中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1133-1142 DOI: 10.7536/PC180115 Previous Articles   Next Articles

• Review •

Microfluidic Synthesis of Micro-and Nanoparticles

Yihuan Liu1, Xin Hu2, Ning Zhu1*, Kai Guo1*   

  1. 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China;
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21878145, 21504039, 21604037, 21522604).
PDF ( 953 ) Cited
Export

EndNote

Ris

BibTeX

Micro-and nanoparticles with unique properties have broad applications in drug delivery, absorption separation, optical/electrical materials, and magnetic device, etc. Due to the huge volume-to-surface ratio and continuous flow characteristic, remarkable advantages have been made in organic chemistry, polymer synthesis and material preparation by employing microfluidic technology compared with the traditional batch reactor. This review summarizes the recent progress in microfluidic synthesis of micro-and nanoparticles. Microreactor system can precisely monitor and control the particle formation process. By using single emulsion as the template, spherical and non-spherical polymer/inorganic/noble metal/semiconductor particles are fabricated. Multi-emulsions are used as templates for fabricating core shell particles, Janus particles and microcapsules.
Contents
1 Introduction
2 Particle assembly in dispersed phase of single emulsions
2.1 Spherical particles
2.2 Non-spherical particles
3 Particle assembly in dispersed phase of multi-emulsions
3.1 Core-shell particles
3.2 Janus particles
3.3 Microcapsules
4 Conclusion

CLC Number: 

