中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (6): 775-784 DOI: 10.7536/PC171105 Previous Articles   Next Articles

• Review •

Two-Dimensional Photonic Crystals

Cheng Chen1,2, Zhiqiang Dong1, Haowen Chen1, Yang Chen1, Zhigang Zhu1,2*, Weiheng Shih1,3   

  1. 1. School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China;
    2. Shanghai Innovation Institute for Materials, Shanghai 200444, China;
    3. Department of Materials Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.61471233,21504051),the Shuguang Project supported by Shanghai Municipal Education Commission (14SG52),the Program for Professor of Special Appointment (Eastern Scholar) at SIHL,and the Graduate Program of Shanghai Polytechnic University (No.EGD17YJ003).
PDF ( 15513 ) Cited
Export

EndNote

Ris

BibTeX

Photonic crystal is a dimensionally periodic dielectric structure that exhibits a photonic band-gap (PBG). The theory of photonic crystal (PC) has been put forth for 30 years, and many achievements have been made based on theoretical and experimental research. PC materials inhibit photons from propagating for a certain band of frequencies with the fabricated PBG comparable to the wavelength of light, which have attracted more and more research interests due to its excellent properties and potential functional applications in optical, electrical, thermal and magnetic aspects. Furthermore, more and more efforts have been devoted to two-dimensional photonic crystals (2D PCs) due to their unique properties. In this paper, the characteristics of 2D PCs, including the preparation methods such as self-assembly, etching, and multiple-beam interference method, as well as its development status in waveguides, optical fibers, sensors, and terahertz technology in recent years are introduced. These developments show that the 2D PCs have great potentials as metamaterials. The future research focus and development direction of 2D PCs are prospected at last.
Contents
1 Introduction
2 Characteristics of 2D photonic crystals
2.1 Photonic band gap
2.2 Structural color and diffraction characteristics
2.3 Photon localization
2.4 Negative refraction
3 Preparation methods of 2D photonic crystals
3.1 Self-assembly method
3.2 Etching method
3.3 Multiple-beam interference method
3.4 Other methods
4 Applications of 2D photonic crystals
4.1 Sensors
4.2 Waveguides and integrated circuits
4.3 Optical fiber communication and terahertz technology
4.4 Other applications
5 Conclusion and outlook

CLC Number: 

