Hu J J , Wu G T , Chen P , Luo W F , Gross K , Wang J . Journal of Alloys and Compounds, 2005,398(1/2):235.
[51]
Züttel A , Wenger P , Rentsch S , Sudan P , Mauron P , Emmenegger C . Journal of Power Sources, 2003,118(1/2):1.
[52]
George L , Saxena S K . International Journal of Hydrogen Energy, 2010,35(11):5454.
[53]
Callini E , Atakli Z O K , Hauback B C , Orimo S , Jensen C , Dornheim M , Grant D , Cho Y W , Chen P , Hjörvarsson, B , Jongh P D , Weidenthaler C , Baricco M , Paskevicius M , Jensen T R , Bowden M E , Autrey T S , Züttel A . Applied Physics A-Materials Science & Processing, 2016,122(4):352.
[54]
Ge Q . The Journal of Physical Chemistry A 2004; 108(41):8682. https://pubs.acs.org/doi/10.1021/jp048829d

doi: 10.1021/jp048829d
[55]
VaJeeston P , Ravindran P , Kjekshus A , Fjellvag H . Journal of Alloys and Compounds, 2005,387(1):97.
[56]
Orimo S , Nakamori Y , Kitahara G , Miwa K . Journal of Alloys and Compounds, 2005,404(1):427.
[57]
Mao J F , Guo Z P , Yu X B , Liu H K . The Journal of Physical Chemistry C, 2011,115(18):9283. https://pubs.acs.org/doi/10.1021/jp2020319

doi: 10.1021/jp2020319
[58]
Van Setten M J , de Wijs G A , Brocks G F . Physical Review B, 2008,77(16):709.
[59]
Marynick D S , Lipscomb W N . Inorganic Chemistry, 1972,11(4):820. https://pubs.acs.org/doi/abs/10.1021/ic50110a033

doi: 10.1021/ic50110a033
[60]
Li H W , Kikuchi K , Nakamori Y , Ohba N , Miwa K , Towata S , Orimo S . Acta Materialia, 2008,56(6):1342.
[61]
Miwa K , Aoki K , Noritake T , Ohba N . Physical Review B, 2006,74(15):155122.
[62]
Mao J F , Guo Z P , Poh C K , Ranjbar A , Guo Y H , Yu X B , Liu H K . Journal of Alloys and Compounds, 2010,500(2):200.
[63]
Harrison D , Thonhauser T . International Journal of Hydrogen Energy, 2016,41(28):3571.
[64]
Miwa K , Ohba N , Towata S I , Nakamori Y , Züttel A , Orimo, S . Journal of Alloys and Compounds, 2006,446(5):310.
[65]
Roedern E , Jensen T R . The Journal of Physical Chemistry C, 2014,118(41):23567.
[66]
Yadav M , Xu Q . Energy & Environmental Science, 2012,5(12):9698.
[67]
Kim Y , Hwang S J , Lee Y S , Suh J Y . The Journal of Physical Chemistry C, 2012,116(49):25715.
[68]
Pendolino, Flavio . Journal of Thermal Analysis and Calorimetry, 2013,112(3):1207.
[69]
Züttel A , Borgschulte A , Orimo SI . Scripta Materialia, 2007,56(10):823. https://linkinghub.elsevier.com/retrieve/pii/S1359646207000474

doi: 10.1016/j.scriptamat.2007.01.010
[70]
Verdal N , Her J H , Stavila V , Soloninin A V , Babanova O A , Skripov A V , Udovic T J , Rush J J . Journal of Solid State Chemistry, 2014,212(1):81.
[71]
Kim Y , Hwang S J , Shim J H , Lee Y S , Han H N , Cho Y W . The Journal of Physical Chemistry C, 2012,116(6):4330.
[72]
Sahle C J , Kujawski S , Remhof A , Yan Y , Stadie N P , Al-Zein A , Tolan M , Huotari S , Krisch M , Sternemann C . Physical Chemistry Chemical Physics, 2016,18(7):5397. http://xlink.rsc.org/?DOI=C5CP06571B

doi: 10.1039/C5CP06571B
[73]
Yan Y , Rentsch D , Remhof A . Physical Chemistry Chemical Physics, 2017,19(11):7788.
[74]
Ohba N , Miwa K , Aoki M , Noritake T , Towata S , Nakamori Y , Orimo S , Züttel A . Physical Review B, 2006,74(7):075110.
[75]
Yan Y , Remhof, Rentsch D , Züttel A , Giri S , Jena P . Chemical Communications, 2015,51(55):11008.
[76]
Li H W , Yan Y G , Orimo S I , Züttel A , Jensen C M . Energies, 2011,4(1):185.
[77]
Nakamori Y , Miwa K , Ninoyiya A , Li H W , Ohba N , Towata S I , Züttel A , Orimo S I . Physical Review B, 2006,74(4):045126.
[78]
Sugiyama J , Ikedo Y , Noritake T , Miwa K , Towata S , Goko T , Ofer O , Månsson M , Ansaldo E J , Brewer J H . Physical Review B, 2010,225(1):012051.
[79]
Hagemann H , Cerny R . Dalton Transactions, 2010,39(26):6006.
[80]
Nickels E A , Jones M O , David W I F , Johnson S R , Lowton R L , Sommariva M , Edwards P P . Angewandte International Edition Chemie, 2008,47(15):2817.
[81]
Jaron T , Grochala W . Dalton Transactions, 2010,39(1):160.
[82]
Bardaji E G , Zhao-Karger Z R , Boucharat N , Nale A C , Setten M J V , Lohstroh W , Röhm E , Catti M , Fichtner M M . The Journal of Physical Chemistry C, 2011,115(13):6095. https://pubs.acs.org/doi/10.1021/jp110518s

doi: 10.1021/jp110518s
[83]
Lee J Y , Ravnsbaek D B , Lee Y S , Kim Y Y , Cerenius Y , Shim J H , Jensen T R , Hur N H , Cho Y W . The Journal of Physical Chemistry C, 2009,113(33):15080.
[84]
Li H W , Orimo S , Nakamori Y , Miwa K , Ohba N , Towata S , Züttel A . Journal of Alloys and Compounds, 2007, 446-447(5):315.
[85]
Choudhury P , Srinivasan S S , Bhethanabotla V R , Goswami Y , McGrath K , Stefanakos E K . International Journal of Hydrogen Energy, 2009,34(15):6325. http://www.sciencedirect.com/science/article/pii/S0360319909008726

doi: 10.1016/j.ijhydene.2009.06.004
[86]
Kim C , Hwang S , Bowman R C , Jr Reiter J W , Zan J A , Kulleck J G , Kabbour H , Majzoub E H , Ozolins V . The Journal of Physical Chemistry C, 2009,113(22):9956. https://pubs.acs.org/doi/10.1021/jp9011685

doi: 10.1021/jp9011685
[87]
Severa G , Hagemann H , Longhini M , Kaminski J W , Wesolowski T A , Jensen C M . The Journal of Physical Chemistry C, 2010,114(36):15516. https://pubs.acs.org/doi/10.1021/jp101675q

doi: 10.1021/jp101675q
[88]
Cerny R , Kim K C , Penin N , D’Anna V , Hagemann H , Sholl D S . The Journal of Physical Chemistry C, 2010,114(44):19127. https://pubs.acs.org/doi/10.1021/jp105957r

doi: 10.1021/jp105957r
[89]
Zhang L T , Zheng J G , Xiao X Z , Fan X L , Huang X , Yang X L , Chen L X . RSC Advances, 2017,7(59):36852. http://xlink.rsc.org/?DOI=C7RA06599J

