中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 83-93 DOI: 10.7536/PC180436 Previous Articles   Next Articles

• Review •

Stimuli-Responsive Peptides Self-Assembly and Its Application

Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu**(), Jingjun Ma**()   

  • Received: Revised: Online: Published:
  • Contact: Guohe Xu, Jingjun Ma
  • About author:
    ** Corresponding author e-mail: (Guohe Xu);
  • Supported by:
    The work was supported by the Young Tip-top Talents Plan of Universities, the Colleges in Hebei Province of China(BJ201702); The Specific Foundation for Doctor in Hebei Agriculture University of China(ZD2016027)
Richhtml ( 79 ) PDF ( 1177 ) Cited
Export

EndNote

Ris

BibTeX

Peptides self-assembly has great potential applications in the field of biomedicine and construction of new materials for the advantages of stable structure, easy control, and good biocompatibility and biodegradability. In this paper, the progress in peptides self-assembly is systematically reviewed, including the conception, mechanism and applications, focusing on the stimuli-responsive peptides self-assembly. According to the difference of stimuli, stimuli-responsive peptides self-assembly can be classified into pH-responsive self-assembly, temperature-responsive self-assembly, solvent-responsive self-assembly, light-responsive self-assembly, ultrasonic responsive self-assembly, and ion-responsive self-assembly. The applications of peptides self-assembly in drug release carriers, the repair of spinal cord injury, biomimetic enzyme catalysis, and biological template are listed in detail. Finally, the problems of peptides self-assembly research, such as difficult control of the external factors that affect the structure of assembly and the low degree of overlap between peptides self-assembly and life sciences, are analyzed, and the future development of stimuli-responsive peptides self-assembly is prospected.

