中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1908-1919 DOI: 10.7536/PC180217 Previous Articles   Next Articles

• Review •

The Application of Nanoparticles in Drug Delivery

Dongdong Zhang1, Jingmin Liu2, Yaoyao Liu1, Meng Dang1, Guozhen Fang1, Shuo Wang1,2*   

  1. 1. Key Laboratory of Food Nutrition and Safety of Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China;
    2. Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Science and Technology Program of Tianjin, China(No. 17ZYPTJC00050).
PDF ( 597 ) Cited
Export

EndNote

Ris

BibTeX

At present, application of nanoparticles for drug delivery and tumor targeting has become a very popular concept to improve the diagnosis and treatment level of tumor tissues. People have long expected to use nanotechnology, which is easy to manufacture, cost effective, low toxic, to improve the efficiency of treatment. However, the transfer efficiency is extremely low according to the reported literature, only about 0.7% of the administered nanoparticles reach tumor. In this paper, we analyze the influence factor of low efficiency on nanoparticle targeted delivery, including transport pathway of nanoparticles, the barrier in the course of nanoparticles transport, and in vivo clearance of nanoparticles. For the applications of nanoparticles, firstly, we introduce the preparation methods of polymer nanoparticles and the current application in clinic; followed by the introduction of iron oxide nanoparticles, which has great potential clinical application value, combined with drug by different binding modes; we also introduce the widely studied mesoporous silica nanoparticles and its several different drug delivery systems. The biomimetic nanoparticles of cell membrane is also recommended due to its great advantage in constructing drug delivery system. Finally, the future research of nanoparticles in drug delivery is prospected. We hope that we could promote the application of nanoparticles in drug delivery and accelerate the clinical translation of nanomedicine through systematic study on nanoparticles delivery.
Contents
1 Introduction
2 The delivery efficiency of nanoparticles and consequences
3 The barrier in the course of nanoparticles transport
4 The in vivo clearance of nanoparticles
4.1 Mononuclear phagocytic system identificaion
4.2 Macrophage uptake nanoparticles
4.3 Renal clearance
5 The toxicity of nanoparticles
6 The application of nanoparticles in drug delivery
6.1 Polymer nanoparticles
6.2 Magnetic iron oxide nanoparticles
6.3 Mesoporous silica nanoparticles
6.4 Biomimetic nanoparticles of cell membrane
7 Conclusion

CLC Number: 