doi: 10.1039/C7RA06599J
[90]
Jiang K , Xiao X Z , Deng S S , Zhang M , Li S Q , Ge H W , Chen L X . The Journal of Physical Chemistry C, 2011,115(40):19986. https://pubs.acs.org/doi/10.1021/jp203896w

doi: 10.1021/jp203896w
[91]
Fang Z Z , Kang X D , Wang P , Li H W , Orimo S I . Journal of Alloys and Compounds, 2010,491(1/2):L1. https://linkinghub.elsevier.com/retrieve/pii/S0925838809021495

doi: 10.1016/j.jallcom.2009.10.149
[92]
Fang Z Z , Kang X D , Luo J H , Wang P , Li H W , Orimo S I . The Journal of Physical Chemistry C, 2010,114(51):22736. https://pubs.acs.org/doi/10.1021/jp109260g

doi: 10.1021/jp109260g
[93]
Roedern E , Lee Y S , Ley M B , Park K , Cho Y W , Skibsted J , Jensen T R . Journal of Materials Chemistry A, 2016,4(22):8793. http://xlink.rsc.org/?DOI=C6TA02761J

doi: 10.1039/C6TA02761J
[94]
Tomasz J , Piotr A O , Wojciech W , Karol J F , Piotr J L , Wojciech G . Angewandte International Edition Chemie, 2015,54(4):1236. http://doi.wiley.com/10.1002/anie.201408456

doi: 10.1002/anie.201408456
[95]
Starobrat A , Jaron T , Grochala W . Inorganica Chimica Acta, 2015,437(1):70. https://linkinghub.elsevier.com/retrieve/pii/S0020169315003898

doi: 10.1016/j.ica.2015.08.005
[96]
Yang Y J , Liu Y F , Wu H , Zhou W , Gao M X , Pan H G . Physical Chemistry Chemical Physics, 2014,16(1):135. http://dx.doi.org/10.1039/c3cp54099e

doi: 10.1039/c3cp54099e
[97]
Blonski P , Lodziana Z . Physical Review B, 2014,90(5):054114. https://link.aps.org/doi/10.1103/PhysRevB.90.054114

doi: 10.1103/PhysRevB.90.054114
[98]
Guo Y J , Jia J F , Wu H S . Structural Chemistry, 2015,26(3):647. http://link.springer.com/10.1007/s11224-014-0516-1

doi: 10.1007/s11224-014-0516-1
[99]
Schouwink P , Ley M B , Tissot A , Hagemann H , Jensen T R , Smr$\check{c}$ok L , $\check{D} ern \check{y}$ R . Nature Communications, 2014,5:5706. https://doi.org/10.1038/ncomms6706

doi: 10.1038/ncomms6706
[100]
Brighi M , Schouwink P , Sadikin Y , $\check{D} ern \check{y}$ R . Journal of Alloys and Compounds, 2016,662:388. https://linkinghub.elsevier.com/retrieve/pii/S0925838815317746

doi: 10.1016/j.jallcom.2015.11.218
[101]
Payandeh G S , Heere M , Sørby M H , Ley M B , Ravnsbæk D B , Hauback B C , $\check{D} ern \check{y}$ R , Jensen T R . Dalton Transactions, 2016,45(47):19002. http://xlink.rsc.org/?DOI=C6DT03671F

doi: 10.1039/C6DT03671F
[102]
Shannon R D . Acta Crystallographica Section A Foundations of Crystallography, 1976,32(SEP1):751.
[103]
Rude L H , Zavorotynska O , ArnbJerg L M , Ravnsbæk D B , Malmkjær R A , Grove H , Hauback B C , Baricco M , Filinchuk Y , Besenbacher F , Jensen T R . International Journal of Hydrogen Energy, 2011,36(24):15664. http://www.sciencedirect.com/science/article/pii/S0360319911020088

doi: 10.1016/j.ijhydene.2011.08.087
[104]
Rude L H , Groppo E , ArnbJerg L M , Ravnsbaek D B , Malmkjaer R A , Filinchuk Y,Baricco M , Besenbacher F , Jensen T R . Journal of Alloys and Compounds, 2011,509(33):8299. http://dx.doi.org/10.1016/j.jallcom.2011.05.031

doi: 10.1016/j.jallcom.2011.05.031
[105]
Yin L C , Wang P , Fang Z Z , Cheng H M . Chemical Physics Letters, 2008,450(4/6):318. https://linkinghub.elsevier.com/retrieve/pii/S0009261407015874

doi: 10.1016/j.cplett.2007.11.060
[106]
Richter B , Ravnsbaek D B , Sharma M , Spyratou A , Hagemann H , Jensen T R . Physical Chemistry Chemical Physics, 2017,19(44):30157. http://xlink.rsc.org/?DOI=C7CP05565J

doi: 10.1039/C7CP05565J
[107]
Ravnsbaek D B , Rude L H , Jensen T R . Journal of Solid State Chemistry, 2011,184(7):1858. http://dx.doi.org/10.1016/j.jssc.2011.05.030

doi: 10.1016/j.jssc.2011.05.030
[108]
Lee J Y , Lee Y S , Suh J Y , Shim J H , Cho Y W . Journal of Alloys and Compounds, 2010,506(2):721. https://linkinghub.elsevier.com/retrieve/pii/S0925838810017512

doi: 10.1016/j.jallcom.2010.07.051
[109]
Hino S , Fonnelop J E , Corno M , Zavorotynska O , Damin A , Richter B , Baricco M , Jensen T R , Sørby M H , Hauback B C . The Journal of Physical Chemistry C, 2012,116(23):12482. https://pubs.acs.org/doi/10.1021/jp303123q

doi: 10.1021/jp303123q
[110]
Rude L H , Filinchuk Y , Sorby M H , Hauback B C , Besenbacher F , Jensen T R . The Journal of Physical Chemistry C, 2011,115(15):7768. https://pubs.acs.org/doi/10.1021/jp111473d

doi: 10.1021/jp111473d
[111]
Grove H , Rude L H , Jensen T R , Corno M , Ugliengo P , Baricco M , Sørby M H , Hauback B C . RSC Advances, 2014,4(9):4736. http://dx.doi.org/10.1039/c3ra46226a

doi: 10.1039/c3ra46226a
[112]
Jaroń T , Wegner W , Grochala W . Dalton Transactions, 2013,42(19):6886. http://xlink.rsc.org/?DOI=c3dt33048f

doi: 10.1039/c3dt33048f
[113]
Matsuo M , Nakamori Y , Orimo SI , Maekawa H , Takamura H . Applied Physics Letters, 2007,91(22):224103. http://aip.scitation.org/doi/10.1063/1.2817934

doi: 10.1063/1.2817934
[114]
Maekawa H , Matsuo M , Takamura H , Ando M , Noda Y , Karahashi T , Orimi S I . Journal of the American Chemical Society, 2009,131(3):894. https://pubs.acs.org/doi/10.1021/ja807392k

doi: 10.1021/ja807392k
[115]
Lee Y S , Cho Y W . The Journal of Physical Chemistry C, 2017,121(33):17773. https://pubs.acs.org/doi/10.1021/acs.jpcc.7b06328

doi: 10.1021/acs.jpcc.7b06328
[116]
Udovic T J , Matsuo M , Tang W S , Wu H , Stavila V , Soloninin A V , Skoryunov R V , Babanova O A , Skripov A V , Rush J J , Unemoto A , Takamura A , Orimo S . Advanced Materials, 2014,26(45):7622. http://dx.doi.org/10.1002/adma.201403157

