中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 464-474 DOI: 10.7536/PC180711 Previous Articles   Next Articles

Flexible Electrode Assembled from Different Microstructures

Yingna Jia, Xingxing Liu, Yun Lu**(), Yuefeng Su**(), Renjie Chen, Feng Wu   

  1. 1. School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received: Online: Published:
  • Contact: Yun Lu, Yuefeng Su
  • About author:
    ** E-mail: (Yun Lu);
  • Supported by:
    National Key R&D Program of China(2016YFB0100301); National Natural Science Foundation of China(51802019); National Natural Science Foundation of China(U1664255); Major Achievements Transformation Project for Central Universities in Beijing
Richhtml ( 15 ) PDF ( 807 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of wearable and flexible electronic equipment, the flexible electrochemical energy storage devices with high energy density and high power density have been widely interested and researched in numerous studies. The flexible energy storage devices, mainly include flexible solar batteries, flexible lithium batteries and flexible supercapacitors. As the core components of these devices, flexible electrodes should possess not only basic mechanical flexibility, but also excellent electrical conductivity and superior skeleton supporting strength, so as to ensure the energy storage devices tolerate various deformation such as stretching, bending and twisting and exert their electrochemical performance steadily. As the research goes deep, carbon nanotubes, carbon nanofibers, carbon cloth, polymer, metal compounds and their composites, with different macromorphology and micromorphology, have been reported as flexible matrix for electrodes in a large amount of literature recently. In this review, based on the materials and microstructures, different assembling methods for different microstructures including stacking structure, foam structure, weave structure, grafting structure, etc., for fabricating flexible electrodes, are illustrated. Also the existing methods for quantitatively evaluating the electrode flexibility are summarized. Finally, the major challenges in the future development for the flexible electrodes are illustrated and the prospects are forecast.

Fig. 1 (a) Synthesis diagram of rGO/CNs/PANI thin film[9];(b) Microtopography of flexible graphene film after bending[12]
Fig. 2 Diagram of sandwich MXene/CNT electrode[27]
Fig. 3 (a) Porous PDMS-CNT nanocomposites accessed by Li-ion and(b) its flexibility[37]
Fig. 4 (a) Grading structure of bamboo and(b) schematic diagram of the nanostructure design inspired by bamboo[55]
Fig. 5 Prototype of folding battery, checkerboard pattern of CNT current collector[60]
Fig. 6 (a) Synthesis diagram of CoSnO3/G/CNT composite film[63];(b) Cross-linking of active NP, CNT and PEDOT:PSS[65]
Fig. 7 Schematic diagram of the preparation of TiO2 NAs/CT[71]
Fig. 8 Diagram of manufacture of 3D rGO/Te NW aerogel and derived flexible electrode[86]
Fig. 9 (a) rGO/CNT/S fiber cell[87];(b) Schematic diagram of MWCNT/Si composite fiber as electrode[88]
Fig. 10 Red LED powered by a flexible LIB[101]
Fig. 11 Stress-strain curves of CNTs-rGO/S electrode[97]
Fig. 12 (a)The open circuit voltages at different bending angles of a cable-shaped Li-S battery[102];(b) change in electrical resistance for ten cycles each at different bending radii[87]
[1]
Manthiram A, Chung S H, Zu C . Adv. Mater., 2015,27(12):1980. https://www.ncbi.nlm.nih.gov/pubmed/25688969

doi: 10.1002/adma.201405115 pmid: 25688969
[2]
Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G . Adv. Mater., 2014,26(28):4763. 83d2f066-6d38-4d22-a62a-1a4edbd61a37http://dx.doi.org/10.1002/adma.201400910

doi: 10.1002/adma.201400910
[3]
Wang D W, Li F, Liu M, Lu G Q, Cheng H M . Angew. Chem., 2008,120(2):379.
[4]
Luo S, Yao M, Lei S, Yan P, Wei X, Wang X, Liu L, Niu Z . Nanoscale, 2017,9(14):4646. https://www.ncbi.nlm.nih.gov/pubmed/28327706

