中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (10): 1396-1405 DOI: 10.7536/PC190323 Previous Articles   Next Articles

Template Preparation and Application in Biological Detection of Porous Noble Metal Nanostructures

Chang Liu, Feng Wu, Qianqian Su, Weiping Qian**()   

  1. School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
  • Received: Online: Published:
  • Contact: Weiping Qian
  • About author:
    ** E-mail:
  • Supported by:
    National Key Research and Development Program of China(2017YFE0100200); National Natural Science Foundation of China(21775020)
Richhtml ( 7 ) PDF ( 470 ) Cited
Export

EndNote

Ris

BibTeX

Porous noble metal nanostructures are a class of new-type multi-functional nanostructures, which have unique optical, electrical and catalytic properties, due to their unique interior, porous walls and adjustable morphology. How to regulate the size, morphology, arrangement and spatial orientation of porous noble metal nanomaterials is critical for their applications in Raman spectroscopy, biosensing, etc. Some novel porous nanostructures, which are difficult to prepare by other methods, can be obtained easily by template methods. The synthesis of products can be guided by the pre-structures which match the nanoscale characteristics of target products. Based on the diversity of templates, the pore diameter, size and composition of porous noble metal nanostructures can be conveniently adjusted to fully develop the advantages of noble metals. In this review, we summarize a series of template methods for the synthesis of porous noble metal nanostructures, and the advantages and disadvantages of these methods are discussed. Furthermore, the applications of porous noble metal nanostructures in biological detection fields are also briefly discussed.