[1] Zhang N, Li M, Sun X, Jia H, Liu W. Biomaterials, 2018, 159:25.
[2] Durymanov M, Kamaletdinova T, Lehmann S E, Reineke J. J. Control Release, 2017, 261:10.
[3] Kinnear C, Moore T L, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Chem. Rev., 2017, 117:11476.
[4] Chen L J, Yang C X, Yan X P. Anal. Chem., 2017, 89:6936.
[5] Qiu W X, Liu L H, Li S Y, Lei Q, Luo G F, Zhang X Z. Small, 2017, 13.
[6] Liu J M, Liu Y Y, Zhang D D, Fang G Z, Wang S. ACS Appl. Mater. Inter., 2016, 8:29939.
[7] Ding X, Hao X, Fu D, Zhang M, Lan T, Li C, Huang R, Zhang Z, Li Y, Wang Q, Jiang J. Nano Research, 2017, 10:3124.
[8] Chen G, Wang Y, Xie R, Gong S. J. Control Release, 2017, 259:105.
[9] Brunella V, Jadhav S A, Miletto I, Berlier G, Ugazio E, Sapino S, Scalarone D. Reactive and Functional Polymers, 2016, 98:31.
[10] Chou L Y T, Zagorovsky K, Chan W C W. Nat. Nanotech., 2014, 9:148.
[11] Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, Yu H, Li Y. Theranostics, 2017, 7:2575.
[12] Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R. Adv. Cancer Res., 2018, 137:115.
[13] Weaver J L, Tobin G A, Ingle T, Bancos S, Stevens D, Rouse R, Howard K E, Goodwin D, Knapton A, Li X H, Shea K, Stewart S, Xu L, Goering P L, Zhang Q, Howard P C, Collins J, Khan S, Sung K, Tyner K M. Particle and Fibre Toxicology, 2017, 14:25.
[14] Chamseddine I M, Kokkolaras M. Journal of Biomechanical Engineering, 2018, 140:4.
[15] Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C W. Nat. Rev. Mater., 2016, 1:12.
[16] Urbanavicius D, Alvarez T, Such G, Johnston A, Mintern J. Mol. Immunol., 2018, 98:2.
[17] Zhang N, Zhang J, Wang P, Liu X, Huo P, Xu Y, Chen W, Xu H, Tian Q. Anticancer Drugs, 2018, 29:307.
[18] Dawidczyk C M, Kim C, Park J H, Russell L M, Lee K H, Pomper M G, Searson P C. J. Control Release, 2014, 187:133.
[19] Kunjachan S, Pola R, Gremse F, Theek B, Ehling J, Moeckel D, Hermanns-Sachweh B, Pechar M, Ulbrich K, Hennink W E, Storm G, Lederle W, Kiessling F, Lammers T. Nano Lett., 2014, 14:972.
[20] Ho Y J, Chang Y C, Yeh C K. Theranostics, 2016, 6:392.
[21] Sykes E A, Chen J, Zheng G, Chan W C W. ACS Nano, 2014, 8:5696.
[22] Wagner M, Wiig H. Front. Oncol., 2015, 5:115.
[23] Maeda H, Nakamura H, Fang J. Adv. Drug Deliver. Rev., 2013, 65:71.
[24] Kobayashi H, Watanabe R, Choyke P L. Theranostics, 2014, 4:81.
[25] Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C W. Nat. Rev. Mater., 2016, 1:16014.
[26] Pickup M W, Mouw J K, Weaver V M. Embo. Rep., 2014, 15:1243.
[27] Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. J. Control Release, 2015, 200:138.
[28] Zhang YN, Poon W, Tavares A J, McGilvray I D, Chan W C W. J. Control Release, 2016, 240:332.
[29] Weissleder R, Nahrendorf M, Pittet M J. Nat. Mater., 2014, 13:125.
[30] Fischer H C, Hauck T S, Gomez-Aristizabal A, Chan W C W. Adv. Mater., 2010, 22:2520.
[31] Syed A, Chan W C W. Cancer Treatment and Research, 2015, 166:227.
[32] Naidu P S R, Norret M, Smith N M, Dunlop S A, Taylor N L, Fitzgerald M, Iyer K S. Langmuir, 2017, 33:12926.
[33] Corbo C, Molinaro R, Parodi A, Toledano Furman N, Salvatore F, Tasciotti E. Nanomedicine, 2016, 11:81.
[34] Nair A V, Keliher E J, Core A B, Brown D, Weissleder R. ACS Nano, 2015, 9:3641.
[35] Libralato G, Galdiero E, Falanga A, Carotenuto R, de Alteriis E, Guida M. Molecules, 2017, 22:1439.
[36] Nolte T M, Hartmann N B, Kleijn J M, Garnæs J, van de Meent D, Jan Hendriks A, Baun A. Aquat. Toxicol., 2017, 183:11.
[37] Wu Z, Guan R, Tao M, Lyu F, Cao G, Liu M, Gao J. RSC Adv., 2017, 7:12437.