doi: 10.1039/c7nr00999b pmid: 28327706
[5]
Cao J, Chen C, Zhao Q, Zhang N, Lu Q, Wang X, Niu Z, Chen J . Adv. Mater., 2016,28(43):9629. https://www.ncbi.nlm.nih.gov/pubmed/27647294

doi: 10.1002/adma.201602262 pmid: 27647294
[6]
Zhou G, Zhao Y, Manthiram A . Adv. Energy Mater., 2015,5(9):1402263.
[7]
Chen H, Wang C, Dai Y, Qiu S, Yang J, Lu W, Chen L . Nano Lett., 2015,15(8):5443. https://www.ncbi.nlm.nih.gov/pubmed/26148126

doi: 10.1021/acs.nanolett.5b01837 pmid: 26148126
[8]
Ferrero G A, Sevilla M, Fuertes A B . Sustainable Energy Fuels, 2017,1(1):127.
[9]
Liu D, Wang H, Du P, Wei W, Wang Q, Liu P . Electrochim. Acta., 2018,259:161.
[10]
Gwon H, Kim H S, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K . Energy Environ. Sci., 2011,4(4):1277.
[11]
Liu Y, Yang Y, Wang X, Dong Y, Tang Y, Yu Z, Zhao Z, Qiu J . ACS Appl. Mater. Interfaces, 2017,9(18):15484. https://www.ncbi.nlm.nih.gov/pubmed/28429929

doi: 10.1021/acsami.7b02394 pmid: 28429929
[12]
Li N, Huang X, Zhang H, Li Y, Wang C . ACS Appl. Mater. Interfaces, 2017,9(11):9763. https://www.ncbi.nlm.nih.gov/pubmed/28233984

doi: 10.1021/acsami.7b00487 pmid: 28233984
[13]
Wang J, Cheng S, Li W, Zhang S, Li H, Zheng Z, Li F, Shi L, Lin H, Zhang Y . J. Power Sources, 2016,321:193.
[14]
Xu N, Qian T, Liu X, Liu J, Chen Y, Yan C . Nano Lett., 2017,17(1):538. https://www.ncbi.nlm.nih.gov/pubmed/27977209

doi: 10.1021/acs.nanolett.6b04610 pmid: 27977209
[15]
Chen C, Wu M, Wang S, Yang J, Qin J, Peng Z, Feng T, Gong F . RSC Advances, 2017,7(61):38639.
[16]
Zhang X, Zhang M, Tian Y, You J, Yang C, Su J, Li Y, Gao Y, Gu H . RSC Advances, 2018,8(19):10698.
[17]
Zhao D, Li Z, Liu L, Zhang Y, Ren D, Li J . Acta Chimica Sinica, 2014,72(2):185.
[18]
Li M, Wahyudi W, Kumar P, Wu F, Yang X, Li H, Li L J, Ming J . ACS Appl. Mater. Interfaces, 2017,9(9):8047. https://www.ncbi.nlm.nih.gov/pubmed/28221020

doi: 10.1021/acsami.6b12546 pmid: 28221020
[19]
Li Y, Ye D, Shi B, Liu W, Guo R, Pei H, Xie J . Phys. Chem. Chem. Phys., 2017,19(11):7498. https://www.ncbi.nlm.nih.gov/pubmed/28067361

doi: 10.1039/c6cp07784f pmid: 28067361
[20]
Liu D, Du P, Wei W, Wang H, Wang Q, Liu P . Electrochim. Acta., 2017,233:201.
[21]
Yue S, Tong H, Lu L, Tang W, Bai W, Jin F, Han Q, He J, Liu J, Zhang X . J. Mater. Chem. A, 2017,5(2):689. http://xlink.rsc.org/?DOI=C6TA09128H