[1] Yang P Q, Peng J M, Chu Z Y, Jiang D F, Jin W Q. Biosens. Bioelectron., 2017, 92:709.
[2] Chu Z Y, Shi L, Jin W Q. Biosens. Bioelectron., 2014, 61:422.
[3] Xie C, Zhen X, Lei Q L, Ni R, Pu K Y. Adv. Func. Mater., 2017, 27:1605397.
[4] Li J F, Zhang Y J, Ding S Y, Panneerselvam R, Tian Z Q. Chem. Rev., 2017.
[5] Kristensen A, Yang J K W, Bozhevolnyi S I, Link S, Nordlander P, Halas N J, Mortensen N A. Nat. Rev. Mater., 2016, 2:16088.
[6] Hakala T K, Rekola H T, Vakevainen A I, Martikainen J P, Necada M, Moilanen A J, Torma P. Nat. Commun., 2017, 8:13687.
[7] Wang X, Tang Z. Small, 2017, 13.
[8] Yu J, Rong Y, Kuo C T, Zhou X H, Chiu D T. Anal. Chem., 2017, 89:42.
[9] Xie C, Upputuri P K, Zhen X, Pramanik M, Pu K Y. Biomaterials, 2017, 119:1.
[10] Li Y H, Li N, Pan W, Yu Z Z, Yang L M, Tang B. ACS Appl. Mater. Interfaces, 2017, 9:2123.
[11] Cai Y, Liang P P, Tang Q Y, Yang X Y, Si W L, Huang W, Zhang Q, Dong X C. ACS Nano, 2017, 11:1054.
[12] Yao X X, Niu X X, Ma K X, Huang P, Grothe J, Kaskel S, Zhu Y F. Small, 2017, 13:1602225.
[13] Poon C K, Tang O, Chen X M, Kim B, Hartlieb M, Pollock C A, Hawkett B S, Perrier S. Macromol. Biosci., 2017, 17:1600366.
[14] Liu J X, Yang K G, Qu Y Y, Li S W, Wu Q, Liang Z, Zhang L H, Zhang Y K. Chem. Commun., 2015, 51:3896.
[15] Li W, Sun Y, Yang C C, Yan X M, Guo H, Fu G Q. ACS Appl. Mater. Interfaces, 2015, 7:27188.
[16] Liu H, Ding M D, Ding Z L, Gao C Q, Zhang W Q. Polym. Chem., 2017, 8:3203.
[17] Jones E R, Mykhaylyk O O, Semsarilar M, Boerakker M, Wyman P, Armes S P. Macromolecules, 2016, 49:172.
[18] Plutschack M B, Pieber B, Gilmore K, Seeberger P H. Chem. Rev., 2017, 117:11796.
[19] Marre S, Jensen K F. Chem. Soc. Rev., 2010, 39:1183.
[20] Pastre J C, Browne D L, Ley S V. Chem. Soc. Rev., 2013, 42:8849.
[21] 骆广生(Luo G S), 王凯(Wang K), 王佩坚(Wang P J), 吕阳成(Lv Y C). 化工学报(CIESC J.), 2014, 65:2563.
[22] Nagaki A, Miyazaki A, Yoshida J. Macromolecules, 2010, 43:8424.
[23] Lu Y C, Zhu S, Wang K, Luo G S. Ind. Eng. Chem. Res., 2016, 55:1215.
[24] Elvira K, Solvas X, Woothon R, deMello A. Nat. Chem., 2013, 5:905.
[25] Peng J, Tian C, Zhang L, Cheng Z, Zhu X. Polym. Chem., 2017, 8:1495.
[26] Li Z J, Chen W, Zhang L, Zhang Z, Zhu X. Polym. Chem., 2015, 6:5030.
[27] Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K. Chem. Eng. J., 2018, 333:43.
[28] Zhu N, Liu Y, Feng W, Huang W, Zhang Z, Hu X, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80:234.
[29] Zhu N, Feng W, Zhang Z, Fang Z, Li Z J, Guo K. Polymer, 2015, 80:88.
[30] Hu X, Zhu N, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80:177.
[31] Zhu N, Hu X, Zhang Y J, Zhang K, Li Z J, Guo K. Polym. Chem., 2016, 7:474.
[32] Hu X, Zhu N, Fang Z, Guo K. React. Chem. Eng., 2017, 2:20.
[33] 汪伟(Wang W), 谢锐(Xie R), 巨晓洁(Ju X J), 褚良银(Chu L Y). 化工学报(CIESC J.), 2014, 65(7):2255.
[34] Brugarolas T, Tu F Q, Lee D Y. Soft Matter, 2013, 9:9046.
[35] Boken J, Soni S K, Kumar D. Crit. Rev. Anal. Chem., 2016, 46:538.
[36] Clegg P S, Tavacoli J W, Wilde P J. Soft Matter, 2016, 12:998.
[37] Ma J P, Lee S M, Yi C W, Li C Q. Lab on a Chip, 2017, 17:209.
[38] Wang J M, Li Y, Wang X Y, Wang J C, Tian H M, Zhao P, Tian Y, Gu Y M, Wang L Q, Wang C Y. Micromachines, 2017, 8:22.
[39] Bramosanti M, Chronopoulou L, Grillo F, Valletta A, Palocci C. Colloids and Surf. A:Physicochem. Eng. Aspects, 2017, 532:369.