doi: 10.1002/adma.201403157
[117]
Udovic T J , Matsuo M , Unemoto A , Verdal N , Stavila V , Skripov A V , Rush J J , Takamura H , Orimo S . Chemical Communications, 2014,50(28):3750. http://dx.doi.org/10.1039/c3cc49805k

doi: 10.1039/c3cc49805k
[118]
Tang W S , Unemoto A , Zhou W , Stavila V , Matsuo M , Wu H , Orimo S I , Udovic T J . Energy & Environmental Science, 2015,8(12):3637.
[119]
Unemoto A , Matsuo M , Orimo S . Advanced Functional Materials, 2014,24(16):2267. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201303147/abstract

doi: 10.1002/adfm.201303147
[120]
De Jongh P E , Blanchard D , Matsuo M , Udovic T J , Orimo S . Applied Physics A, 2016,122(3):251. http://link.springer.com/10.1007/s00339-016-9807-2

doi: 10.1007/s00339-016-9807-2
[121]
Unemoto A , Chen C L , Wang Z C , Matsuo M , Ikeshoji T , Orimo S . Nanotechnology, 2015,26(25):254001. https://iopscience.iop.org/article/10.1088/0957-4484/26/25/254001

doi: 10.1088/0957-4484/26/25/254001
[122]
Cascallana-Matias I , Keen D A , Cussen E J , Gregory D H . Chemistry of Materials, 2015,27(22):7780. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b03642

doi: 10.1021/acs.chemmater.5b03642
[123]
Martelli P , Remhof A , Borgschulte A , Ackermann R , Strässle T , Embs JP , Ernst M , Matsuo M , Orimo S , Züttel A . The Journal of Physical Chemistry A, 2011,115(21):5329. https://pubs.acs.org/doi/10.1021/jp201372b

doi: 10.1021/jp201372b
[124]
SveinbJornsson D , Christiansen A S , Viskinde R , Norby P , Vegge T . Journal of the Electrochemical Society, 2014,161(9):A1432. http://dx.doi.org/10.1149/2.1061409jes

doi: 10.1149/2.1061409jes
[125]
Xiang M Y , Zhang Y , Zhan L Y , Zhu Y F , Guo X L , Chen J , Wang Z M , Li L Q . Journal of Alloys and Compounds, 2017,729:936. https://linkinghub.elsevier.com/retrieve/pii/S0925838817329924

doi: 10.1016/j.jallcom.2017.08.253
[126]
Mezaki T , Kuronuma Y , Oikawa I , Kamegawa A , Takamura H . Inorganic Chemistry, 2016,55(20):10484. https://pubs.acs.org/doi/10.1021/acs.inorgchem.6b01678

doi: 10.1021/acs.inorgchem.6b01678
[127]
Vajo J J , Skeith S L , Mertens F . The Journal of Physical Chemistry B, 2005,109(9):3719. https://pubs.acs.org/doi/10.1021/jp040769o

doi: 10.1021/jp040769o
[128]
Pendolino F . The Journal of Physical Chemistry C, 2012,116(1):1390. https://pubs.acs.org/doi/10.1021/jp206038a

doi: 10.1021/jp206038a
[129]
Ravnsbaek D B , Jensen T R . Journal of Applied Physics, 2012,111(11):112621. http://aip.scitation.org/doi/10.1063/1.4726244

doi: 10.1063/1.4726244
[130]
Hansen B R S , Tavnsbaek D B , Reed D , Book D , Gundlach C , Skibsted J , Jensen T R . The Journal of Physical Chemistry C, 2013,117(15):7423. https://pubs.acs.org/doi/10.1021/jp312480h

doi: 10.1021/jp312480h
[131]
Mao J F , Wu Z , Yu X B , Dou T , Chen T , Weng B , Ni J , Xu N , Huang T . Rare Metal Materials and Engineering, 2007,36(12):2248.
[132]
Kim Y , Reed D , Lee Y S , Lee J Y , Shim J H , Book D , Cho Y W . The Journal of Physical Chemistry C, 2009,113(14):5865. https://pubs.acs.org/doi/10.1021/jp8094038

doi: 10.1021/jp8094038
[133]
Yan Y , Li H W , Maekawa H , Miwa K , Towata S I , Orimo S I . The Journal of Physical Chemistry C, 2011,115(39):19419. https://pubs.acs.org/doi/10.1021/jp205450c

doi: 10.1021/jp205450c
[134]
Kim K B , Shim J H , Park S H , Choi I S , Oh K H , Cho Y W . The Journal of Physical Chemistry C, 2015,119(18):9714. https://pubs.acs.org/doi/10.1021/jp5123757

doi: 10.1021/jp5123757
[135]
Kim K B , Shim J H , Cho Y W , Oh K H . Chemical Communications, 2011,47(35):9831. http://dx.doi.org/10.1039/c1cc14072h

doi: 10.1039/c1cc14072h
[136]
Kim K B , Shim J H , Oh K H , Cho Y W . The Journal of Physical Chemistry C, 2013,117(16):8028. https://pubs.acs.org/doi/10.1021/jp4000208

doi: 10.1021/jp4000208
[137]
Kim K B , Shim J H , Choi I S , Cho Y W , Oh K H . Journal of Nanoscience and Nanotechnology, 2016,16(10):10869. http://openurl.ingenta.com/content/xref?genre=article&issn=1533-4880&volume=16&issue=10&spage=10869

doi: 10.1166/jnn.2016.13255
[138]
Cova F , Ronnebro E C E , Choi Y J , Gennari F C , Larochette P A . The Journal of Physical Chemistry C, 2015,119(28):15816. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b02047

doi: 10.1021/acs.jpcc.5b02047
[139]
Sahle C J , Sternemann C , Giacobbe C , Yan Y G , Weis C , Harder M , Forov Y , Spiekermann G , Tolan M , Krisch M , Remhof A . Physical Chemistry Chemical Physics, 2016,18(29):19866. http://xlink.rsc.org/?DOI=C6CP02495E

doi: 10.1039/C6CP02495E
[140]
Shao H Y , Felderhoff M , Weldenthaler C . The Journal of Physical Chemistry C, 2015,119(5):2341.
[141]
Zhong Y , Wan X F , Ding Z , Shaw L L . International Journal of Hydrogen Energy, 2016,41(47):22104. https://linkinghub.elsevier.com/retrieve/pii/S0360319916303573

doi: 10.1016/j.ijhydene.2016.09.195
[142]
Puszkiel J A , Riglos M V C , Karimi F , Santoru A , Pistidda C , Klassen T , Bellosta C J M , Dornheim M . Physical Chemistry Chemical Physics, 2017,19(11):7455. http://xlink.rsc.org/?DOI=C6CP08278E

doi: 10.1039/C6CP08278E
[143]
Shim J H , Lim J H , Rather S U , Lee Y S , Reed D , Kim Y Y , Book D , Cho Y W . The Journal of Physical Chemistry Letters, 2010,1(1):59. https://pubs.acs.org/doi/10.1021/jz900012n

doi: 10.1021/jz900012n
[144]
Minella C B , Pistidda C , Garroni S , Nolis P , Baró M D , Gutfleisch O , Klassen T , Bormann R , Dornheim M . The Journal of Physical Chemistry C, 2013,117(8):3846. https://pubs.acs.org/doi/10.1021/jp312271s

doi: 10.1021/jp312271s
[145]
Huang X , Xiao X Z , Wang X C , Yao Z D , Wang C T , Fan X L , Chen L X . Energy Storage Materials, 2018,13:199. https://linkinghub.elsevier.com/retrieve/pii/S2405829717306633