[38] Zhang D D, Liu J M, Song N, Liu Y Y, Dang M, Fang G Z, Wang S. J. Mater. Chem. B, 2018, 6:1479.
[39] Liu J M, Zhang D D, Fang G Z, Wang S. Biomaterials, 2018, 165:39.
[40] Liu Y Y, Liu J M, Zhang D D, Ge K, Wang P, Liu H, Fang G, Wang S. J. Agric. Food Chem., 2017.
[41] Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tu Dc ek J, Zboril R. Chem. Rev., 2016, 116:5338.
[42] Mamaeva V, Rosenholm J M, Bate-Eya L T, Bergman L, Peuhu E, Duchanoy A, Fortelius L E, Landor S, Toivola D M, Lindén M, Sahlgren C. Mol. Ther., 2011, 19:1538.
[43] Tagami T, Ozeki T. J. Pharm. Sci., 2017, 106:2219.
[44] Bazak R, Houri M, El Achy S, Kamel S, Refaat T. J. Cancer Res. Clin., 2015, 141:769.
[45] Rao J P, Geckeler K E. Prog. Polym. Sci., 2011, 36:887.
[46] Ojima I, Lichtenthal B, Lee S, Wang C W, Wang X. Expert. Opin. Ther. Pat., 2016, 26:1.
[47] Feng L, Mumper R J. Cancer Lett., 2013, 334:157.
[48] McKiernan J M, Lascano D, Ahn J, Ghandour R, Pak J S, RoyChoudhury A, Chang S, DeCastro G J, Desai N. J. Clin. Oncol., 2015, 33:1.
[49] Daldrup-Link H E. Radiology, 2017, 284:616.
[50] Aguiar M F D, Mamani J B, Felix T K, dos Reis R F, da Silva H R, Nucci L P, Nucci-da-Silva M P, Gamarra L F. Nanotechnol. Rev., 2017, 6:449.
[51] Al Dine E J, Ferjaoui Z, Ghanbaja J, Roques-Carmes T, Meftah A, Hamieh T, Toufaily J, Schneider R, Marchal S, Gaffet E, Alem H. Int. J. Pharm., 2017, 532:738.
[52] Sabale S, Kandesar P, Jadhav V, Komorek R, Motkuri R, Yu X. Biomater. Sci., 2017, 5:2212.
[53] Jamal Al Dine E, Ferjaoui Z, Ghanbaja J, Roques-Carmes T, Meftah A, Hamieh T, Toufaily J, Schneider R, Marchal S, Gaffet E, Alem H. Int. J. Pharm., 2017, 532:738.
[54] Sabale S, Kandesar P, Jadhav V, Komorek R, Motkuri R K, Yu X Y. Biomater. Sci. -UK, 2017, 5:2212.
[55] Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tu Dc ek J, Zboril R. Chem. Rev., 2016, 116:5338.
[56] Mendes A C, Baran E T, Reis R L, Azevedo H S. Wires. Nanomed. Nanobi., 2013, 5:582.
[57] Kaittanis C, Shaffer T M, Ogirala A, Santra S, Perez J M, Chiosis G, Li Y, Josephson L, Grimm J. Nat. Commun., 2014, 5:3384.
[58] Heid S, Unterweger H, Tietze R, Friedrich R P, Weigel B, Cicha I, Eberbeck D, Boccaccini A R, Alexiou C, Lyer S. Int. J. Mol. Sci., 2017, 18:1837.
[59] Wang HC, Zhang Y, Possanza C M, Zimmerman S C, Cheng J, Moore J S, Harris K, Katz J S. ACS Appl. Mater. Inter., 2015, 7:6369.
[60] Pongrac I M, Pavicic I, Milic M, Ahmed L B, Babic M, Horak D, Vrcek I V, Gajovic S. Int. J. Nanomed., 2016, 11:1701.
[61] Lee N, Yoo D, Ling D, Cho M H, Hyeon T, Cheon J. Chem. Rev., 2015, 115:10637.
[62] Friedrich R P, Zaloga J, Schreiber E, Toth I Y, Tombacz E, Lyer S, Alexiou C. Nanoscale Research Letters, 2016, 11:11.
[63] Hyder F, Manjura Hoque S. Contrast Media Mol. Imaging, 2017, 2017:6387217.
[64] Xu H, Yang J, ZhuGe D, Lin M, Zhu Q, Jin B, Tong M, Shen B, Xiao J, Zhao Y. Adv. Healthc. Mater., 2018, 7:e1701130.
[65] de Paula Aguiar M F, Mamani J B, Felix T K, dos Reis R F, da Silva H R, Nucci L P, Nucci-da-Silva M P, Gamarra L F. Nanotechnol. Rev., 2017, 6:449.
[66] Chen C, Sun W, Wang X, Wang Y, Wang P. Mater. Sci. Eng. C, 2018, 85:88.
[67] Kong M, Tang J, Qiao Q, Wu T, Qi Y, Tan S, Gao X, Zhang Z. Theranostics, 2017, 7:3276.
[68] Sweeney S K, Luo Y, O'Donnell M A, Assouline J G. Journal of Biomedical Nanotechnology, 2017, 13:232.
[69] Mortazavi-Derazkola S, Salavati-Niasari M, Khojasteh H, Amiri O, Ghoreishi S M. J. Clean. Prod., 2017, 168:39.
[70] Zeng D, Zhang X, Wang X, Cao L, Zheng A, Du J, Li Y, Huang Q, Jiang X. Int. J. Nanomedicine, 2017, 12:8277.