doi: 10.1039/C6TA09128H
[22]
Liu W, Jiang J, Yang K R, Mi Y, Kumaravadivel P, Zhong Y, Fan Q, Weng Z, Wu Z, Cha J J, Zhou H, Batista V S, Brudvig G W, Wang H . Proc. Natl. Acad. Sci. U.S. A., 2017,114(14):3578. https://www.ncbi.nlm.nih.gov/pubmed/28320950

doi: 10.1073/pnas.1620809114 pmid: 28320950
[23]
Hong X, Jin J, Wu T, Lu Y, Zhang S, Chen C, Wen Z . J. Mater. Chem. A, 2017,5(28):14775.
[24]
Zhang K, Xie K, Yuan K, Lu W, Hu S, Wei W, Bai M, Shen C . J. Mater. Chem. A, 2017,5(16):7309.
[25]
Zhang X, Zhang Z, Zhou Z . J. Energy Chem., 2018,27(1):73.
[26]
Han Y, Ge Y, Chao Y, Wang C, Wallace G G . J. Energy Chem., 2018,27(1):57.
[27]
Zhao M Q, Ren C E, Ling Z, Lukatskaya M R, Zhang C, Van Aken K L, Barsoum M W, Gogotsi Y . Adv. Mater., 2015,27(2):339. https://www.ncbi.nlm.nih.gov/pubmed/25405330

doi: 10.1002/adma.201404140 pmid: 25405330
[28]
Tian Y, Yang C, Que W, Liu X, Yin X, Kong LB . J. Power Sources, 2017,359:332.
[29]
Yu L, Hu L, Anasori B, Liu Y T, Zhu Q, Zhang P, Gogotsi Y, Xu B . ACS Energy Lett., 2018,3(7):1597.
[30]
Jin K, Zhou X, Zhang L, Xin X, Wang G, Liu Z . J. Phys. Chem. C, 2013,117(41):21112.
[31]
Pandit B, Dhakate S R, Singh B P, Sankapal B R . Electrochim. Acta, 2017,249:395. https://linkinghub.elsevier.com/retrieve/pii/S0013468617316407

doi: 10.1016/j.electacta.2017.08.013
[32]
Bao J J, Zou B K, Cheng Q, Huang Y P, Wu F, Xu G W, Chen C H . J. Membr. Sci., 2017,541:633. https://linkinghub.elsevier.com/retrieve/pii/S0376738817311389

doi: 10.1016/j.memsci.2017.06.083
[33]
Kim H, Lee H, Kim M, Bae Y, Baek W, Park K, Park S, Kim T, Kwon H, Choi W, Kang K, Kwon S, Im D . Carbon, 2017,117:454.
[34]
Zeng L, Yao Y, Shi J, Jiang Y, Li W, Gu L, Yu Y . Energy Storage Mater., 2016,5:50.
[35]
Huang X, Sun B, Li K, Chen S, Wang G . J. Mater. Chem. A, 2013,1(43):13484.
[36]
Deng Z, Jiang H, Hu Y, Liu Y, Zhang L, Liu H, Li C . Adv. Mater., 2017,29(10):1603020. http://doi.wiley.com/10.1002/adma.201603020

doi: 10.1002/adma.201603020
[37]
Lee H, Yoo J K, Park J H, Kim J H, Kang K, Jung Y S . Adv. Energy Mater., 2012,2(8):976. 48373a64-7466-416e-a0af-3895e33edf95http://dx.doi.org/10.1002/aenm.201100725

doi: 10.1002/aenm.201100725
[38]
Lu Y, Zhao Q, Miao L, Tao Z, Niu Z, Chen J . J. Phys. Chem. C, 2017,121(27):14498.
[39]
Gao S, Zhang D, Zhu K, Tang J A, Gao Z, Wei Y, Chen G, Gao Y . J. Alloys. Compd., 2017,702:13. https://linkinghub.elsevier.com/retrieve/pii/S0925838817302694

