中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (4): 597-612 DOI: 10.7536/PC180909 Previous Articles   Next Articles

Solar Spectrum Selective Absorbing Coatings

Ningning Cao1, Songtao Lu1, Rui Yao1, Huimin Li1, Wei Qin2, Xiaohong Wu1,**()   

  1. 1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
    2. National Defense Science and Technology Key Lab for Space Materials Behavior and Evaluation, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received: Online: Published:
  • Contact: Xiaohong Wu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51671074); National Natural Science Foundation of China(51572060); National Natural Science Foundation of China(51502062); China Postdoctoral Science Foundation Funded Project(2016M590279)
Richhtml ( 41 ) PDF ( 876 ) Cited
Export

EndNote

Ris

BibTeX

Solar energy, as the most important renewable energy source, has many advantages such as abundant reserves, wide distribution, cleanliness and safety. Therefore, the research on solar energy utilization technologies has important implications of enriching energy structure, reducing environmental pollution, and optimizing resource allocation. And as a note, the photo-thermal conversion is the simplest and most efficient way to achieve direct utilization of solar energy. This paper briefly introduces the significance, advantages and disadvantages of solar energy, and comprehensively analyzes the basic types, absorption mechanisms and the latest research results of selective absorbing coatings for indirect solar collectors. Finally, the existing problems, challenges and prospects for the development of spectrally selective absorbing coatings used for solar collectors are also commented.

Fig. 1 Schematic of(a) surface coating based and(b) direct absorption based solar collectors
Fig. 2 Structural diagram of the cermet absorbing coating
Fig. 3 Sketch of the double cermet coating
Fig. 4 Schematic of the one-step preparation of C-Cu-TiO2 solar absorber coating[15]
Fig. 5 (a) Schematic of the semiconductor-metal tandems, absorption mechanism of(b) semiconductor and(c) semiconductor-metal tandem material
Fig. 6 Schematic of multi-layered optical interference absorber coating:(a) type D/A/D and(b) type AR/D/A/D/A
Table 1 Absorptance(α) and thermal emittance(εT) of layer-added solar absorber with different construct[77]
Table 2 Thickness for each layer, absorptance(α) and thermal emittance(εT) of colored solar absorber coatings with structure Ti/SiO2/Ti/TiO2/SiO2[77]
Fig. 7 Schematic of textured surface absorber coating
Fig. 8 (a) Schematic of TiAlN absorber coating with nanophotonic structure,(b) Absorption spectra of bare Cu substrate, plane Cu/TiAlN and nanostructured Cu/TiAlN coatings[116]. Copyright: Royal Society of Chemistry.
[1]
Panwar N L, Kaushik S C ,Kothari S. Renew. Sust. Energ Rev., 2011,15:1513.
[2]
Lewis N S. Science, 2016,351: aad1920.
[3]
Mishra A ,Bauerle P. Angew. Chem. Int. Edit., 2012,51:2020.
[4]
王聪(Wang C), 代蓓蓓(Dai B B), 于佳玉(Yu J Y), 王蕾(Wang L), 孙莹(Sun Y) . 硅酸盐学报(Journal of the Chinese Ceramic Society), 2017,45(11):1555.
[5]
Tabor H . Sci.Am., 1956,195:97.
[6]
Dan A, Barshilia H C, Chattopadhyay K ,Basu B. Renew. Sust. Energ. Rev., 2017,79:1050.
[7]
(a) 殷志强(Yin Z Q). . 太阳能(Solar Energy), 2014,( 1):27.
[8]
Ho C K ,Iverson B D. Renew. Sust. Energ. Rev., 2014,29:835.
[9]
Atkinson C, Sansom C L, Almond H J ,Shaw C P. Renew. Sust. Energ. Rev., 2015,45:113.
[10]
Minardi J E, Chuang H N . Sol. Energy, 1975,17:179.
[11]
Choi S U S . ASME FED, 1995,231:99.
[12]
Taylor R A, Phelan P E, Otanicar T, Walker C A, Nguyen M, Trimble S, Prasher R J . Renew. Sustain. Ener., 2011,3:4.