[71] Wang Y, Sun L, Jiang T, Zhang J, Zhang C, Sun C, Deng Y, Sun J, Wang S. Drug Dev. Ind. Pharm., 2014, 40:819.
[72] Li W Q, Guo Z M, Zheng K, Ma K, Cui C H, Wang L, Yuan Y, Tang Y. Int. J. Pharm., 2017, 534:71.
[73] Luo L, Liang Y, Erichsen E, Anwander R. J. Colloid Interface Sci., 2017, 495:84.
[74] Carriazo D, Del Arco M, Fernandez A, Martin C, Rives V. J. Pharm. Sci., 2010, 99:3372.
[75] Kaziem A, Gao Y, He S, Li J. J. Agric. Food Chem., 2017, 65:7854.
[76] Gounani Z, Asadollahi M, Meyer R, Arpanaei A. Int. J. Pharm., 2018, 537:148.
[77] Shah P V, Rajput S J. AAPS PharmSciTech, 2018, 9:1344.
[78] Jia X, Yang Z, Wang Y, Chen Y, Yuan H, Chen H, Xu X, Gao X, Liang Z, Sun Y, Li JR, Zheng H, Cao R. ChemMedChem, 2018, 13:400.
[79] Cho I H, Shim M K, Jung B, Jang E H, Park M J, Kang H C, Kim J H. Micropor. Mesopor. Mater., 2017, 253:96.
[80] Yue X, Zhang Q, Dai Z. Adv. Drug Deliver. Rev., 2017, 115:155.
[81] Li F, Li Y, Feng J, Gao Z, Lv H, Ren X, Wei Q. Biosens. Bioelectron., 2018, 100:512.
[82] Chen C, Sun W, Wang X, Wang Y, Wang P. Materials Science and Engineering:C, 2018, 85:88.
[83] Chen C, Sun W, Wang X, Wang Y, Wang P. Int. J. Biol. Macromol., 2018, 111:1106.
[84] Lu N, Tian Y, Tian W, Huang P, Liu Y, Tang Y, Wang C, Wang S, Su Y, Zhang Y, Pan J, Teng Z, Lu G. ACS Appl. Mater. Inter., 2016, 8:2985.
[85] Zhou J, Li M, Lim W Q, Luo Z, Phua S Z F, Huo R, Li L, Li K, Dai L, Liu J, Cai K, Zhao Y. Theranostics, 2018, 8:518.
[86] Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M. Molecules, 2018, 23:47.
[87] Shao D, Lu M M, Zhao Y W, Zhang F, Tan Y F, Zheng X, Pan Y, Xiao X A, Wang Z, Dong W F, Li J, Chen L. Acta Biomaterialia, 2017, 49:531.
[88] Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Chem. Soc. Rev., 2017, 46:6024.
[89] Luk B, Zhang L. J. Control Release, 2015, 220:600.
[90] Jiang Q, Luo Z, Men Y, Yang P, Peng H, Guo R, Tian Y, Pang Z, Yang W. Biomaterials, 2017, 143:29.
[91] Rao L, He Z, Meng Q, Zhou Z, Bu L, Guo S, Liu W, Zhao X. J. Biomed. Mater. Res. A, 2017, 105:521.
[92] Fang R, Hu C, Luk B, Gao W, Copp J, Tai Y, O'Connor D, Zhang L. Nano Lett., 2014, 14:2181.
[93] Xuan M, Shao J, Dai L, He Q, Li J. Adv. Healthc. Mater., 2015, 4:1645.
[94] Luk B, Fang R, Hu C, Copp J, Thamphiwatana S, Dehaini D, Gao W, Zhang K, Li S, Zhang L. Theranostics, 2016, 6:1004.
[95] Hu C, Zhang L, Aryal S, Cheung C, Fang R, Zhang L. Proc. Natl. Acad. Sci. U.S.A., 2011, 108:10980.
[96] Ren X, Zheng R, Fang X, Wang X, Zhang X, Yang W, Sha X. Biomaterials, 2016, 92:13.
[97] Zhang L, Li R, Chen H, Wei J, Qian H, Su S, Shao J, Wang L, Qian X, Liu B. Int. J. Nanomedicine, 2017, 12:2129.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[4] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[5] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[6] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[7] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[8] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[9] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[10] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[11] Chen Yaqiong, Song Hongdong, Wu Mao, Lu Yang, Guan Xiao. Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients [J]. Progress in Chemistry, 2022, 34(10): 2267-2282.
[12] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[13] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[14] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[15] Xinyu Wang, Fuping Zhao, Ru Zhang, Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents [J]. Progress in Chemistry, 2021, 33(12): 2259-2269.