Fig. 1 SEM images of several ordered porous noble metal nanostructures:(a) Au nanohole arrays[12],(b) ordered porous Au nanostructures[13],(c) Ag/Pt nanohole arrays[14], and (d) ordered Au nanoarrays[15]
Fig. 2 TEM images of several unordered porous noble metal nanostructures[19]
Fig. 3 (a) Synthesis procedure and structural model for mesoporous double gyroid(DG) platinum,(b,c) SEM images of DG platinum,(d) TEM image of DG platinum[33]
Fig. 4 (a) Synthesis procedure of ordered porous Ag “brochosomal”,(b) SEM image of MCC template,(c) SEM image of DCC template,(d) SEM image of Ag “brochosomal”[34]
Fig. 5 (a) Synthesis procedure of ordered porous PS/Au nanostructures,(b) SEM image of ordered porous PS/Au nanostructure[35]
Fig. 6 (a~c) TEM images of 3D porous Au nanobelts,(d) TEM image of the cross-section of a 3D Au nanobelt,(e,f) schematically illustrations of the cross-section and the 3D structure of these Au NDs, respectively[39]
Fig. 7 Synthesis procedure of 3D porous Ag based on butterfly wing scales[42]
Fig. 8 (a~f) Synthesis procedure of 3D porous templates based on cuttlebone, and(g) Photos of 3D porous Au nanostructures[44]
Fig. 9 Schematic of mechanisms of the Kirkendall effect[45]
Fig. 10 Various porous noble metal nanostructures based on Kirkendall effect[46]
Fig. 11 (a)SEM image of Cu2O Octahedrons,(b) SEM images of octahedral PtCu meso-nanocages,(c~e) TEM images of octahedral PtCu meso-nanocages,(f,g) element mapping of octahedral PtCu meso-nanocages[50]
Fig. 12 SEM images of the products obtained by the first and the second deposition at the current of 10 mA for 5 min in air at room temperature, respectively:(a) Cu-Ni dendrites and (b~d) Cu-Ni-Pt dendrites[51]
Fig. 13 (a) Synthesis procedure of 3D ordered porous Au nanostructures,(b) Normalized electric field(E-field) amplitude distribution at the surface,(c) Raman intensities at different peaks and the simulated EM enhancement factors[58]
Fig. 14 Schematic illustration of the SERS immunoprobe fabrication procedure[60]
Fig. 15 Detection of carcinoembryonic antigen(CEA) based on gold nanobowl array-based SERS substrate[61]
[1]
Perego C, Millini R . Chem. Soc. Rev., 2013,42(9):3956.
[2]
Li J, Peng J, Huang W H, Wu Y, Fu J, Cong Y, Xue L J, Han Y C . Langmuir, 2005,21(5):2017.
[3]
Wang L, Wang H J, Nemoto Y, Yamauchi Y . Chem. Mater., 2010,22(9):2835.
[4]
Horáček J, Št̓ávová G, Kelbichová V, Kubička D . Catal Today, 2013,204:38.
[5]
Fierro-Gonzalez J C, Gates B C . Langmuir, 2005,21(13):5693.
[6]
Kim S W, Kim M, Lee W Y, Lee W Y, Hyeon T . J. Am. Chem. Soc., 2002,124(26):7642.
[7]
Cui C H, Li H H, Yu S H . Chem Sci., 2011,2(8):1611.
[8]
Li W Y, Cai X, Kim C, Sun G R, Zhang Y, Deng R, Yang M X, Chen J Y, Achilefu S, Wang L, Xia Y N . Nanoscale, 2011,3(4):1724.
[9]
Chinen A B, Guan C M, Ferrer J R, Barnaby S N, Merkel T J, Mirkin C A . Chem. Rev., 2015,115:10530.
[10]
Luo X, Lian S M, Wang L Q, Yang S C, Yang Z M, Ding B J, Song X P . CrystEngComm, 2013,15(14):2588.
[11]
Dong S A, Yang S C, Tang C . Chem. Res. Chin. Univ., 2007,23(5):500.
[12]
Yu Q M, Golden G . Langmuir, 2007,23(17):8659.
[13]
Lu L H, Capek R, Kornowski A, Gaponik, N, Eychmüller, A . Angew. Chem. Int. Ed., 2005,117(37):6151.
[14]
Tessier P M, Velev O D, Kalambur A T, Rabolt J F, Lenhoff A M, Kaler E W . J. Am. Chem. Soc., 2000,122(39):9554.