[13]
Tian Y ,Zhao C Y. Appl. Energ, 2013,104:538.
[14]
Kalogirou S A . Prog. Energ. Combust., 2004,30:231.
[15]
王慷慨 . 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2016.
[16]
Shah A A, Ungaro C ,Gupta M C. Sol. Energ. Mat. Sol. C, 2015,134:209.
[17]
Selvakumar N ,Barshilia H C. Sol. Energ. Mat. Sol. C, 2012,98:1.
[18]
Sani E, Mercatelli L, Sansoni P, Silvestroni L, Sciti D J . Renew. Sustain. Ener., 2012,4:432.
[19]
Nezamifar J, Ghani K, Kiomarsipour N J . Nano Struct., 2015,5:203.
[20]
Ma P J, Geng Q F, Gao X H, Yang S R, Liu G J . Mater. Eng. Perform., 2016,25:2814.
[21]
Ma P J, Geng Q F, Gao X H, Liu G. RSC Adv ., 2016,6:87584.
[22]
Geng Q F, Zhao X, Gao X H, Yu H C, Yang S R ,Liu G. Sol. Energ. Mat. Sol. C, 2012,105:293.
[23]
Ebrahimifar H, Zandrahimi M J . Metall. Mater. Sci., 2011,53:305.
[24]
黄彦(Huang Y), 张俊英(Zhang J Y), 张中太(Zhang Z T), 唐子龙(Tang Z L) . 化学进展(Progress in Chemistry), 2009,21(12):2744.
[25]
Ding D W, Cai W M, Long M C, Wu H D ,Wu Y H. Sol. Energ. Mat. Sol. C, 2010,94:1578.
[26]
Orel Z C, Gunde M K ,Hutchins M G. Sol. Energ. Mat. Sol. C, 2005,85:41.
[27]
李安然(Li A R) . 西北大学硕士论文(Master Dissertation of Northwest University), 2015.
[28]
Abendroth T, Althues H, Mader G, Hartel P, Kaskel S ,Beyer E. Sol. Energ. Mat. Sol. C, 2015,143:553.
[29]
Martinez P M, Pozdin V A, Papadimitratos A, Holmes W, Hassanipour F, Zakhidov A A . Carbon, 2017,119:133.
[30]
Chen Z, Jain A, Bostrom T . Energy Procedia, 2014,58:179.
[31]
Chen Z ,Bostrom T. Sol. Energ. Mat. Sol. C, 2016,144:678.
[32]
Chen Z ,Bostrom T. Renew. Energy Environ. Sustain., 2016,1:2.
[33]
Tesfamichael T, Wackelgard E . Sol. Energy, 2000,68:335.
[34]
Garnett J C . Phil. Trans. R. Soc., 1906,205:237.
[35]
Green M A, Pillai S . Nat. Photonics, 2012,6:130.
[36]
Kennedy C E . NREL report July 2002.NREL [NREL/TP-520-31267].
[37]
罗小兰(Luo X L) . 湖南大学硕士论文(Master Dissertation of Hunan University), 2011.
[38]
Cespedes E, Wirz M ,Sanchez-Garcia J A, Alvarez-Fraga Lv, Escobar-Galindo R, Prieto C. Sol. Energ. Mat. Sol. C., 2014,122:217.
[39]
Cao F, McEnaney K, Chen G, Ren Z F. Energ. Environ. Sci., 2014,7:1615.
[40]
张敏(Zhang M), 梁卉(Liang H), 张志丹(Zhang Z D), 索妮(Suo N), 李培刚(Li P G) . 中国科学:技术科学(Scientia Sinica Technologica), 2016,46(1):46.
[41]
Wu Y X, Wang C, Sun Y, Xue Y F, Ning Y P, Wang W W, Zhao S X, Tomasella E ,Bousquet A. Sol. Energ. Mat. Sol. C, 2015,134:373.
[42]
崔银芳(Cui Y F), 尹万里(Yin W L), 王启(Wang Q), 孙守建(Sun S J), 谢光明(Xie G M) . 太阳能学报(Acta Energiae Solaris Sinica), 2015,36(4):907.