doi: 10.1016/j.jallcom.2017.01.234
[40]
Sun L, Li M, Jiang Y, Kong W, Jiang K, Wang J, Fan S . Nano Lett., 2014,14(7):4044. https://www.ncbi.nlm.nih.gov/pubmed/24884659

doi: 10.1021/nl501486n pmid: 24884659
[41]
Liu F, Luo S, Liu D, Chen W, Huang Y, Dong L, Wang L . ACS Appl. Mater. Interfaces, 2017,9(39):33791. https://www.ncbi.nlm.nih.gov/pubmed/28884579

doi: 10.1021/acsami.7b08382 pmid: 28884579
[42]
Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y . Adv. Sci(Weinh)., 2017,4(7):1700107. https://www.ncbi.nlm.nih.gov/pubmed/28725532

doi: 10.1002/advs.201700107 pmid: 28725532
[43]
Di Blasi A, Busaccaa C, Di Blasia O, Briguglioa N, Squadritoa G, Antonuccia V . Appl. Energy., 2017,190:165.
[44]
Tao H, Xiong L, Du S, Zhang Y, Yang X, Zhang L . Carbon, 2017,122:54.
[45]
Wang H, Liu D, Du P, Liu P . Electrochim. Acta, 2017,228:371.
[46]
Sun Y, Qiao K, Zheng Y, Liu S, Xie Y, Zhang M, Yue L, Wang C . J. Electroanal. Chem., 2017,799:377.
[47]
Lu H Y, Zhang X H, Wan F, Liu D S, Fan C Y, Xu H M, Wang G, Wu X L . ACS Appl., Mater. Interfaces, 2017,9(14):12518. https://www.ncbi.nlm.nih.gov/pubmed/28345854

doi: 10.1021/acsami.7b01986 pmid: 28345854
[48]
Wang X, Li G, Seo M H, Lui G, Hassan F M, Feng K, Xiao X, Chen Z . ACS Appl. Mater. Interfaces, 2017,9(11):9551. https://www.ncbi.nlm.nih.gov/pubmed/27808493

doi: 10.1021/acsami.6b12080 pmid: 27808493
[49]
Wan C, Jiao Y, Li J . J. Mater. Chem. A, 2017,5(8):3819.
[50]
Li L, Liu P, Zhu K, Wang J, Tai G, Liu J . Electrochim. Acta., 2017,235:79.
[51]
Song X, Gao T, Wang S, Bao Y, Chen G, Ding L X, Wang H . J. Power Sources, 2017,356:172.
[52]
Yang D, Ni W, Cheng J, Wang Z, Wang T, Guan Q, Zhang Y, Wu H, Li X, Wang B . Appl. Surf. Sci., 2017,413:209.
[53]
Wang J, Zhang L, Zhou Q, Wu W, Zhu C, Liu Z, Chang S, Pu J, Zhang H . Electrochim Acta, 2017,237:119.
[54]
Fan P, Liu H, Liao L, Fu J, Wang Z, Lv G, Mei L, Hao H, Xing J, Dong J . RSC Adv., 2017,7(78):49739.
[55]
Sun Y, Sills R B, Hu X, Seh Z W, Xiao X, Xu H, Luo W, Jin H, Xin Y, Li T, Zhang Z, Zhou J, Cai W, Huang Y, Cui Y . Nano Lett., 2015,15(6):3899. https://www.ncbi.nlm.nih.gov/pubmed/26011653

doi: 10.1021/acs.nanolett.5b00738 pmid: 26011653
[56]
Yoon S, Lee S, Kim S, Park K W, Cho D, Jeong Y . J. Power Sources, 2015,279:495.
[57]
Meng C, Liu C, Fan S . Electrochem. Commun., 2009,11(1):186.
[58]
Qie L, Manthiram A . Adv. Mater., 2015,27(10):1694. https://www.ncbi.nlm.nih.gov/pubmed/25605465