doi: 10.1016/j.ensm.2018.01.012
[146]
VaJo J J , Li W , Liu P . Chemical Communications, 2010,46(36):6687. http://xlink.rsc.org/?DOI=c0cc01026j

doi: 10.1039/c0cc01026j
[147]
Ghaani M R , Catti M , Nale A . The Journal of Physical Chemistry C, 2012,116(51):26694. https://pubs.acs.org/doi/10.1021/jp310786k

doi: 10.1021/jp310786k
[148]
Yvon K , Renaudin G . Hydrides: Solid State Transition Metal Complexes, in Encyclopedia of Inorganic Chemistry, King R B, ed. New York: Wiley & Sons, 2006.
[149]
Zhou Y F , Liu Y F , Wu W , Zhang Y , Gao M X , Pan H G . The Journal of Physical Chemistry C, 2012,116(1):1588. https://pubs.acs.org/doi/10.1021/jp2101573

doi: 10.1021/jp2101573
[150]
Huang J J , Gao M X , Li Z L , Cheng X B , Gu J , Liu Y F , Pan H G . Journal of Alloys and Compounds, 2016,670(1):135. https://linkinghub.elsevier.com/retrieve/pii/S0925838816303036

doi: 10.1016/j.jallcom.2016.02.035
[151]
Yuan P P , Liu B H , Li Z P . International Journal of Hydrogen Energy, 2011,36(23):15266. http://www.sciencedirect.com/science/article/pii/S0360319911020131

doi: 10.1016/j.ijhydene.2011.09.001
[152]
Fang Z Z , Ma L P , Kang X D , Wang P J , Wang P , Cheng H M . Applied Physics Letters, 2009,94(4):044104. http://aip.scitation.org/doi/10.1063/1.3076106

doi: 10.1063/1.3076106
[153]
Zhang L T , Zheng J G , Xiao X Z , Wang X C , Huang X , Liu M J , Wang Q D , Chen L X . International Journal of Hydrogen Energy, 2017,42(31):20046. https://linkinghub.elsevier.com/retrieve/pii/S0360319917319250

doi: 10.1016/j.ijhydene.2017.05.060
[154]
Gosalawit-Utke R , Suarez K , von Colbe J M B , Bösenberg U , Jensen T R , Cerenius Y , Minella C B , Pistidda C , Barkhordarian G , Schulze M , Klassen T , Bormann R , Dornheim M . The Journal of Physical Chemistry C, 2011,115(9) 3762. https://pubs.acs.org/doi/10.1021/jp108236e

doi: 10.1021/jp108236e
[155]
Minella C B , Garroni S , Pistidda C , Gosalawit-Utke R , Barkhordarian G , Rongeat C , Lindemann I , Gutfleisch O , Jensen T R , Cerenius Y , Christensen J , Baro M D , Bormann R , Klassen T , Dornheim M . The Journal of Physical Chemistry C, 2011,115(5):2497. https://pubs.acs.org/doi/10.1021/jp107781m

doi: 10.1021/jp107781m
[156]
Gosalawit-Utke R , von Colbe J M B , Dornheim M , Jensen T R , Cerenius Y , Minella C B , Peschke M , Bormann R . The Journal of Physical Chemistry C, 2010,114(22):10291. https://pubs.acs.org/doi/10.1021/jp910266m

doi: 10.1021/jp910266m
[157]
Saldan I , Gosalawit-Utke R , Pistidda C , Bösenberg U , Schulze M , Jensen T R , aube K , Dornheim M , Klassen T . The Journal of Physical Chemistry C, 2012,116(12):7010. https://pubs.acs.org/doi/10.1021/jp212322u

doi: 10.1021/jp212322u
[158]
Saldan I , Ramallo-Lopez J M , Requejo F G , Suarez-Alcantara K , Bellosta von Colbe J , Avila J . International Journal of Hydrogen Energy, 2012,37(13):10236. http://dx.doi.org/10.1016/j.ijhydene.2012.04.010

doi: 10.1016/j.ijhydene.2012.04.010
[159]
Saldan I , Schulze M , Pistidda C , Gosalawit-utke R , Zavorotynska O , Rude R H , Skibsted J , Haase D , Cerenius Y , Jensen T R , Spoto G , Baricco M , Taube K , Dornheim M . The Journal of Physical Chemistry C, 2013,117(33):17360. https://pubs.acs.org/doi/10.1021/jp405856s

doi: 10.1021/jp405856s
[160]
Alcantara K S , Boesenberg U , Zavorotynska O , Bellosta von Colbe , J, Taube K , Baricco M , Klassen T , Dornheim M . Journal of Solid State Chemistry, 2011,184(11):3104. https://linkinghub.elsevier.com/retrieve/pii/S002245961100510X

doi: 10.1016/j.jssc.2011.09.019
[161]
Alcantara K S , Ramallo-Lopez J M , Boesenberg U , Saldan I , Pistidda C , Requejo F , Jensen T R , Cerenius Y , Sørby M H , Avila J , Bellosta von Colbe J M , Taube K , Klassen T , Dornheim M . The Journal of Physical Chemistry C, 2012,116(12):7207. https://pubs.acs.org/doi/10.1021/jp211620h

doi: 10.1021/jp211620h
[162]
Roedern E , Hansen B R S , Ley M B , Jensen T R . The Journal of Physical Chemistry C, 2015,119(46):25818. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b09228

doi: 10.1021/acs.jpcc.5b09228
[163]
Semenenko K N , Chavgun A P , Surov V N . Russian Journal of Inorganic Chemistry, 1971,16(1):271.
[164]
Dematteis E M , Roedern E , Pinatel E R , Jensen T R , Baricco M . RSC Advances, 2016,6(65):60101. http://xlink.rsc.org/?DOI=C6RA09301A

doi: 10.1039/C6RA09301A
[165]
Ley M B , Roedern E , Jensen T R . Physical Chemistry Chemical Physics, 2014,16(44):24194. http://dx.doi.org/10.1039/c4cp03207a

doi: 10.1039/c4cp03207a
[166]
Hagemann H , D’Anna V , Rapin J P , Černý R , Filinchuk Y , Kim K C , Sholl D S , Parker S F . Journal of Alloys and Compounds, 2011,509(s2):5688. https://linkinghub.elsevier.com/retrieve/pii/S0925838811004919

doi: 10.1016/j.jallcom.2011.02.128
[167]
Ley M B , Roedern E , Thygesen P M M , Jensen T R . Energies, 2015,8(4):2701. http://www.mdpi.com/1996-1073/8/4/2701

doi: 10.3390/en8042701
[168]
Paskevicius M , Ley M B , Sheppard D A , Jensen T R , Buckley C E . Physical Chemistry Chemical Physics, 2013,15(45):19774. http://dx.doi.org/10.1039/c3cp53920b

doi: 10.1039/c3cp53920b
[169]
Dematteis E M , Pinatel E R , Corno M , Jensen T R , Baricco M . Physical Chemistry Chemical Physics, 2017,19(36):25071. http://xlink.rsc.org/?DOI=C7CP03816J

doi: 10.1039/C7CP03816J
[170]
Javadian P , GharibDoust S P , Li H W , Sheppard D A , Buckley C E , Jensen T R . The Journal of Physical Chemistry C, 2017,121(34):18439. https://pubs.acs.org/doi/10.1021/acs.jpcc.7b06228