[40] Hasani-Sadrabadi M M, Karimkhani V, Majedi F S, van Dersarl J J, Dashtimoghadam E, Afshar-Taromi F, Mirzadeh H, Bertsch A, Jacob K I, Renaud P, Stadler F J, Kim I. Adv. Mater., 2014, 26:3118.
[41] Hasani-Sadrabadi M M, Majedi F S, van Dersarl J J, Dashtimoghadam E, Ghaffarian S R, Bertsch A, Moaddel H, Renaud P. J. Am. Chem. Soc., 2012, 134:18904.
[42] Othman R, Vladisavljevic G T, Nagy Z K. Chem. Eng. Sci., 2015, 137:119.
[43] Othman R, Vladisavljevic G T, Thomas N L, Nagy Z K. Colloids Surf. B Biointerfaces, 2016, 141:187.
[44] Rhee M, Valencia P M, Rodriguez M I, Langer R, Farokhzad O C, Karnik R. Adv. Mater., 2011, 23:H79.
[45] Xu Z Q, Yan B, Riordon J, Zhao Y, Sinton D, Moffitt M G. Chem. Mater., 2015, 27:8094.
[46] Capretto L, Carugo D, Mazzitelli S, Nastruzzi C, Zhang X. Adv. Drug Deliv. Rev., 2013, 65:1496.
[47] Khadka P, Ro J, Kim H, Kim I, Kim J T, Kim H, Cho J M, Yun G, Lee J. Asian J. Pharma. Sci., 2014, 9:304.
[48] Feng Q, Zhang L, Liu C, Li X Y, Hu G Q, Sun J S, Jiang X Y. Biomicrofluidics, 2015, 9:052604.
[49] Wang J D, Chen W W, Sun J S, Liu C, Yin Q F, Zhang L, Xianyu Y L, Shi X H, Hu G Q, Jiang X Y. Lab on a Chip, 2014, 14:1673.
[50] Sun J S, Xianyu Y L, Li M M, Liu W W, Zhang L, Liu D B, Liu C, Hu G Q, Jiang X Y. Nanoscale, 2013, 5:5262.
[51] Feng Q, Liu J P, Li X Y, Chen Q H, Sun J S, Shi X H, Ding B Q, Yu H J, Li Y P, Jiang X Y. Small, 2017, 13:1603109.
[52] Kang X J, Luo C X, Wei Q, Xiong C Y, Chen Q, Chen Y, Ouyang Q. Microflu. Nanoflu., 2013, 15:337.
[53] Lim J M, Bertrand N, Valencia P M, Rhee M, Langer R, Jon S, Farokhzad O C, Karnik R. Nanomedicine:Nanotechnology, Biology, and Medicine, 2014, 10:401.
[54] Ma K, Du X Y, Zhang Y W, Chen S. J. Mater. Chem. C, 2017, 5:9398.
[55] Gomez L, Arruebo M, Sebastian V, Gutierrez L, Santamaria J. J. Mater. Chem., 2012, 22:21420.
[56] Stöber W, Fink A. J. Colloid Interface Sic., 1968, 26:62.
[57] Liu J, Qiao S Z, Liu H, Chen J, Orpe A, Zhao D Y, Lu G Q M. Angew. Chem. Int. Ed., 2011, 50:5947.
[58] Gutierrez L, Gomez L, Irusta S, Arruebo M, Santamaria J. Chem. Eng. J., 2011, 171:674.
[59] Roberts D S, Estrada D, Yagi N, Anglin E J, Chan N A, Sailor M J. Part. Part. Syst. Charact., 2017, 34:1600326.
[60] Sebastian V, Basak S, Jensen K F. AIChE J., 2016, 62:373.
[61] Xu L, Peng J H, Yan M, Zhang D, Shen A Q. Chem. Eng. Processing:Process Intensification, 2016, 102:186.
[62] Bandulasena M V, Vladisavljevic G T, Odunmbaku O G, Benyahia B. Chem. Eng. Sci., 2017, 171:233.
[63] Yang C H, Wang L S, Chen S Y, Huang M C, Li Y H, Lin Y C, Chen P F, Shaw J F, Huang K S. Int. J. Pharm., 2016, 510:493.
[64] 夏文键(Xia W J), 孟令杰(Meng L J). 化学进展(Progress in Chemistry), 2010, 22:2298.
[65] Liu H Y, Zhang H, Wang J, Wei J F, Zhang Y. J. Chem. Tech. Biotech., 2017, 92:2171.
[66] Ko E, Tran V K, Geng Y, Chung W S, Park C H, Kim M K, Jin G H, Seong G H. J. Electroanalytical Chem., 2017, 792:72.
[67] Zhai Z M, Zhang F Q, Chen X Y, Zhong J, Liu G, Tian Y C, Huang Q. Lab on a Chip, 2017, 17:1306.
[68] Lin X Z, Terepka A D, Yang H. Nano Lett., 2004, 4:2227.
[69] Wagner J, Kirner T, Mayer G, Albert J, Köhler J M. Chem. Eng. J., 2004, 101:251.
[70] Lohse S E, Eller J R, Sivapalan S T, Plews M R, Murphy C J. ACS Nano, 2013, 7:4135.