[43]
王金平(Wang J P), 王健(Wang J), 柯伟(Ke W), 吴超(Wu C), 吴旭林(Wu X L), 刘希杰(Liu X J), 殷志强(Yin Z Q) . 太阳能学报(Acta Energiae Solaris Sinica), 2015,36(6):1486.
[44]
Nuru Z Y, Motaung D E, Kaviyarasu K, Maaza M J . Alloy. Compd., 2016,664:161. https://linkinghub.elsevier.com/retrieve/pii/S0925838815319927

doi: 10.1016/j.jallcom.2015.12.201
[45]
Zheng L Q, Zhou F Y, Zhou Z D, Song X W, Dong G B, Wang M, Diao X G . Sol. Energy, 2015,115:341.
[46]
Dias D, Rebouta L, Costa P, Al-Rjoub A, Benelmeki M, Tavares C J, Barradas N P, Alves E, Santilli P, Pischow K . Sol. Energy, 2017,150:335.
[47]
Cao F, Kraemer D, Tang L, Li Y, Litvinchuk A P, Bao J M, Chen G ,Ren Z F. Energ. Environ. Sci, 2015,8:3040.
[48]
田广科(Tian G K), 苗树翻(Miao S F), 马天国(Ma T G), 范多旺(Fan D W) . 太阳能(Solar Energy) 2015(3):50.
[49]
Zou C W, Xie W ,Shao L X. Sol. Energ. Mat. Sol. C, 2016,153:9.
[50]
王聪(Wang C). . 科技成果管理与研究(Management and Research on Scientific and Technological Achievements), 2009,31(5):114.
[51]
Song P, Wu Y X, Wang L, Sun Y, Ning Y P, Zhang Y L, Dai B B, Tomasella E, Bousquet A ,Wang C. Sol. Energ. Mat. Sol. C, 2017,171:253.
[52]
Wu Y X, Wang C, Sun Y, Ning Y P, Liu Y F, Xue Y F, Wang W W, Zhao S X, Tomasella E, Bousquet A . Sol. Energy, 2015,119:18.
[53]
Ning Y P, Wang W W, Wang L, Sun Y, Song P, Man H L, Zhang Y L, Dai B B, Zhang J Y, Wang C, Zhang Y, Zhao S X, Tomasella E, Bousquet A ,Cellier J. Sol. Energ. Mat. Sol. C, 2017,167:178.
[54]
Bukauskas V, Kaciulis S, Mezzi A, Mironas A, Niaura G, Rudzikas M, Simkiene I, Setkus A . Thin Solid Films, 2015,585:5.
[55]
He M Y, Wang Y, Wang H N ,Chen R Y. Sol. Energ. Mat. Sol. C, 2016,144:264.
[56]
Xue Y F, Wang C, Sun Y, Wu Y X, Ning Y P, Wang W W . Vacuum, 2014,104:116.
[57]
Xue Y F, Wang C, Sun Y, Wang W W, Wu Y X, Ning Y P . Phys. Status Solidi A, 2014,211:1519.
[58]
Xue Y F, Wang C, Wang W W, Liu Y, Wu Y X, Ning Y P, Sun Y . Sol. Energy, 2013,96:113.
[59]
Wang X Y, Gao J H, Hu H B, Zhang H L, Liang L Y, Javaid K, Zhuge F, Cao H T, Wang L . Nano Energy, 2017,37:232.
[60]
连亮(Lian L) . 武汉理工大学硕士论文(Master Dissertation of Wuhan University of Technology), 2013.
[61]
Soum-Glaude A, Bousquet I, Thomas L ,Flamant G. Sol. Energ. Mat. Sol. C, 2013,117:315.
[62]
Fang Z G, Lu C H, Guo C P, Lu Y, Gao D S, Ni Y R, Kou J H, Xu Z Z ,Li P W. Sol. Energ. Mat. Sol. C, 2015,134:252.
[63]
Usmani B, Dixit A . Sol. Energy, 2016,134:353.
[64]
Usmani B ,Dixit A. Sol. Energ. Mat. Sol. C, 2016,157:733.