doi: 10.1021/acs.jpcc.7b06228
[171]
Yan Y G , Remhof A , Mauron P , Rentsch D , Łodziana Z , Lee Y S , Lee H S , Cho Y W , Züttel A . The Journal of Physical Chemistry C, 2013,117(17):8878. https://pubs.acs.org/doi/10.1021/jp401628g

doi: 10.1021/jp401628g
[172]
Ibikunle A A , Goudy A J . International Journal of Hydrogen Energy, 2012,37(17):12420. https://linkinghub.elsevier.com/retrieve/pii/S0360319912013948

doi: 10.1016/j.ijhydene.2012.06.047
[173]
Liu Y Z , Reed D , Paterakis C , Vasquez L C , Baricco M , Book D . International Journal of Hydrogen Energy, 2017,42(35):22480. https://linkinghub.elsevier.com/retrieve/pii/S0360319917311059

doi: 10.1016/j.ijhydene.2017.03.141
[174]
Gao M X , Gu J , Pan H G , Wang Y L , Liu Y F , Liang C , Guo Z X . Journal of Materials Chemistry A, 2013,1(39):12285. http://dx.doi.org/10.1039/c3ta12472j

doi: 10.1039/c3ta12472j
[175]
Gu J , Gao M X , Wen L J , Huang J J , Liu Y F , Pan H G . International Journal of Hydrogen Energy, 2015,40(36):12325. https://linkinghub.elsevier.com/retrieve/pii/S0360319915018923

doi: 10.1016/j.ijhydene.2015.07.089
[176]
Pinkerton F E , Meisner G P , Meyer M S , Balogh M P , Kundrat M D . The Journal of Physical Chemistry B, 2005,109(1):6. https://pubs.acs.org/doi/10.1021/jp0455475

doi: 10.1021/jp0455475
[177]
Meisner G P , Scullin M L , Balogh M P , Pinkerton F E , Meyer M S . The Journal of Physical Chemistry B, 2006,110(9):4186. https://pubs.acs.org/doi/10.1021/jp056019b

doi: 10.1021/jp056019b
[178]
Wu H , Zhou W , Udovic T J , Rush J J , Yildirim T . Chemistry of Materials, 2008,20(4):1245. https://pubs.acs.org/doi/10.1021/cm703315e

doi: 10.1021/cm703315e
[179]
Wolczyk A , Pinatel E R , Chierotti M R , Nervi C , Gobetto R , Baricco M . International Journal of Hydrogen Energy, 2016,41(32):14475. https://linkinghub.elsevier.com/retrieve/pii/S0360319916305870

doi: 10.1016/j.ijhydene.2016.03.040
[180]
Tang W S , Wu G T , Liu T , Wee A T S , Yong C K , Xiong Z T , Hor A T S , Chen P . Dalton Transactions, 2008,18:2395.
[181]
Liu Y F , Luo K , Zhou Y F , Gao M X , Pan H G . Journal of Alloys and Compounds, 2009,481(1/2):473. https://linkinghub.elsevier.com/retrieve/pii/S0925838809004708

doi: 10.1016/j.jallcom.2009.02.142
[182]
Zhang Y , Liu Y F , Liu T , Gao M X , Pan H G . International Journal of Hydrogen Energy, 2013,38(30):13318. http://dx.doi.org/10.1016/j.ijhydene.2013.07.084

doi: 10.1016/j.ijhydene.2013.07.084
[183]
Li Y , Zhang Y , Gao M X , Pan H G , Liu Y F . Progress in Natural Science: Materials International, 2017,27(1):132. https://linkinghub.elsevier.com/retrieve/pii/S1002007116303203

doi: 10.1016/j.pnsc.2016.12.010
[184]
Zhang Y , Liu Y F , Yang Y X , Li Y , Hu J J , Gao M X , Pan H G . Materials Research Bulletin, 2018,97:544. https://linkinghub.elsevier.com/retrieve/pii/S0025540817303835

doi: 10.1016/j.materresbull.2017.09.037
[185]
Zhang Y , Lan Z Y , Jian N , Ren Z H , Hu J J , Gao M X , Pan H G , Lu Y H , Liu Y F . Catalysis Science & Technology, 2017,7(9):1838.
[186]
Wang K , Pan Z X , Yu X B . Journal of Alloys and Compounds, 2019,794:303. https://linkinghub.elsevier.com/retrieve/pii/S0925838819315282

doi: 10.1016/j.jallcom.2019.04.240
[187]
Zhang Y , Liu Y F , Zhang X , Li Y , Gao M X , Pan H G . The Journal of Physical Chemistry C, 2015,119(44):24760. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b09256

doi: 10.1021/acs.jpcc.5b09256
[188]
Pei Z W , Bai Y , Wang Y , Wu F , Wu C . Applied Materials & Interfaces, 2017,9(37):31977.
[189]
Zhang Y S , Farrell D , Yang J , Sudik A , Wolverton C . The Journal of Physical Chemistry C, 2014,118(21):11193. https://pubs.acs.org/doi/10.1021/jp500318e

doi: 10.1021/jp500318e
[190]
Morelle F , Jepsen L H , Jensen T R , Sharma M , Hagemann H , Filinchuk Y . The Journal of Physical Chemistry C, 2016,120(16):8428. https://pubs.acs.org/doi/10.1021/acs.jpcc.6b00209

doi: 10.1021/acs.jpcc.6b00209
[191]
Chu H L , Xiong Z T , Wu G T , Guo J P , Zheng X L , He T , Wu C Z , Chen P . Chemistry-an Asian Journal, 2010,5(7):1594. http://doi.wiley.com/10.1002/asia.v5%3A7

doi: 10.1002/asia.v5:7
[192]
Chu H L , Wu G T , Zhang Y , Xiong Z T , Guo J P , He T , Chen P . The Journal of Physical Chemistry C, 2011,115(36):18035. https://pubs.acs.org/doi/10.1021/jp2052695

doi: 10.1021/jp2052695
[193]
Zheng X L , Chua Y S , Xiong Z T , Chen W D , Jiang Z J , Wu G T , Chen P . International Journal of Hydrogen Energy, 2015,40(13):4573. https://linkinghub.elsevier.com/retrieve/pii/S0360319915002049

doi: 10.1016/j.ijhydene.2015.01.134
[194]
Wang K , Liu Q , Lang X Q , Tang K , Zhang J G . International Journal of Hydrogen Energy, 2017,42(22):14936. https://linkinghub.elsevier.com/retrieve/pii/S0360319917318050

doi: 10.1016/j.ijhydene.2017.05.013
[195]
Li Y , Liu Y F , Zhang X , Zhou D , Lu Y H , Gao M X , Pan H G . Journal of Materials Chemistry A, 2016,4(21):8366. http://xlink.rsc.org/?DOI=C6TA02944B

doi: 10.1039/C6TA02944B
[196]
Chen J E , He T , Wu G T , Xiong Z T , Liu L , Ju X H , Chen P . The Journal of Physical Chemistry C, 2014,118(25):13451. https://pubs.acs.org/doi/10.1021/jp503123d

doi: 10.1021/jp503123d
[197]
Zhang Y , Liu Y F , Zhang X , Li Y , Gao M X , Pan H G . Dalton Transactions, 2015,44(32):14514. http://xlink.rsc.org/?DOI=C5DT02148K

doi: 10.1039/C5DT02148K
[198]
Amica G , Ronnebro E C E , Larochette P A , Gennari F C . Physical Chemistry Chemical Physics, 2017,19(47):32047. http://xlink.rsc.org/?DOI=C7CP04848C

doi: 10.1039/C7CP04848C
[199]
Tang Z W , Tan Y B , Gu Q F , Yu X B . Journal of Materials Chemistry, 2012,22(12):5312. http://dx.doi.org/10.1039/c2jm14990g