[71] Uson L, Sebastian V, Arruebo M, Santamaria J. Chem. Eng. J., 2016, 285:286.
[72] Lu M Q, Yang S, Ho Y P, Grigsby C L, Leong K, Huang T J. ACS Nano, 2014, 8:10026.
[73] Knauer A, Thete A, Li S, Romanus H, Csáki A, Fritzsche W, Köhler J M. Chem. Eng. J., 2011, 166:1164.
[74] Sebastián V, Zaborenko N, Gu L, Jensen K F. Cryst. Growth Des., 2017, 17:2700.
[75] Tao S, Yang M, Chen H H, Ren M Y, Chen G W. J. Colloid Interface Sci., 2017, 486:16.
[76] Kang H W, Leem J, Yoon S Y, Sung H J. Nanoscale, 2014, 6:2840.
[77] Dai J, Yang X Y, Hamon M, Kong L Z. Chem. Eng. J., 2015, 280:385.
[78] De Solorzano I O, Prieto M, Mendoza G, Alejo T, Irusta S, Sebastian V, Arruebo M. ACS Appl. Mater. Interfaces, 2016, 8:21545.
[79] 李宏福(Li H F), 张博明(Zhang B M), 郭兴林(Guo X L). 化学进展(Progress in Chemistry), 2011, 23:1196.
[80] Oh H J, Son J H, Hwang S J, Kim J, Hyun D C. Colloid Polym. Sci., 2017, 295:1475.
[81] Paulsen K S, Chung A J. Lab on a Chip, 2016, 16:2987.
[82] Visaveliya N, Kohler J M. ACS Appl. Mater. Interfaces, 2014, 6:11254.
[83] Dendukuri D, Pregibon D C, Collins J, Hatton T A, Doyle P S. Nat. Mater., 2006, 5:365.
[84] Chen P W, Erb R M, Studart A R. Langmuir, 2012, 28:144.
[85] Alrifaiy A, Lindahl O A, Ramser K. Polymers, 2012, 4:1349.
[86] Hasani-Sadrabadi M M, Taranejoo S, Dashtimoghadam E, Bahlakeh G, Majedi F S, van Dersarl J J, Janmaleki M, Sharifi F, Bertsch A, Hourigan K, Tayebi L, Renaud P, Jacob K I. Adv. Mater., 2016, 28:4134.
[87] Ebert S, Koo C K, Weiss J, McClements D J. Food Res. Int., 2017, 92:48.
[88] Ekanem E E, Zhang Z, Vladisavljevic G T. J. Colloid Interface Sci., 2017, 498:387.
[89] Song Y J, Ji S X, Song Y J, Li R S, Ding J, Shen X S, Wang R M, Xu R W, Gu X Y. J. Phys. Chem. C, 2013, 117:17274.
[90] Ji X H, Cheng W, Guo F, Liu W, Guo S S, He Z K, Zhao X Z. Lab on a Chip, 2011, 11:2561.
[91] Chen Y, Dong P F, Xu J H, Luo G S. Langmuir, 2014, 30:8538.
[92] El Kadib A. ChemSusChem, 2015, 8:217.
[93] Roosen J, Van Roosendael S, Borra C R, Van Gerven T, Mullens S, Binnemans K. Green Chem., 2016, 18:2005.
[94] Cui Q, Zhao H, Luo G S, Xu J H. Indus. Eng. Chemi. Res., 2016, 56:143.
[95] Nisisako T. Curr. Opin. Colloid Interface Sci., 2016, 25:1.
[96] Ekanem E E, Zhang Z, Vladisavljevic G T. Langmuir, 2017, 33:8476.
[97] Li W X, Dong H, Tang G N, Ma T, Cao X D. RSC Adv., 2015, 5:23181.
[98] Yang S K, Guo F, Kiraly B, Mao X L, Lu M Q, Leong K W, Huang T J. Lab on a Chip, 2012, 12:2097.
[99] Shang L R, Shangguan F Q, Cheng Y, Lu J, Xie Z Y, Zhao Y J, Gu Z Z. Nanoscale, 2013, 5:9553.
[100] 翟文中(Zhai W Z), 何玉凤(He Y F), 王斌(Wang B), 熊玉兵(Xiong Y B), 宋鹏飞(Song P F), 王荣民(Wang R M). 化学进展(Progress in Chemistry), 2017, 29:127.
[101] Min N G, Ku M, Yang J, Kim S H. Chem. Mater., 2016, 28:1430.
[102] Hu Y D, Wang S B, Abbaspourrad A, Ardekani A M. Langmuir, 2015, 31:1885.
[103] Xu K, Ge X H, Huang J P, Dang Z X, Xu J H, Luo G S. RSC Adv., 2015, 5:46981.
[104] Yang Y T, Wei J, Li X, Wu L J, Chang Z Q, Serra C A. Adv. Powder Technol., 2015, 26:156.
[105] Khan I U, Serra C A, Anton N, Li X, Akasov R, Messaddeq N, Kraus I, Vandamme T F. Intern. J. Pharma., 2014, 473:239.
[106] Nisisako T, Torii T, Takahashi T, Takizawa Y. Adv. Mater., 2006, 18:1152.
[107] Nisisako T, Torii T, Higuchi T. Chem. Engin. J., 2004, 101:23.
[108] Maeda K, Onoe H, Takinoue M, Takeuchi S. Adv. Mater., 2012, 24:1340.