doi: 10.1002/adma.201405689 pmid: 25605465
[59]
Chung S H, Chang C H, Manthiram A . Small, 2016,12(7):939. https://www.ncbi.nlm.nih.gov/pubmed/26715383

doi: 10.1002/smll.201503167 pmid: 26715383
[60]
Li L, Wu Z P, Sun H, Chen D, Gao J, Suresh S, Chow P, Singh C V, Koratkar N . ACS Nano, 2015,9(11):11342. https://www.ncbi.nlm.nih.gov/pubmed/26412399

doi: 10.1021/acsnano.5b05068 pmid: 26412399
[61]
Huang J Q, Peng H J, Liu X Y, Nie J Q, Cheng X B, Zhang Q, Wei F . J. Mater. Chem. A, 2014,2(28):10869.
[62]
Zhang X, Huang X, Xia L, Zhong B, Zhang X, Zhang T, Wen G . Ceram. Int., 2017,43(6):4753.
[63]
Zhao X, Wang G, Zhou Y, Wang H . Energy, 2017,118:172. https://linkinghub.elsevier.com/retrieve/pii/S0360544216318230

doi: 10.1016/j.energy.2016.12.018
[64]
Liu D, Wang H, Du P, Liu P . Carbon, 2017,122:761. https://www.ncbi.nlm.nih.gov/pubmed/30007427

doi: 10.1016/j.funbio.2018.04.004 pmid: 30007427
[65]
Chen Z, To J W F, Wang C, Lu Z, Liu N, Chortos A, Pan L, Wei F, Cui Y, Bao Z . Adv. Energy Mater., 2014,4(12):1400207.
[66]
Wang H, Liu D, Du P, Wei W, Wang Q, Liu P . J. Colloid Interface Sci., 2017,506:572. https://www.ncbi.nlm.nih.gov/pubmed/28759857

doi: 10.1016/j.jcis.2017.07.088 pmid: 28759857
[67]
Xue Y, Ding Y, Niu J, Xia Z, Roy A, Chen H, Qu J, Wang Z L, Dai L . Sci. Adv., 2015,1(8):1400198. https://www.ncbi.nlm.nih.gov/pubmed/26601246

doi: 10.1126/sciadv.1400198 pmid: 26601246
[68]
Xi S, Zhu Y, Yang Y, Jiang S, Tang Z . Nanoscale Res. Lett., 2017,12(1):171. https://www.ncbi.nlm.nih.gov/pubmed/28274090

doi: 10.1186/s11671-017-1939-6 pmid: 28274090
[69]
Wang Z, Liu M, Wei G, Han P, Zhao X, Liu J, Zhou Y, Zhang J . Appl. Surf. Sci., 2017,423:375. https://linkinghub.elsevier.com/retrieve/pii/S0169433217317853

doi: 10.1016/j.apsusc.2017.06.129
[70]
Guo J, Zhu H, Sun Y, Tang L, Zhang X . Chem. Eng. J., 2017,309:272.
[71]
Liu Q C, Xu J J, Xu D, Zhang X B . Nat. Commun., 2015,6:7892. https://www.ncbi.nlm.nih.gov/pubmed/26235205

doi: 10.1038/ncomms8892 pmid: 26235205
[72]
Ummethala R, Fritzsche M, Jaumann T, Balach J, Oswald S, Nowak R, Sobczak N, Kaban I, Rümmeli M H, Giebeler L . Energy Storage Mater., 2018,10:206.
[73]
Liu L J, Chen Y, Zhang Z F, You X L, Walle M D, Li Y J, Liu Y N . J. Power Sources, 2016,325:301.
[74]
Zhang Q, Liu J, Li J, Huang L, Sun S . Chin. Sci. Bull., 2013,31(58):3220.
[75]
Zhou G, Li L, Ma C, Wang S, Shi Y, Koratkar N, Ren W, Li F, Cheng H M . Nano Energy, 2015,11:356. https://linkinghub.elsevier.com/retrieve/pii/S2211285514002304