doi: 10.1039/c2jm14990g
[200]
Huang J M , Ouyang L Z , Gu Q F , Yu X B , Zhu M . Chemistry-A European Journal, 2015,21(42):14931. http://doi.wiley.com/10.1002/chem.201501461

doi: 10.1002/chem.201501461
[201]
Jepsen L H , Ley M B , Filinchuk Y , Besenbacher F , Jensen T R . ChemsusChem, 2015,8(8):1452. http://doi.wiley.com/10.1002/cssc.v8.8

doi: 10.1002/cssc.v8.8
[202]
Li Z M , Wng H , Ouyang L Z , Liu J W , Zhu M . International Journal of Hydrogen Energy, 2017,42(35):22406. https://linkinghub.elsevier.com/retrieve/pii/S0360319917310686

doi: 10.1016/j.ijhydene.2017.03.123
[203]
Li Y , Liu Y F , Zhang X , Yang Y X , Gao M X , Pan H G . International Journal of Hydrogen Energy, 2016,41(4):2788. https://linkinghub.elsevier.com/retrieve/pii/S0360319915312623

doi: 10.1016/j.ijhydene.2015.12.036
[204]
Li Y , Liu Y F , Yang Y J , Gao M X , Pan H G . International Journal of Hydrogen Energy, 2014,39(23):11999. http://dx.doi.org/10.1016/j.ijhydene.2014.05.191

doi: 10.1016/j.ijhydene.2014.05.191
[205]
Yang Y J , Liu Y F , Zhang Y , Li Y , Gao M X , Pan H G . Journal of Alloys and Compounds, 2014,585:674. http://dx.doi.org/10.1016/j.jallcom.2013.09.208

doi: 10.1016/j.jallcom.2013.09.208
[206]
Zhang P S , Xu B E , Li X Y , Zeng Y L , Meng L P . International Journal of Hydrogen Energy, 2014,39(30):17144. http://dx.doi.org/10.1016/j.ijhydene.2014.08.067

doi: 10.1016/j.ijhydene.2014.08.067
[207]
Zhao S S , Xu B E , Sun N N , Sun Z , Zeng Y L , Meng L P . International Journal of Hydrogen Energy, 2015,40(28):8721. https://linkinghub.elsevier.com/retrieve/pii/S0360319915011672

doi: 10.1016/j.ijhydene.2015.05.023
[208]
Yang Y J , Liu Y F , Li Y , Gao M X , Pan H G . Journal of Materials Chemistry A, 2015,3(2):570. http://xlink.rsc.org/?DOI=C4TA04765F

doi: 10.1039/C4TA04765F
[209]
Zheng X L , Wu G T , Li W , Xiong Z T , He T , Guo J P , Chen H , Chen P . Energy & Environmental Science, 2011,4(9):3593.
[210]
Kim J H , Jin S A , Shim J H , Cho Y W . Scripta Materialia, 2008,58(6):481. http://www.sciencedirect.com/science/article/pii/S1359646207007816

doi: 10.1016/j.scriptamat.2007.10.042
[211]
Kim J H , Shim J H , Cho Y W . Journal of Power Sources, 2008,181(1):140. https://linkinghub.elsevier.com/retrieve/pii/S0378775308005065

doi: 10.1016/j.jpowsour.2008.02.094
[212]
Liu G L , Zhang G Y , Bao J S , Zhang H . Acta Physica Sinica, 2014,63(24):248801. http://wulixb.iphy.ac.cn//CN/abstract/abstract62420.shtml

doi: 10.7498/aps.63.248801
[213]
Wang Z G , Hui Q , Wang C L , Cheng N P . Computational Materials Science, 2011,50(11):3114. http://www.sciencedirect.com/science/article/pii/S0927025611003090

doi: 10.1016/j.commatsci.2011.05.036
[214]
Zhang W , Xu G , Chen L J , Pan S Y , Jing X , Wang J S , Han S M . International Journal of Hydrogen Energy, 2017,42(22):15262. https://linkinghub.elsevier.com/retrieve/pii/S0360319917318104

doi: 10.1016/j.ijhydene.2017.05.018
[215]
Bonatto M C , Pellicer E , Rossinyol E , Karimi F , Pistidda C , Garroni S , Milanese C , Nolis P , Baró M D , Gutfleisch O , Pranzas K P , Schreyer A , Klassen T , Bormann R , Dornheim M . The Journal of Physical Chemistry C, 2013,117(9):4394. https://pubs.acs.org/doi/10.1021/jp3116275

doi: 10.1021/jp3116275
[216]
Fan X L , Xiao X Z , Chen L X , Wang X H , Li S Q , Ge H W , Wang Q D . Journal of Materials Chemistry A, 2013,1(37):11368. http://dx.doi.org/10.1039/c3ta12401k

doi: 10.1039/c3ta12401k
[217]
Au M , Jurgensen A R , Spencer W A , Anton D L , Pinkerton F E , Hwang S J , Kim C , Bowman R C . The Journal of Physical Chemistry C, 2008,112(47):18661. https://pubs.acs.org/doi/10.1021/jp8024304

doi: 10.1021/jp8024304
[218]
Bidabadi A S , Varin R A , Polanski M , Stobinski L . RSC Advances, 2016,6(96):93245. http://xlink.rsc.org/?DOI=C6RA21539D

doi: 10.1039/C6RA21539D
[219]
Kou H Q , Sang G , Zhou Y L , Wang X Y , Huang Z Y , Luo W H , Chen L X , Xiao X Z , Yang G Y , Hu C Y . International Journal of Hydrogen Energy, 2014,39(22):11675. http://dx.doi.org/10.1016/j.ijhydene.2014.05.179

doi: 10.1016/j.ijhydene.2014.05.179
[220]
Nale A , Pendolino F , Maddalena A , Colombo P . International Journal of Hydrogen Energy, 2016,41(26):11225. https://linkinghub.elsevier.com/retrieve/pii/S036031991630533X

doi: 10.1016/j.ijhydene.2016.04.191
[221]
Wei J , Leng H Y , Li Q , Chou K C . International Journal of Hydrogen Energy, 2014,39(25):13609. http://dx.doi.org/10.1016/j.ijhydene.2014.02.130

doi: 10.1016/j.ijhydene.2014.02.130
[222]
Hu J J , Liu Y F , Wu G T , Xiong Z T , Chua Y S , Chen P . Chemistry of Materials, 2008,20(13):4398. https://pubs.acs.org/doi/10.1021/cm800584x

doi: 10.1021/cm800584x
[223]
Li B , Liu Y F , Gu J , Gao M X , Pan H G . Chemistry-An Asian Journal, 2013,8(2):374. http://dx.doi.org/10.1002/asia.201200938

doi: 10.1002/asia.201200938
[224]
Pan H G , Shi S B , Liu Y F , Li B , Yang Y J , Gao M X . Dalton Transactions, 2013,42(11):3802. http://dx.doi.org/10.1039/c2dt32266h

doi: 10.1039/c2dt32266h
[225]
Qiu S J , Ma X Y , Wang E R , Chu H L , Huot J , Zou Y J , Xiang C L , Xu F , Sun L X . Journal of Alloys and Compounds, 2017,704:44. https://linkinghub.elsevier.com/retrieve/pii/S0925838817304619

doi: 10.1016/j.jallcom.2017.02.045
[226]
Nielsen T K , Besenbacher F , Jensen T R . Nanoscale, 2011,3(5):2086. http://xlink.rsc.org/?DOI=c0nr00725k