[109] Marquis M, Davy J, Cathala B, Fang A, Renard D. Carbohydr. Polym., 2015, 116:189.
[110] Lan J W, Chen J Y, Li N X, Ji X J, Yu M X, He Z K. Talanta, 2016, 151:126.
[111] Seiffert S, Romanowsky M B, Weitz D A. Langmuir, 2010, 26:14842.
[112] Zhao Y J, Shum H C, Chen H S, Adams L L, Gu Z Z, Weitz D A. J. Am. Chem. Soc., 2011, 133:8790.
[113] Shah R K, Kim J W, Weitz D A. Adv. Mater., 2009, 21:1949.
[114] Lone S, Kim S H, Nam S W, Park S, Joo J, Cheong I W. Chem. Commun., 2011, 47:2634.
[115] Yamagami T, Kitayama Y, Okubo M. Langmuir, 2014, 30:7823.
[116] Min N G, Kim B, Lee T Y, Kim D, Lee D C, Kim S H. Langmuir, 2015, 31:937.
[117] 杨小超(Yang X C), 莫志宏(Mo Z H). 化学进展(Progress in Chemistry), 2010, 22:1735.
[118] Huang H S, Yu Y, Hu Y, He X M, Berk Usta O, Yarmush M L. Lab on a Chip, 2017, 17:1913.
[119] Kim B, Jeon T Y, Oh Y K, Kim S H. Langmuir, 2015, 31:6027.
[120] Polenz I, Weitz D A, Baret J C. Langmuir, 2015, 31:1127.
[121] Lee T Y, Choi T M, Shim T S, Frijns R A, Kim S H. Lab on a Chip, 2016, 16:3415.
[122] Kim S H, Park J G, Choi T M, Manoharan V N, Weitz D A. Nat. Commun., 2014, 5:3068.
[123] Lee S S, Kim B, Kim S K, Won J C, Kim Y H, Kim S H. Adv. Mater., 2015, 27:627.
[124] Brugarolas T, Gianola D S, Zhang L, Campbell G M, Bassani J L, Feng G, Lee D H. ACS Appl. Mater. Interfaces, 2014, 6:11558.
[125] Tu F Q, Lee D Y. Langmuir, 2012, 28:9944.
[126] Lee D Y, Weitz D A. Adv. Mater., 2008, 20:3498.
[127] Sun B J, Shum H C, Holtze C, Weitz D A. ACS Applied Materials & Interfaces, 2010, 2:3411.
[128] Windbergs M, Zhao Y, Heyman J, Weitz D A. J. Am. Chem. Soc., 2013, 135:7933.
[129] Perro A, Nicolet C, Angly J, Lecommandoux S, Le Meins J F, Colin A. Langmuir, 2011, 27:9034.
[130] Shum H C, Zhao Y J, Kim S H, Weitz D A. Angew. Chem. Int. Ed. Engl., 2011, 50:1648.
[131] Kim S H, Nam J, Kim J W, Kim D H, Han S H, Weitz D A. Lab on a Chip, 2013, 13:1351.
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[5] Li Fu, Huaiwei Zhang, Weiting Ye, Chen Ye, Cheng-Te Lin. Solid-State Electroanalytical Chemistry and Its Application in Plant Analysis [J]. Progress in Chemistry, 2021, 33(8): 1440-1449.
[6] Fangjuan Zhang, Haibing Liu, Mengqi Gao, Defu Wang, Yanbing Niu, Shaofei Shen. Concentration-Gradient Microfluidic Chips for Drug Screening [J]. Progress in Chemistry, 2021, 33(7): 1138-1151.
[7] Di Feng, Guanghua Wang, Wenlai Tang, Jiquan Yang. Application of Microfluidic Impedance Cytometer in Single-Cell Detection [J]. Progress in Chemistry, 2021, 33(4): 555-567.
[8] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[9] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[10] Bingyan Jiang, Tao Peng, Shuai Yuan, Mingyong Zhou. Passive Focusing Techniques of Particles in Microfluidic Device [J]. Progress in Chemistry, 2021, 33(10): 1780-1796.
[11] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[12] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[13] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[14] Chen Ni, Di Jiang, Youlin Xu, Wenlai Tang. Application of Viscoelastic Fluid in Passive Particle Manipulation Technologies [J]. Progress in Chemistry, 2020, 32(5): 519-535.
[15] Huitiao Li, Jianzhang Pan, Qun Fang. Development and Application of Digital PCR Technology [J]. Progress in Chemistry, 2020, 32(5): 581-593.