Fig.1 The mechanism of peptides self-assembly
Fig.2 pH-responsive self-assembly of PA[59]
Fig.3 pH-responsive self-assembly based on peptide sequence composed of arginine and aspartate[60]
Fig.4 pH induced self-assembly of PA[62]
Fig.5 pH-responsive self-assembly based on C-12-GAGAGAGY[63]
Fig.6 Temperature induced PA self-assembled into nanotubes and spiral belt[67]
Fig.7 Temperature-responsive self-assembly based on FF[68]
Fig.8 Solvent-responsive self-assembly based on peptide-polymer[69]
Fig.9 Solvent-responsive self-assembly baesd on FF[70]
Fig.10 Light-responsive self-assembly based on Gemini α-Helix peptide[72]
Fig.11 Ultrasound-responsive self-assembly based on soybean peptide[75]
Fig.12 Cu2+-responsive self-assembly based on Aβ19-20[76]
Fig.13 Fmoc-FFH-CONH2 catalytic cleavage[90]
Fig.14 Illustration of the self-evolution of porphyrins and peptides to a model of a primitive photosystem in a volcanic hydrothermal “prebiotic soup”[92]
Fig.15 Scheme of the Au nanowire fabrication (a)Histidine sequence-containing peptides are immobilized on the amide binding site of the template (b) Au ion immobilization on the sequenced histidine-rich peptide and (c) Au nanocrystal growth[93]
[1]
Mahadevi A S, Sastry G N . Chem. Rev., 2016,116:2775.
[2]
Aida T, Meijer E W, Stupp S I . Science., 2012,335:813.
[3]
Grzelczak M, Vermant J, Furst E M, Liz-Marzan L M . ACS Nano., 2010,4:3591.
[4]
Van Hameren R, Schoen P, Van Buul A M, Hoogboom J, Lazarenko S V, Gerritsen J W, Engelkamp H, Christianen P C M, Heus H A, Maan J C, Rasing T, Speller S, Rowan A E, Elemans J A A W, Nolte R J M . Science, 2006,314:1433.
[5]
Hartgerink J D, Beniash E, Stupp S I . Science, 2001,294:1684.
[6]
Whitesides G M, Grzybowski B . Science, 2002,295:2418.
[7]
Dhasaiyan P, Prasad B L V . Chem. Rec., 2017,17:597.
[8]
Avitabile C, Diaferia C, Della Ventura B, Mercurio F A, Leone M, Roviello V, Saviano M, Velotta R, Morelli G, Accardo A, Romanelli A . Chemistry, 2018,24:4729.
[9]
Kornmueller K, Lehofer B, Leitinger G, Amenitsch H, Prassl R . Nano Res, 2018,11:913.
[10]
Guo X Q, Zhou L P, Cai L X, Sun Q F . Chemistry, 2018, DOI: 10.1002/chem.201801132.
[11]
Chi K, Kim D H, Singh N, Oh J, Kim E, Jung J, Kim H . Angew.Chem, 2018, DOI: .
[12]
Shamay Y, Shah J, Isik M, Mizrachi A, Leibold J, Tschaharganeh D F, Roxbury D, Budhathoki-Uprety J, Nawaly K, Sugarman J L, Baut E, Neiman M R, Dacek M, Ganesh K S, Johnson D C, Sridharan R, Chu K L, Rajasekhar V K, Lowe S W, Chodera J D, Heller D A . Nat. Mater., 2018,17:361.
[13]
Xie Y J, Liu X F, Hu Z, Hou Z P, Guo Z H, Chen Z P, Hu J S, Yang L Q . Nanomaterials, 2018,4:195.
[14]
Trevisan M, Fossepre M, Paolantoni D, Rubio-Magnieto J, Dumy P, Ulrich S, Surin M . Chirality, 2018,DOI: 10.1002/chir.22852.
[15]
Wang Y F, Qi W, Xing R Z, Xing Q G, Su R X, He Z M . Adv. Mater. Interfaces., 2017,4:514.
[16]
Xie Y Y, Wang Y F, Qi W, Huang R L, Su R X, He Z M . Small, 2017,13:999.
[17]
Ramarao P, Topnani N B N P . Chemphyschem., 2018, DOI: .
[18]
Brown N, Lei J, Zhan C, Shimon L J W, Adler-Abramovich L, Wei G, Gazit E . ACS Nano, 2018, DOI: 10.1021/acsnano.7b07723.
[19]
Gao X Y, Matsui H . Adv.Mater, 2005,17:2037.
[20]
Wu D N, Zhang S Y, Zhao Y Y, Ao N J, Ramakrishna S, He L M . Biomed. Mater., 2018, DOI: 10.1088/1748-605X/aab2fd.
[21]
Qi G B, Gao Y J, Wang L, Wang H . Adv.Mater, 2018, DOI: 10.1002/adma.201703444.
[22]
Sun H, Hong Y X, Xi Y J, Zou Y J, Gao J Y, Du J Z . Biomacromolecules, 2018, DOI: 10.1021/ACS.biomac.8b00208.
[23]
Iscen A, Schatz G C . EPL., 2017,119:38002.
[24]