[15]
Li Y, Cai W P, Duan G T . Chem. Mater., 2007(3), 20:615.
[16]
Rao Y Y, Tao Q, An M, Rong C H, Dong J, Dai R L, Qian W P . Langmuir, 2011,27(21):13308.
[17]
Chen B, Meng G W, Huang Q, Huang Z L, Xu X L, Zhu C H, Qian Y W, Ding Y . ACS Appl. Mater. Interfaces, 2014,6(18):15667.
[18]
Ding L X, Wang A L, Li G R, Liu Z Q, Zhao W X, Su C Y, Tong Y X . J. Am. Chem. Soc., 2012,134(13):5730.
[19]
Yang S C, Luo X . Nanoscale, 2014,6(9):4438.
[20]
Lv J J, Wang A J, Ma X H, Xiang R Y, Chwn J R, Feng J J . J. Mater. Chem. A., 2015,3(1):290.
[21]
Wang J M, Yang P, Cao M M, Kong N, Yang W R, Sun S, Meng Y, Liu J Q . Talanta, 2016,147:184.
[22]
Chapman C A R, Wang L, Biener J, Seker E, Biener M, Matthews M J . Nanoscale, 2016,8(2):785.
[23]
Liu K, Bai Y C, Zhang L, Yang Z B, Fan Q K, Zheng H Q, Yin Y D, Gao C B . Nano lett., 2016,16(6):3675.
[24]
Velev O D, Kaler E W . Adv. Mater., 2000,12(7):531.
[25]
Lu L, Eychmüller A . Acc. Chem. Res., 2008,41(2):244.
[26]
Jiang P . Angew. Chem. Int. Ed., 2004,43(42):5625.
[27]
Zhang X Y, Lu W, Dai J Y, Bourgeors L, Hao N, Wang H T, Zhao D Y, Webley P A . Angew. Chem. Int. Ed., 2010,49(52):10101.
[28]
Sugimoto W, Makino S, Mukai R, Tatsum Y, Fukuda K, Takasu Y, Yamauchi Y , et al. J. Power Sources, 2012,204:244.
[29]
Jiang J, Kucernak A . Chem. Mater., 2004,16(7):1362.
[30]
Li Y, Song Y Y, Yang C, Xia X H . Electrochem. Commun., 2007,9(5):981.
[31]
Zhu C Z, Du D, Eychmūller A, Lin Y H . Chem. Rev., 2015,115(16):8896.
[32]
Jiang P, Cizeron J, Bertone J F, Colvin V L . J. Am. Chem. Soc., 1999,121(34):7957.
[33]
Kibsgaard J, Gorlin Y, Chen Z B, Jaramillo T F . J. Am. Chem. Soc., 2012,134(18):7758.
[34]
Yang S K, Sun N, Stogin B B, Wang J, Huang Y, Wong T S . Nat. Commun., 2017,8(1):1285.
[35]
Ding S H, Qian W P, Tan Y, Wang Y . Langmuir, 2006,22(17):7105.
[36]
Yamauchi Y, Kuroda K . Chem.-Asian J., 2008,3(4):664.
[37]
Attard G S, Bartlett P N, Coleman N R B, Elliott J M, Owen J R, Wang J H . Science, 1997,278(5339):838.
[38]
Attard G S, Corker J M, Göltner C G, Henke S, Templer R H . Angew. Chem. Int. Ed. Engl., 1997,36(12):1315.
[39]
Yuan C H, Zhong L N, Yang C J, Chen G J, Jiang B j, Deng Y M, Xu Y T, Luo W A, Zeng B R, Liu J, Bai L Z . J. Mater. Chem., 2012,22(15):7108.
[40]
Yamauchi Y, Sugiyama A, Morimoto R, Takai A, Kurona K . Angew. Chem. Int. Ed., 2008,120(29):5451.
[41]
Lee M N, Mohraz A . J. Am. Chem. Soc., 2011,133(18):6945.
[42]
Tan Y W, Zang X N, Gu J J, Liu D X, Zhu S M, Su H L, Feng C L, Liu Q L, Lau W M, Moon W J, Zhang D . Langmuir, 2011,27(19):11742.
[43]
Song G F, Zhou H, Gu J J, Liu Q L, Zhang W, Su H L, Su Y S, Yao Q H, Zhang D . J. Mater. Chem. B., 2017,5(8):1594.
[44]
Xu G L, Li H, Ma X P, Jia X P, Dong J, Qian W P . Biosens. Bioelectron., 2009,25(2):362.
[45]
Wang W S, Dahl M, Yin Y D . Chem. Mater., 2012,25(8):1179.
[46]
González E, Arbiol J, Puntes V F . Science, 2011,334(6061):1377.
[47]
Yavuz M S, Cheng Y Y, Chen J Y, Cobley C M, Zhang Q, Rycenga M, Xie J W, Kim C, Song K H, Schwartz A G, Wang L V, Xia Y N . Nat. Mater., 2009,8(12):935.
[48]
Mahmoud M A, Qian W, El-Sayed M A . Nano Lett., 2011,11(8):3285.
[49]
Zhang W X, Yang X N, Zhu Q, Wang K, Lu J B, Chen M, Yang Z H . Ind. Eng. Chem. Res., 2014,53(42):16316.
[50]