[65]
Wattoo A G, Xu C, Yang L J, Ni C L, Yu C, Nie X, Yan M S, Mao S D, Song Z L . Sol. Energy, 2016,138:1.
[66]
Pal S, Diso D, Franza S, Licciulli A, Rizzo L J . Mater. Sci., 2013,48:8268. http://link.springer.com/10.1007/s10853-013-7639-4

doi: 10.1007/s10853-013-7639-4
[67]
Kim T K, Vansaders B, Moon J, Kim T, Liu C, Khamwannah J, Chun D, Choi D, Kargar A, Chen R K, Liu Z W, Jin S H . Nano Energy, 2015,11:247.
[68]
薛亚飞(Xue Y F) . 北京航空航天大学博士论文(Doctoral Dissertation of Beihang University), 2014.
[69]
Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Muller J, Kersch A, Schroeder U, Mikolajick T ,Hwang C S. Adv. Mater, 2015,27:1811.
[70]
Kotilainen M, Krumpolec R, Franta D, Soucek P, Homola T, Cameron D C ,Vuoristo P. Sol. Energ. Mat. Sol. C, 2017,166:140.
[71]
Cantas A, Aygun G ,Turan R. Appl. Surf. Sci, 2014,318:199.
[72]
Khoshman J M ,Kordesch M E. Surf. Coat. Tech, 2006,201:3530.
[73]
Pervak V, Krausz F, Apolonski A . Thin Solid Films, 2007,515:7984.
[74]
Selvakumar N, Barshilia H C, Rajam K S ,Biswas A. Sol. Energ. Mat. Sol. C, 2010,94:1412.
[75]
Nuru Z Y, Msimanga M, Muller T F G, Arendse C J, Mtshali C, Maaza M. Sol.Energy, 2015,111:357.
[76]
Khelifa A B, Khamlich S, Nuru Z Y, Kotsedi L, Mebrahtu A, Balghouthi M, Guizani A A, Dimassi W, Maaza M J . Alloy. Compd., 2018,734:204.
[77]
杨睿华 . 福建师范大学硕士论文(Master Dissertation of Fujian Normal University), 2015.
[78]
Gupta M C, Ungaro C, Jonathan I V, Gray S K . Sol. Energy, 2018,165:100.
[79]
Rodriguez-Palomo A, Cespedes E, Hernandez-Pinilla D ,Prieto C. Sol. Energ. Mat. Sol. C, 2018,174:50.
[80]
Ye L Q, Zhang Y L, Zhang X X, Hu T, Ding B ,Jiang B. Sol. Energ. Mat. Sol. C, 2013,111:160.
[81]
Li D Z, Wan D Y, Zhu X L, Wang Y M, Han Z, Han S S, Shan Y K ,Huang F Q. Sol. Energ. Mat. Sol. C, 2014,130:505.
[82]
Yang R H, Liu J Y, Lin L M, Qu Y, Zheng W F, Lai F C . Sol. Energy, 2016,125:453.
[83]
Robinson J ,Rahmatsamii Y. IEEE Trans. Antenn. Prop, 2004,52:397.
[84]
Jin N ,Rahmat-Samii Y. IEEE Trans. Antenn. Prop, 2007,55:556.
[85]
Wang H, Alshehri H, Su H ,Wang L P. Sol. Energ. Mat. Sol. C, 2018,174:445.
[86]
Konttinen P, Lund P D ,Kilpi R J. Sol. Energ. Mat. Sol. C, 2003,79:273.
[87]
苏法刚(Su F G), 梁静秋(Liang J Q), 梁中翥(Liang Z Z), 朱万彬(Zhu W B) . 物理学报(Acta Physica Sinica), 2011,60(5):725.
[88]
Khodasevych I E, Wang L, Mitchell A ,Rosengarten G. Adv. Opt. Mater, 2015,3:852.
[89]
Bierman M J ,Jin S. Energ. Environ. Sci, 2009,2:1050.
[90]
Xiao X, Miao L, Xu G, Lu L M, Su Z M, Wang N ,Tanemura S. Appl. Surf. Sci, 2011,257:10729.
[91]
Kumar S K, Suresh S, Murugesan S, Raj S P . Sol. Energy, 2013,94:299.