Gao Y X, Hao J, Wu J D, Zhang X, Hu J, Ju Y . Nanoscale, 2015,7:13568.
[25]
Teixeira R S, Cova T F G G, Silva S M C, Oliveira R, Araujo M J, Marques E F, Pais A A C C, Veiga F J B . Int.J.Pharmaceut., 2014,474:212.
[26]
Guo H, Zhang J M, Xu T, Zhang Z D, Yao J R, Shao Z Z . Biomacromolecules, 2013,14:2733.
[27]
Fry H C, Garcia J M, Medina M J, Ricoy U M, Gosztola D J, Nikiforov M P, Palmer L C, Stupp S I . J. Am. Chem. Soc., 2012,134:14646.
[28]
Qian Y X, Wang W Z, Wang Z H, Jia X Q, Han Q J, Rostami I, Wang Y H Hu Z Y, . ACS Appl. Mater. Inter., 2018,10:7871.
[29]
Yang J, Lei Q, Han K, Gong Y H, Chen S, Cheng H, Cheng S X, Zhuo R X, Zhang X Z . J. Mater. Chem C, 2012,22:13591.
[30]
Hauser C A E, Zhang S G . Chem. Soc. Rev., 2010,39:2780.
[31]
Komori H, Inai Y . J. Org. Chem., 2007,72:4012.
[32]
Pires M M, Chmielewski J . J. Am. Chem. Soc., 2009,131:2706.
[33]
Pires M M, Przybyla D E, Chmielewski J . J Angew. Chem. Int. Edit., 2009,48:7813.
[34]
Yang Z M, Ma M L, Xu B . Soft Matter, 2009,5:2546.
[35]
Le Fer G, Portes D, Goudounet G, Guigner J, Garanger E, Lecommandoux S . Org. Biomol. Chem., 2017,15:10095.
[36]
Bowerman C J, Nilsson B L . Biopolymers, 2012,98:169.
[37]
Cavalli S, Albericio F, Kros A . Chem. Soc. Rev., 2010,39:241.
[38]
Cui H G, Webber M J, Stupp S I . Biopolymers, 2010,94:1.
[39]
Ghadiri M R, Granja J R, Milligan R A, McRee D E, Khazanovich N . Nature, 1993,366:324.
[40]
Zhang S G . Nat. Biotechnol., 2003,21:1171.
[41]
Scanlon S, Aggeli A . Nano Today, 2008,3:22.
[42]
Zhang S G, Yan L, Altman M, Lassle M, Nugent H, Frankel F, Lauffenburger D A, Whitesides G M, Rich A . Biomaterials, 1999,20:1213.
[43]
Vauthey S, Santoso S, Gong H Y, Watson N, Zhang S G . P. Natl. Acad. Sci. USA., 2002,99:5355.
[44]
Fichman G, Gazit E . Acta.Biomater, 2014,10:1671.
[45]
Niu L J, Chen X Y, Allen S, Tendler S J B . Langmuir, 2007,23:7443.
[46]
Deng L, Zhao Y R, Zhou P, Xu H, Wang Y T . Chinese. Phys. B, 2017,26:128701.
[47]
Yemini M, Reches M, Rishpon J, Gazit E. . Nano Lett, 2005,5:183.
[48]
Ulijn R V, Smith A M . Chem. Soc. Rev., 2008,37:664.
[49]
Ryu J, Park C B . Angew. Chem. Int.Edit., 2009,48:4820.
[50]
Ryu J, Lim S Y, Park C B . Adv. Mater., 2009,21:1577.
[51]
Zhang W S, Lin D M, Wang H X, Li J F, Nienhaus G U, Su Z Q, Wei G, Shang L . Bioconjugate. Chem, 2017,28:2224.
[52]
Ryu J, Park C B . Biotechnol. Bioeng., 2010,105:221.
[53]
Huang R L, Wang Y F, Qi W, Su R X, He Z M . Mater. Lett., 2014,128:216.
[54]
Wang J, Liu K, Xing R R, Yan X H . Chem. Soc. Rev., 2016,45:5589.
[55]
Xie Y Y, Wang Y F, Qi W, Huang R L, Su R X, He Z M . Small, 2017,13:999.
[56]
Zhou P, Deng L, Wang Y T, Lu J R, Xu H . Langmuir, 2016,32:4662.
[57]
Zhao Y R, Deng L, Yang W, Wang D, Pambou E, Lu Z M, Li Z Y, Wang J Q, King S, Rogers S, Xu H, Lu J R . Chem. Eur. J., 2016,22:11394.
[58]
Dehsorkhi A, Castelletto V, Hamley I W, Adamcik J, Mezzenga R . Soft Matter, 2013,9:6033.
[59]
Moyer T J, Finbloom J A, Chen F, Toft D J, Cryns V L, Stupp S I . J. Am. Chem. Soc., 2014,136:14746.
[60]
Chen Y R, Gan H X, Tong Y W . Macromolecules, 2015,48:2647.
[61]
Matson J B, Newcomb C J, Bitton R, Stupp S I . Soft Matter, 2012,8:3586.
[62]
Ghosh A, Haverick M, Stump K, Yang X Y, Tweedle M F, Goldberger J E . J. Am. Chem. Soc., 2012,134:3647.
[63]
Guo H, Zhang J M, Xu T, Zhang Z D, Yao J R, Shao Z Z . Biomacromolecules, 2013,14:2733.
[64]
Tantakitti F, Boekhoven J, Wang X, Kazantsev R V, Yu T, Li J H, Zhuang E, Zandi R, Ortony J H, Newcomb C J, Palmer L C, Shekhawat G S, de la Cruz M O, Schatz G C, Stupp S I . Nat. Mater., 2016,15:469.
[65]