doi: 10.1039/c0nr00725k
[227]
Ren J W , Musyoka N M , Langmi H W , Mathe M , Liao S J . International Journal of Hydrogen Energy, 2017,42(1):289. https://linkinghub.elsevier.com/retrieve/pii/S0360319916335285

doi: 10.1016/j.ijhydene.2016.11.195
[228]
Yu X B , Tang Z W , Sun D L , Ouyang L Z , Zhu M . Progress in Materials Science, 2017,88:1. https://linkinghub.elsevier.com/retrieve/pii/S0079642517300312

doi: 10.1016/j.pmatsci.2017.03.001
[229]
Mueller T , Ceder G . ACS Nano, 2010,4(10):5647. https://pubs.acs.org/doi/10.1021/nn101224j

doi: 10.1021/nn101224j
[230]
Aguey-Zinsou K F , Ares-Fernandes J R . Energy & Environmental Science, 2010,3(5):526.
[231]
Suryanarayana C , Al-Aqeeli N . Progress in Materials Science, 2013,58(4):383. http://dx.doi.org/10.1016/j.pmatsci.2012.10.001

doi: 10.1016/j.pmatsci.2012.10.001
[232]
Wu H , Zhao W F , Hu H W , Chen G H . Journal of Materials Chemistry, 2011,21(24):8626. http://dx.doi.org/10.1039/c1jm10819k

doi: 10.1039/c1jm10819k
[233]
Wagemans R W P , van Lenthe J H , de Jongh P E , Jos van Dillen A , de Jong K P . Journal of the American Chemical Society, 2005,127(47):16675. https://pubs.acs.org/doi/10.1021/ja054569h

doi: 10.1021/ja054569h
[234]
Kim K C , Dai B , Karl J J , Sholl D S . Nanotechnology, 2009,20(20):204001. https://iopscience.iop.org/article/10.1088/0957-4484/20/20/204001

doi: 10.1088/0957-4484/20/20/204001
[235]
Wu C Z , Wang P , Yao X , Liu C , Chen D M , Lu G Q , Cheng H M . Journal of Alloys and Compounds, 2006,420(1):278. https://linkinghub.elsevier.com/retrieve/pii/S0925838805015975

doi: 10.1016/j.jallcom.2005.10.028
[236]
Li H W , Kikuchi K , Nakamori Y , Miwa K , Towata S , Orimo S . Scripta Materialia, 2007,57(8):679. http://www.sciencedirect.com/science/article/pii/S1359646207004770

doi: 10.1016/j.scriptamat.2007.06.052
[237]
Li W Y , Li C S , Ma H , Chen J . Journal of the American Chemical Society, 2007,129(21):6710. https://pubs.acs.org/doi/10.1021/ja071323z

doi: 10.1021/ja071323z
[238]
Pang Y P , Liu Y F , Gao M X , Ouyang L Z , Liu J W , Wang H , Zhu M , Pan H G . Nature Communications, 2014,5(3):3519. https://doi.org/10.1038/ncomms4519

doi: 10.1038/ncomms4519
[239]
Cushing B L , Kilesnichenko V L , O’Connor C J . Chemical Reviews, 2004,104(9):3893. https://pubs.acs.org/doi/10.1021/cr030027b

doi: 10.1021/cr030027b
[240]
Aguey-Zinsou K F , Ares-Fernandez J R . Chemistry of Materials, 2008,20(2):376. https://pubs.acs.org/doi/10.1021/cm702897f

doi: 10.1021/cm702897f
[241]
Christian M L , Aguey-Zinsou K F . ACS Nano, 2012,6(9):7739. https://pubs.acs.org/doi/10.1021/nn3030018

doi: 10.1021/nn3030018
[242]
Christian M , Aguey-Zinsou K F . Chemical Communications, 2013,49(60):6794. http://dx.doi.org/10.1039/c3cc42815j

doi: 10.1039/c3cc42815j
[243]
Wang T , Aguey-Zinsou K F . Energy Technology, 2019,7, 1801159. https://onlinelibrary.wiley.com/toc/21944296/7/6

doi: 10.1002/ente.v7.6
[244]
Prieto G , Tuysuz H , Duyckaerts N , Knossalla J , Wang G H , Schüth F . Chemical Reviews, 2016,116(22):14056. https://pubs.acs.org/doi/10.1021/acs.chemrev.6b00374

doi: 10.1021/acs.chemrev.6b00374
[245]
ComaNescu C , Capurso G , Maddalena A . Nanotechnology, 2012,23(38):385401. https://iopscience.iop.org/article/10.1088/0957-4484/23/38/385401

doi: 10.1088/0957-4484/23/38/385401
[246]
Liu X F , Peaslee D , Jost C Z , Baumann T F , Majzoub E H . Chemistry of Materials, 2011,23(5):1331. http://dx.doi.org/10.1021/cm103546g

doi: 10.1021/cm103546g
[247]
Javadian P , Sheppard D A , Buckley C E , Jensen T R . International Journal of Hydrogen Energy, 2016,40(43):14916. https://linkinghub.elsevier.com/retrieve/pii/S0360319915301221

doi: 10.1016/j.ijhydene.2015.08.075
[248]
Javadian P , Jensen T R . International Journal of Hydrogen Energy, 2014,39(18):9871. http://dx.doi.org/10.1016/j.ijhydene.2014.03.007

doi: 10.1016/j.ijhydene.2014.03.007
[249]
Lee H S , Lee Y S , Suh J Y , Kim M , Yu J S , Cho Y W . The Journal of Physical Chemistry C, 2011,115(40):20027. https://pubs.acs.org/doi/10.1021/jp206000h

doi: 10.1021/jp206000h
[250]
Gross A F , Vajo J J , van Atta S L , Olson G L . The Journal of Physical Chemistry C, 2008,112(14):5651. https://pubs.acs.org/doi/10.1021/jp711066t

doi: 10.1021/jp711066t
[251]
Thiangviriya S , Utke R . International Journal of Hydrogen Energy, 2015,40(11):4167. https://linkinghub.elsevier.com/retrieve/pii/S0360319915002360

doi: 10.1016/j.ijhydene.2015.01.144
[252]
House S D , Liu X F , Rockett A A , Majzoub E H , Robertson I M . The Journal of Physical Chemistry C, 2014,118(17):8843. https://pubs.acs.org/doi/10.1021/jp4098205

doi: 10.1021/jp4098205
[253]
Hazrati E , Brocks G , Wijs G A D . The Journal of Physical Chemistry C, 2014,118(10):5102. https://pubs.acs.org/doi/10.1021/jp410676b

doi: 10.1021/jp410676b
[254]
Lodziana Z , Bloriski P . International Journal of Hydrogen Energy, 2014,39(18):9842. http://dx.doi.org/10.1016/j.lihydene.2014.02.150

doi: 10.1016/j.lihydene.2014.02.150
[255]
Ngene P , van Zwienen M R , de Jongh P E . Chemical Communications, 2010,46(43):8201. http://xlink.rsc.org/?DOI=c0cc03218b

doi: 10.1039/c0cc03218b
[256]
Zhao Y P , Jiao L F , Liu Y C , Guo L J , Li L , Liu H Q , Wang Y J , Yuan H T . International Journal of Hydrogen Energy, 2014,39(2):917. http://dx.doi.org/10.1016/j.ijhydene.2013.10.137

doi: 10.1016/j.ijhydene.2013.10.137
[257]
Shao J , Xiao X Z , Fan X L , Zhang L T , Li S Q , Ge H W , Wang Q D , Chen L X . The Journal of Physical Chemistry C, 2014,118(21):11252. https://pubs.acs.org/doi/10.1021/jp503127m