doi: 10.1016/j.nanoen.2014.11.025
[76]
Liang S, Li Y, Yang J, Zhang J, He C, Liu Y, Zhou X . Adv. Mater. Technol., 2016,1(7):1600117. http://doi.wiley.com/10.1002/admt.201600117

doi: 10.1002/admt.201600117
[77]
Xiang M, Wu H, Liu H, Huang J, Zheng Y, Yang L, Jing P, Zhang Y, Dou S, Liu H . Adv. Funct. Mater., 2017,27(37):1702573. http://doi.wiley.com/10.1002/adfm.v27.37

doi: 10.1002/adfm.v27.37
[78]
Xiao W, Mi L, Cui S, Hou H, Chen W . New J. Chem., 2016,40(1):93. http://xlink.rsc.org/?DOI=C5NJ02938D

doi: 10.1039/C5NJ02938D
[79]
Mi L, Xiao W, Cui S, Hou H, Chen W . Dalton Trans., 2016,45(8):3305. https://www.ncbi.nlm.nih.gov/pubmed/26781929

doi: 10.1039/c5dt04577k pmid: 26781929
[80]
Cao Z, Zhang J, Ding Y, Li Y, Shi M, Yue H, Qiao Y, Yin Y, Yang S . J. Mater. Chem. A, 2016,4(22):8636. http://xlink.rsc.org/?DOI=C6TA01855F

doi: 10.1039/C6TA01855F
[81]
Huang Y, Zheng M, Lin Z, Zhao B, Zhang S, Yang J, Zhu C, Zhang H, Sun D, Shi Y . J. Mater. Chem. A, 2015,3(20):10910. http://xlink.rsc.org/?DOI=C5TA01515D

doi: 10.1039/C5TA01515D
[82]
Lin C, Niu C, Xu X, Li K, Cai Z, Zhang Y, Wang X, Qu L, Xu Y, Mai L . Phys. Chem. Chem. Phys., 2016,18(32):22146. https://www.ncbi.nlm.nih.gov/pubmed/27443983

doi: 10.1039/c6cp03624d pmid: 27443983
[83]
Wang C, Wang X, Wang Y, Chen J, Zhou H, Huang Y . Nano Energy, 2015,11:678. https://linkinghub.elsevier.com/retrieve/pii/S2211285514002675

doi: 10.1016/j.nanoen.2014.11.060
[84]
Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G . J. Mater. Chem. A, 2014,2(17):6086. http://xlink.rsc.org/?DOI=C4TA00484A

doi: 10.1039/C4TA00484A
[85]
Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Jiang L, Cao A, Qu L . Adv. Mater., 2013,25(4):591. https://www.ncbi.nlm.nih.gov/pubmed/23081662

doi: 10.1002/adma.201203578 pmid: 23081662
[86]
He J, Chen Y, Lv W, Wen K, Wang Z, Zhang W, Li Y, Qin W, He W . ACS Nano, 2016,10(9):8837. https://www.ncbi.nlm.nih.gov/pubmed/27552580

doi: 10.1021/acsnano.6b04622 pmid: 27552580
[87]
Chong W G, Huang J Q, Xu Z L, Qin X, Wang X, Kim J K . Adv. Funct. Mater., 2017,27(4):1604815. http://doi.wiley.com/10.1002/adfm.v27.4

doi: 10.1002/adfm.v27.4
[88]
Lin H, Weng W, Ren J, Qiu L, Zhang Z, Chen P, Chen X, Deng J, Wang Y, Peng H . Adv. Mater., 2014,26(8):1217. https://www.ncbi.nlm.nih.gov/pubmed/24282151