Ozkan A D, Tekinay A B, Guler M O, Tekin E D . RSC Adv., 2016,6:104201.
[66]
Hou J H, Du Q Q G, Zhong R B, Zhang P, Zhang F . Nucl. Sci. Tech., 2014,25:75.
[67]
Hamley I W, Dehsorkhi A, Castelletto V, Furzeland S, Atkins D, Seitsonen J, Ruokolainen J . Soft Matter, 2013,9:9290.
[68]
Huang R L, Wang Y F, Qi W, Su R X, He Z M . Nanoscale. Res. Lett., 2014. 9:653.
[69]
Fu I W, Markegard C B, Nguyen H D . Langmuir, 2015,31:315.
[70]
Wang J, Liu K, Yan L Y, Wang A H, Bai S, Yan X H . ACS Nano, 2016,10:2138.
[71]
Rissanou A N, Georgilis E, Kasotaids E, Mitraki A, Harmandaris V . J. Phys. Chem. B, 2013,117:3962.
[72]
Chen C S, Xu X D, Li S Y, Zhuo R X, Zhang X Z . Nanoscale, 2013,5:6270.
[73]
Haines L A, Rajagopal K, Ozbas B, Salick D A, Pochan D J, Schneider J P . J. Am. Chem. Soc., 2005,127:17025.
[74]
Zhang Y H, Zhou F B, Zhao M M, Lin L Z, Ning Z X, Sun B G . Food Hydrocolloid., 2018,74:62.
[75]
Dalvi S V, Dave R N . Ind. Eng. Chem. Res., 2009,48:7581.
[76]
Shen X, Deng X, Pang Y . RSC Adv, 2014,4:21840.
[77]
Ozbas B, Kretsinger J, Rajagopal K, Schneider J P, Pochan D J . Macromolecules, 2004,37:7331.
[78]
Collier J H, Rudra J S, Gasiorowski J Z, Jung J P . Chem. Soc. Rev., 2010,39:3413.
[79]
Branco M C, Pochan D J, Wagner N J, Schneider J P . Biomaterials, 2010,31:9527.
[80]
Song Z H, Chen X, You X R, Huang K Q, Dhinakar A, Gu Z P, Wu J . Biomater. SCI-UK, 2017,5:2369.
[81]
Morgan C E, Dombrowski A W, Perez C M R, Bahnson E S M, Tsihlis N D, Jiang W, Jiang Q, Vercammen J M, Prakash V S, Pritts T A, Stupp S I, Kibbe M R . ACS Nano, 2016,10:899.
[82]
Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G . Burns., 2007,33:946.
[83]
Loo Y, Wong Y C, Cai E Z, Ang C H, Raju A, Lakshmanan A, Koh A G, Zhou H J, Lim T C, Moochhala S M, Hauser C A E . Biomaterials, 2014,35:4805.
[84]
Hauser C A E, Deng R S, Mishra A, Loo Y H, Khoe U, Zhuang F R, Cheong D W, Accardo A, Sullivan M B, Riekel C, Ying JY, Hauser UA . P. Natl. Acad. Sci. USA., 2011,108:1361.
[85]
Schneider A, Garlick J A, Egles C . Plos One, 2008. 3:1410.
[86]
Ma Z W, Kotaki M, Inai R, Ramakrishna S . Tissue.Eng, 2005,11:101.
[87]
Taboas J M, Maddox R D, Krebsbach P H, Hollister S J . Biomaterials, 2003,24:181.
[88]
Anderson J M, Vines J B, Patterson J L, Chen H, Javed A, Jun H W . Acta. Biomater., 2011,7:675.
[89]
Cigognini D, Silva D, Paloppi S, Gelain F . J. Biomed. Nanotechnol., 2014,10:309.
[90]
Huang Z P, Guan S W, Wang Y G, Shi G N, Cao L N, Gao Y Z, Dong Z Y, Xu J Y, Luo Q, Liu J Q . J. Mater. Chem. B, 2013,1:2297.
[91]
Slocik J M, Govorov A O, Naik R R . Nano Lett., 2011,11:701.
[92]
Liu K, Xing R R, Li Y X, Zou Q L, Moehwald H, Yan X H . Angew. Chem. Int. Edit., 2016,55:12503.
[93]
Djalali R, Chen Y F, Matsui H . J. Am. Chem. Soc., 2003,125:5873.
[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[5] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[6] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[7] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[8] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[9] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[10] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[11] Jianyun Lin, Shihe Luo, Chongling Yang, Ying Xiao, Liting Yang, Zhaoyang Wang. Bio-Based Polymeric Hemostatic Material and Wound Dressing [J]. Progress in Chemistry, 2021, 33(4): 581-595.
[12] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[13] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[14] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[15] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.