doi: 10.1021/jp503127m
[258]
Zhou H , Zhang L T , Gao S C , Liu H Z , Xu L , Wang X H , Yan M . International Journal of Hydrogen Energy, 2017,42(36):23010. https://linkinghub.elsevier.com/retrieve/pii/S0360319917326241

doi: 10.1016/j.ijhydene.2017.06.193
[259]
Sun W W , Li S F , Mao J F , Guo Z P , Liu H K , Dou S X , Yu X B . Dalton Transactions, 2011,40(21):5673. http://dx.doi.org/10.1039/c0dt01727b

doi: 10.1039/c0dt01727b
[260]
Guo L J , Jiao L F , Li L , Wang Q H , Liu G , Du H M , Wu Q , Du J , Yang J Q , Yan C , Wang Y J , Yuan H T . International Journal of Hydrogen Energy, 2013,38(1):162. http://dx.doi.org/10.1016/j.ijhydene.2012.10.038

doi: 10.1016/j.ijhydene.2012.10.038
[261]
Xu X H , Zang L , Zhao Y R , Zhao Y , Wang Y J , Jiao L F . Journal of Power Sources, 2017,359:134. https://linkinghub.elsevier.com/retrieve/pii/S0378775317306870

doi: 10.1016/j.jpowsour.2017.05.047
[262]
Gosalawitutke R , Nielsen T K , Saldan I , Laipple D , Cerenius Y , Jensen T R , Klassen T , Dornheim M . The Journal of Physical Chemistry C, 2011,115(21):10903. https://pubs.acs.org/doi/10.1021/jp2021903

doi: 10.1021/jp2021903
[263]
Wang K K , Kang X D , Zhong Y J , Hu C H , Ren J W , Wang P . The Journal of Physical Chemistry C, 2014,118(46):26447. https://pubs.acs.org/doi/10.1021/jp505535h

doi: 10.1021/jp505535h
[264]
Utke R , Thiangviriya S , Javadian P , Jensen T R , Milanese C , Klassen T , Dornheim M . Materials Chemistry and Physics, 2016,169:136. https://linkinghub.elsevier.com/retrieve/pii/S0254058415304673

doi: 10.1016/j.matchemphys.2015.11.040
[265]
Plerdsranoy P , Utke R . Journal of Physics and Chemistry of Solids, 2016,90:80. https://linkinghub.elsevier.com/retrieve/pii/S0022369715301037

doi: 10.1016/j.jpcs.2015.11.016
[266]
Karger Z Z , Witter R , Bardaji E G , Wang D , Cossement D , Fichtner M . Journal of Materials Chemistry A, 2013,1(10):3379. http://dx.doi.org/10.1039/c2ta00542e

doi: 10.1039/c2ta00542e
[267]
Javadian P , Sheppard D A , Buckley C E , Jensen T R . Nano Energy, 2015,11:96. https://linkinghub.elsevier.com/retrieve/pii/S221128551420019X

doi: 10.1016/j.nanoen.2014.09.035
[268]
de Jongh P E , Allendorf M , Vajo J J , Zlotea C . M R S Bulletin, 2013,38(6):488.
[269]
Lee H S , Hwang S J , Kim H K , Lee Y S , Park J , Yu J S , Cho Y W . The Journal of Physical Chemistry Letters, 2012,3(20):2922. https://pubs.acs.org/doi/10.1021/jz301199y

doi: 10.1021/jz301199y
[270]
Lee H S , Hwang S J , To M , Lee Y S , Cho Y W . The Journal of Physical Chemistry C, 2015,119(17):9025. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b00111

doi: 10.1021/acs.jpcc.5b00111
[271]
Zhai B , Xiao X Z , Lin W P , Huang X , Fan X L , Li S Q , Ge H W , Wang Q D , Chen L X . International Journal of Hydrogen Energy, 2016,41(39):17462. https://linkinghub.elsevier.com/retrieve/pii/S0360319916318857

doi: 10.1016/j.ijhydene.2016.06.170
[272]
Javadian P , Sheppard D A , Buckley C E , Jensen T R . International Journal of Hydrogen Energy, 2015,40(43):14916. https://linkinghub.elsevier.com/retrieve/pii/S0360319915301221

doi: 10.1016/j.ijhydene.2015.08.075
[273]
Roedern E , Hansen B R S , Ley M B , Jensen T R . The Journal of Physical Chemistry C, 2015,119(46):25818. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b09228

doi: 10.1021/acs.jpcc.5b09228
[274]
Xia G L , Li D , Chen X W , Tan Y B , Tang Z W , Guo Z P , Liu H K , Liu Z W , Yu X B . Advanced Materials, 2013,25(43):6238. http://doi.wiley.com/10.1002/adma.201301927

doi: 10.1002/adma.201301927
[275]
Gu J , Gao M X , Pan H G , Liu Y F , Li B , Yang Y J , Liang C , Fu H L , Guo Z X . Energy & Environmental Science, 2013,6(3):847.
[1] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[2] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[3] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[4] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[5] Jiang Binbo, Yuan Shiling, Chen Nan, Wang Haibo, Wang Jingdai, Huang Zhengliang. Reaction Kinetics of n-Butane Oxidation on VPO Catalyst [J]. Progress in Chemistry, 2015, 27(11): 1679-1688.
[6] Li Xue, Zhang Yifang, Qi Weihong, Cao Xiaowu, Wang Yuan, Li Haohua. Hydrogen Storage Nanoalloys [J]. Progress in Chemistry, 2013, 25(07): 1122-1130.
[7] Chu Genbai, Chen Jun, Liu Fuyi, Sheng Liusi. Kinetics of Gas-Phase Radical Reactions Using Photoionization Mass Spectrometry with Synchrotron Source [J]. Progress in Chemistry, 2012, 24(11): 2097-2105.
[8] Ma Guanglu, Zhuang Dawei, Dai Hongbin, Wang Ping. Controlled Hydrogen Generation by Reaction of Aluminum with Water [J]. Progress in Chemistry, 2012, 24(04): 650-658.
[9] Linfeng Rao. Application of Thermodynamic and Spectroscopic Techniques to the Studies of Actinide Complexation [J]. Progress in Chemistry, 2011, 23(7): 1295-1307.
[10] Xu Shujun, Liang Liyun, Li Buyi, Luo Yali, Liu Chengmei, Tan Bien. Research Progress on Microporous Organic Polymers [J]. Progress in Chemistry, 2011, 23(10): 2085-2094.
[11] Jiang Junying Huang Zaiyin Mi Yan Li Yanfen Yuan Aiqun. Recent Development and Prospect of Thermodynamics of Nanomaterials [J]. Progress in Chemistry, 2010, 22(06): 1058-1067.
[12] . Advances in the Anionic Ring Opening Polymerization Mechanism and Dynamics of Hexamethylcyclotrisiloxane(D3) [J]. Progress in Chemistry, 2010, 22(06): 1169-1176.
[13] . Dilute Acid Hydrolysis Reaction of Biomass Hemicellulose [J]. Progress in Chemistry, 2010, 22(04): 654-662.
[14] Fang Sheng. Viscosity Model for Mixtures Based on Eyring’s Absolute Reaction Theory [J]. Progress in Chemistry, 2010, 22(0203): 309-314.
[15] Wang Yan Tao Zhanliang Chen Jun. Mg-Based Transition-Metal Complex Hydrides with 18-Electronic Structure [J]. Progress in Chemistry, 2010, 22(01): 234-240.