Hong F, Sun S D, You H J, Yang S C, Fang J X, Guo S W, Yang Z M, Ding B J, Song X P . Cryst. Growth Des., 2011,11(9):3694.
[51]
Zhang H Y, Wang H P, Cao J J, Ni Y H . J. Alloy. Compd., 2017,698:654.
[52]
Ringe E, Langille M R, Sohn K, Zhang J, Huang J X, Mirkin C A, Duyne R P V, Marks L D . J. Phys. Chem. Lett., 2012,3(11):1479.
[53]
Zhang Z Y, Chen Z P, Qu C L, Chen L X . Langmuir, 2014,30(12):3625.
[54]
Zhang Y, Wang G, Yang L, Wang F, Liu A H . Coord. Chem. Rev., 2018,370:1.
[55]
Zhang Q, Cobley C M, Zeng J, Wen L P, Chen J Y, Xia Y N . J. Phys. Chem. C, 2010,114(14):6396.
[56]
Hong G, Li C . Adv. Func. Mater., 2010,20(21):3774.
[57]
Liu A H, Wang G Q, Wang F, Zhang Y . Coord. Chem. Rev., 2017,336:28.
[58]
Zhang X Y, Zheng Y H, Liu X, Lu W, Dai J Y, Lei D Y, MacFarlane D R . Adv. Mater., 2015,27(6):1090.
[59]
Yang D P, Chen S H, Huang P, Wang X S, Jian W Q, Pandoli D, Cui D X . Green Chem., 2010,12(11):2038.
[60]
Lu W B, Wang Y, Cao X W, Li L, Dong J, Qian W P . New J. Chem., 2015,39(7):5420.
[61]
Li L, Liu C, Cao X W, Wang Y, Dong J, Qian W P . Anal. Lett., 2017,50(6):982.
[1] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[2] Li Li, Jian Dong, Weiping Qian*. Research in the Preparation and Application of Nanobowl Arrays [J]. Progress in Chemistry, 2018, 30(2/3): 156-165.
[3] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[4] Kou Long, Wang Youhe, Peng Peng, Yan Zifeng. Synthesis of Mesoporous Zeolite [J]. Progress in Chemistry, 2014, 26(04): 522-528.
[5] Zhu Ying, Liu Mingjie, Wan Meixiang, Jiang Lei. 3D-Micro/Nanostructures of Conducting Polymers Assembled from 1D-Nanostructures and Their Controlling Wettability [J]. Progress in Chemistry, 2011, 23(5): 819-828.
[6] Rao Yanying, Qian Weiping. Ordered Metal Nanoshell Materials [J]. Progress in Chemistry, 2011, 23(12): 2489-2497.
[7] Li Tao, Chen Deliang. Synthesis of Hierarchical Semiconductor/Semiconductor Composite Nanostructures [J]. Progress in Chemistry, 2011, 23(12): 2498-2509.
[8] Liu Guodong, Chen Dairong. Hierarchical Nanostructures and Their Solution-Phase Synthesis [J]. Progress in Chemistry, 2011, 23(11): 2308-2317.
[9] . Structural DNA Nanotechnology [J]. Progress in Chemistry, 2010, 22(05): 975-982.
[10] Meng Xiangdong Liu Xin Zhao Jiupeng Xin Wuhong Li Yao. Semiconductor Electrodeposition from Ionic Liquids [J]. Progress in Chemistry, 2010, 22(0203): 277-283.
[11] Geng Lina Jiang Ping Xu Jiandong Che Baoquan Qu Feng Deng Yulin. Applications of Nanotechnology in Capillary Electrophoresis and Microfluidic Chip Electrophoresis Biomolecular Separations [J]. Progress in Chemistry, 2009, 21(09): 1905-1921.
[12]

Liu Hongxia|Wang Chaoyang**|Gao Quanxing|Tong Zhen

. Preparation of Novel Microcapsules by Emulsion Droplet Template Method [J]. Progress in Chemistry, 2008, 20(0708): 1044-1049.
[13] Wang Wenshou| Zhen Liang*| Xu Chengyan| Shao Wenzhu. Hollow Inorganic Micro/ Nanostructures Synthesized by Solution-Phase Method [J]. Progress in Chemistry, 2008, 20(05): 679-689.
[14] He Yongjun1** Qi Suitao2 Zhao Shiyong1. Nanoparticle-Stabilized Emulsions and Their Applications in Preparation of Nanostructures [J]. Progress in Chemistry, 2007, 19(9): 1443-1448.
[15] Zhang Yufang,Zhang Zhengguo,Fang Xiaoming**. Synthesis of One-Dimensional TiO2 Nanomaterials and Their Nanostructures [J]. Progress in Chemistry, 2007, 19(04): 494-501.