[92]
Lu C, Qi L, Yang J, Zhang D, Wu N, Ma J . J. Phys. Chem. B, 2004,108:17825.
[93]
Liu J, Huang X, Li Y, Sulieman K M, Heb X, Sun F J . Mater. Chem., 2006,16:4427.
[94]
Singh D P, Ojha A K, Srivastava O N . J. Phys. Chem. C, 2009,113:3409.
[95]
Wang X L, Wu X F, Yuan L, Zhou C P, Wang Y X, Huang K K ,Feng S H. Sol. Energ. Mat. Sol. C, 2016,146:99.
[96]
何国钟(He G Z) . 化学进展(Progress in Chemistry), 1997,9(2):141.
[97]
Valentini F, Zambotto I, Sciti D, Silvestroni L, Melandri C ,Guicciardi S. Adv. Eng. Mater, 2013,15:330.
[98]
唐天同(Tang T T), 王兆宏(Wang Z H) . 微纳加工科学原理(The Science of Micro- and Nano-Fabrication). 北京: 电子工业出版社(Beijing: Publishing House of Electronics Industry), 2010. 304.
[99]
Sciti D, Silvestroni L, Trucchi D M, Cappelli E, Orlando S ,Sani E. Sol. Energ. Mat. Sol. C, 2015,132:460.
[100]
Sciti D, Trucchi D M, Bellucci A, Orlando S, Zoli L ,Sani E. Sol. Energ. Mat. Sol. C, 2017,161:1.
[101]
魏其睿(Wei Q R), ,王健(Wang J), ,李德杰(Li D J), ,殷志强(Yin Z Q) . 太阳能学报(Acta Energiae Solaris Sinica), 2011,32(8):1186.
[102]
Hernandez-Pinilla D, Rodriguez-Palomo A, Fraga-Alvarez L, Cespedes E, Prieto J E, Munoz-Martin A ,Prieto C. Sol. Energ. Mat. Sol. C, 2016,152:141.
[103]
Gao X H, Guo Z M, Geng Q F, Ma P J, Wang A Q, Liu G. RSC Adv ., 2016,6:63867.
[104]
Yoganand S N, Raghuveer M S, Jagannadham K, Wu L, Karoui A ,Rozgony G. Appl. Phys. Lett, 2002,80:79.
[105]
Coulibaly M, Arrachart G, Mesbah A ,Deschanels X. Sol. Energ. Mat. Sol. C, 2015,143:473.
[106]
Ding D, Cai W . Mater. Lett 2013,93:269.
[107]
Guo C F, Sun T, Cao F, Liu Q, Ren Z F. Light-Sci. Appl., 2014,3:e161.
[108]
Xu Y, Huang Z, Liu Y, Fang M, Yin L ,Guan M. Solid State Sci, 2012,14:730.
[109]
Li J, Wang H, Li M, Yu Z J . Rare Earth, 2001,29:477.
[110]
Gao X H, Guo Z M, Geng Q F, Ma P J, Wang A Q, Liu G . Sol. Energy, 2016,140:199.
[111]
Cao F, Tang L, Li Y, Litvinchuk A P, Bao J M ,Ren Z F. Sol. Energ. Mat. Sol. C, 2017,160:12.
[112]
Zhang K, Hao L, Du M, Mi J, Wang J N ,Meng J P. Renew. Sust. Energ. Rev., 2017,67:1282.
[113]
Yu Q H, Mi J, Lang Y F, Du M, Li S J, Yang H L, Hao L, Liu X P ,Jiang L J. Prog. Nat. Sci, 2017,27:410.
[114]
Zhang K, Du M, Hao L, Meng J P, Wang J N, Liu X P, Deng Z J, Min J ,Zhao B. Surf. Coat. Tech, 2017,323:65.
[115]
Zhang K, Du M, Hao L, Meng J P, Wang J N, Mi J ,Liu X P. ACS Appl. Mater. Inter, 2016,8:34008.
[116]
Wattoo A G, Bagheri R, Ding X F, Zheng B Z, Liu J K, Xu C, Yang L J, Song Z L . J. Mater. Chem. C, 2018,6:8646.