doi: 10.1002/adma.201304319 pmid: 24282151
[89]
Hoshide T, Zheng Y, Hou J, Wang Z, Li Q, Zhao Z, Ma R, Sasaki T, Geng F . Nano Lett., 2017,17(6):3543. https://www.ncbi.nlm.nih.gov/pubmed/28535338

doi: 10.1021/acs.nanolett.7b00623 pmid: 28535338
[90]
Meng Q, Wu H, Mao L, Yuan H, Ahmad A, Wei Z . Adv. Mater. Technol., 2017,2(7):1700032. http://doi.wiley.com/10.1002/admt.201700032

doi: 10.1002/admt.201700032
[91]
Lei T, Peng R, Fan X, Wei Q, Liu Z, Guan Q, Song W, Hong L, Huang J, Yang R, Ge Z . Macromolecules, 2018,51(11):4032. https://pubs.acs.org/doi/10.1021/acs.macromol.8b00683

doi: 10.1021/acs.macromol.8b00683
[92]
Peng H, Wang X, Zhao Y, Tan T, Bakenov Z, Zhang Y . Polymers, 2018,10(4):399. http://www.mdpi.com/2073-4360/10/4/399

doi: 10.3390/polym10040399
[93]
Ma L, Zhang W, Wang L, Hu Y, Zhu G, Wang Y, Chen R, Chen T, Tie Z, Liu J, Jin Z . ACS Nano, 2018,12(5):4868. https://www.ncbi.nlm.nih.gov/pubmed/29683639

doi: 10.1021/acsnano.8b01763 pmid: 29683639
[94]
Gou J, Zhang H, Yang X, Chen Y, Yu Y, Li X, Zhang H . Adv. Funct. Mater., 2018,28(20):1707272. http://doi.wiley.com/10.1002/adfm.201707272

doi: 10.1002/adfm.201707272
[95]
Zhu L, Peng H J, Liang J, Huang J Q, Chen C M, Guo X, Zhu W, Li P, Zhang Q . Nano Energy, 2015,11:746.
[96]
Chen Y, Lu S, Wu X, Liu J . J. Phys. Chem. C, 2015,119(19):10288.
[97]
Zhai P Y, Huang J Q, Zhu L, Shi J L, Zhu W, Zhang Q . Carbon, 2017,111:493.
[98]
Song X, Wang S, Bao Y, Liu G, Sun W, Ding L X, Liu H, Wang H . J. Mater. Chem. A, 2017,5(15):6832. http://xlink.rsc.org/?DOI=C7TA01171G

doi: 10.1039/C7TA01171G
[99]
Sun Q, Fang X, Weng W, Deng J, Chen P, Ren J, Guan G, Wang M, Peng H . Angew. Chem. Int. Ed. Engl., 2015,54(36):10539. https://www.ncbi.nlm.nih.gov/pubmed/26178766

doi: 10.1002/anie.201504514 pmid: 26178766
[100]
Kwon Y H, Woo S, Jung H, Yu H K, Kim K, Oh B H, Ahn S, Lee S, Song S, Cho J, Shin H, Kim J Y . Adv. Mater., 2012,24(38):5192. https://www.ncbi.nlm.nih.gov/pubmed/22886776

doi: 10.1002/adma.201202196 pmid: 22886776
[101]
Yin Z X, Song S K, Cho S, You D, Yoo J, Chang S T, Kim Y S . Nano Res., 2017,10(9):3077. http://link.springer.com/10.1007/s12274-017-1523-5

doi: 10.1007/s12274-017-1523-5
[102]
Fang X, Weng W, Ren J, Peng H . Adv. Mater., 2016,28(3):491. https://www.ncbi.nlm.nih.gov/pubmed/26585740

doi: 10.1002/adma.201504241 pmid: 26585740
[103]
Peng H J, Huang J Q, Zhang Q . Chem. Soc. Rev., 2017,46(17):5237. https://www.ncbi.nlm.nih.gov/pubmed/28783188

doi: 10.1039/c7cs00139h pmid: 28783188
No related articles found!