[117]
Aeschlimann M, Brixner T, Differt D, Heinzmann U, Hensen M, Kramer C, Lukermann F, Melchior P, Pfeiffer W, Piecuch M, Schneider C, Stiebig H, Struber C, Thielen P . Nat. Photonics, 2015,9:663.
[118]
Park Y S, Lee J S . ACS Photonics, 2017,4:2587.
[119]
Wiersma D S . Nat. Photonics, 2013,7:188.
[120]
Wang K X, Yu Z, Liu V, Cui Y, Fan S. Nano Lett ., 2012,12:1616.
[121]
Brongersma M L, Cui Y, Fan S . Nat. Mater 2014,13:451.
[122]
Yu Z, Raman A ,Fan S. Proc. Natl. Acad. Sci. U.S. A., 2010,107:17491.
[123]
Hedayati M K, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula V S, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M . Adv. Mater 2011,23:5410.
[124]
Shi Y, Wang X, Liu W, Yang T, Ma J, Yang F . Opt. Express, 2014,22:20473.
[125]
Wang F, Zhang X, Wang L, Jiang Y, Wei C, Zhao Y J . Power Sources, 2015,293:698.
[126]
郭志明(Guo Z M) . 兰州交通大学硕士论文(Master Dissertation of Lanzhou Jiaotong University), 2016.
[127]
Rebouta L, Sousa A, Capela P, Andritschky M, Santilli P, Matilainen A, Pischow K, Barradas N P ,Alves E. Sol. Energ. Mat. Sol. C, 2015,137:93.
[128]
Feng J X, Zhang S, Lu Y, Yu H W, Kang L M, Wang X Y, Liu Z M, Ding H C, Tian Y, Ouyang J . Sol. Energy, 2015,111:350.
[129]
Tsai T K, Hsueh S J, Fang J S J . Electron. Mater., 2014,43:229.
[1] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[2] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[3] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[4] Xingxing Guo, Hang Gao, Lifeng Yin, Siyu Wang, Yunrong Dai, Chuanping Feng. Photo-Thermal Conversion Materials and Their Application in Desalination [J]. Progress in Chemistry, 2019, 31(4): 580-596.
[5] Yajing Chen, Xubing Li, Chenho Tung, Lizhu Wu. Artificial Photosynthesis for Hydrogen Production [J]. Progress in Chemistry, 2019, 31(1): 38-49.
[6] Zhang Lingfeng, Hu Zhongpan, Liu Xinying, Yuan Zhongyong. Noble-Metal-Free Co-Catalysts for TiO2-Based Photocatalytic H2-Evolution Half Reaction in Water Splitting [J]. Progress in Chemistry, 2016, 28(10): 1474-1488.
[7] Xu Jianhua, Tan Linghua, Kou Bo, Hang Zusheng, Jiang Wei, Jia Yongqiang. Modification of Graphtic Carbon Nitride Photocatalyst [J]. Progress in Chemistry, 2016, 28(1): 131-148.
[8] Zhang Jinshui, Wang Bo, Wang Xinchen. Carbon Nitride Polymeric Semiconductor for Photocatalysis [J]. Progress in Chemistry, 2014, 26(01): 19-29.
[9] Sang Lixia, Sun Biao, Li Yanxia, Wu Yuting, Ma Chongfang. Catalytically Active Absorber in Solar Reforming of Methane [J]. Progress in Chemistry, 2011, 23(11): 2233-2239.
[10] . Hydrogen Production by Two-Step Water-Splitting Thermochemical Cycle Based on Metal Oxide Redox System [J]. Progress in Chemistry, 2010, 22(05): 1010-1020.
[11] Wen Fuyu Yang Jinhui Zong Xu Ma Yi Xu Qian Ma Baojun Li Can. Progress on Photocatalytic Hydrogen Production Utilizing Solar Energy [J]. Progress in Chemistry, 2009, 21(11): 2285-2302.
[12] Wu Chuan,Zhang Huamin*,Yi Baolian. Recent Advances in Hydrogen Generation with Chemical Methods [J]. Progress in Chemistry, 2005, 17(03): 423-429.