[1] Yablonovitch E. Physical Review Letters, 1987, 58(20):2059.
[2] John S. Physical Review Letters, 1987, 58(23):2486.
[3] Chen C, Zhu Y H, Bao H, Yang X L, Li C Z. ACS Appl. Mater. Interfaces, 2010, 2(5):1499.
[4] Chen C, Zhu Z G, Zhu X G, Yu W, Liu M J, Ge Q Q, Shih W H. Mater. Res. Express., 2015, 2(4):046201.
[5] Chen C, Zhao X L, Li Z, Zhu Z G, Qian S H, Flewitt A J. Sensors, 2017, 2017, 17(1):182.
[6] Ruan J L, Chen C, Shen J H, Zhao X L, Qian S H, Zhu Z G. Polymers, 2017, 9(4):125.
[7] Xiao F B, Sun Y F, Du W F, Shi W H, Wu Y, Liao S Z, Wu Z Y, Yu R Q. Adv. Funct. Mater., 2017, DOI:10.1002/adfm.201702147.
[8] Zhang J T, Chao X, Liu X Y, Asher S A. Chemical Communications, 2013, 49(56):6337.
[9] Asher S A, Weissman J M, Tikhonov A, Coalson R D, Kesavamoorthy R. Physical Review E, 2004, 69:066619.
[10] Yoshie T, Vuckovic J, Scherer A, Chen H, Deppe D. Applied Physics Letters, 2001, 79(26):4289.
[11] Veselago V G. Soy. Phys. Usp., 1968, 10(4):509.
[12] Shelby R A, Smith D R, Schultz S. Science, 2001, 292(5514):77.
[13] Jiang P, Bertone J F, Hwang K S, Colvin V L. Chemistry of Materials, 1999, 11(8):2132.
[14] Villaescusa L A, Mihi A, Rodriguez I, Alfonso E G B, Míguez H. J. Phys. Chem. B, 2005, 109(42):19643.
[15] Jiang P, McFarland M J. J. Am. Chem. Soc., 2005, 127(11):3710.
[16] Alfrey T, Bradford E B, Vanderhoff J W. Journal of the Optical Society of America, 1954, 44(8):603.
[17] Velev O D, Denkov N D, Kralchevsky P A, Ivanovl I B, Yoshimura H, Nagayama K. Progr. Colloid. Polym. Sci., 1993, 93(3):366.
[18] Dimitrov A S, Nagayama K. Langmuir, 1996, 12(5):1303.
[19] Scriven L E, Sternling C V. Nature, 1960, 187(4733):186.
[20] Li C, Hong G S, Wang P W, Yu D P, Qi L M. Chem. Mater., 2009, 21(5):891.
[21] Zhang J T, Wang L L, Lamont D N, Velankar S S, Asher S A. Angew. Chem. Int. Ed., 2012, 51(25):6117.
[22] Ahn S, Kim H, Jeon H, Oh J R, Do Y R, Kim H J. Appl. Phys. Express., 2012, 5(4):042102.
[23] 李卫(Li W), 徐岭(Xu L), 孙萍(Sun P), 赵伟明(Zhao W M), 黄信凡(Huang X F), 徐骏(Xu J), 陈坤基(Chen K J). 物理学报(Acta Physica Sinica), 2006, 56(7):4242.
[24] Liu G Q, Cai W P. Crystals, 2016, 6(10):126.
[25] Li Y, Cai W P, Duan G T. Chem. Mater., 2007, 20(3):615.
[26] Zhang J H, Li Y F, Zhang X M, Yang B. Adv. Mater., 2010, 22(38):4249.
[27] Li Y, Duan G T, Liu G Q, Cai W P. Chem. Soc. Rev., 2013, 42(8):3614.
[28] 张刚(Zhang G), 赵志远(Zhao Z Y), 汪大洋(Wang D Y).高等学校化学学报(Chemical Journal of Chinese Universities), 2010, 31(5):839.
[29] Geng C, Wei T B, Wang X Q, Shen D Z, Hao Z B, Yan Q F. Small, 2014, 10(9):1668.
[30] Ye X Z, Qi L M. Sci. China Chem., 2014, 57(1):58.
[31] Li C, Hong G S, Qi L M. Chem. Mater., 2010, 22(2):476.
[32] Cai L Z, Yang X L, Wang Y R. Optics Letters, 2002, 27(11):900.
[33] Cai L Z, Yang X L, Liu Q, Wang Y R. Optics Communications, 2003, 224(4):243.
[34] Mao W D, Zhong Y C, Dong J W, Wang H Z. J. Opt. Soc. Am. B, 2005, 22(5):1085.
[35] Wang X, Su H M, Zhang L Z, He Y J, Zheng X G, Wang H Z. Appl. Opt., 2001, 40(31):5588.
[36] Wang X, Xu J F, Su H M, Zeng Z H, Chen Y L, Wang H Z, Pang Y K, Tam W Y. Appl. Phys. Lett., 2003, 82(14):2212.
[37] Wu L J, Zhong Y C, Wong K S, Wang G P, Yuan L. Appl. Phys. Lett., 2006, 88(9):0911509115.
[38] Cao Y Y, Zhang Y G, Li Y Y, Gu Y, Li A Z, Li H. J. Infrared Millim Waves, 2014, 33(1):45.
[39] Wendt J R, Vawter G A, Gourley P L, Brennan T M, Hammons B E. J. Vac. Sci. Technol., 1993, 11(6):2637.
[40] Englund D, Faraon A, Fushman I, Stoltz N, Petroff P, Vukovi J. Nature, 2007, 450(7171):857.
[41] Chelnokov A, David S, Wang K, Marty F, Lourtioz J M. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(4):919.
[42] Araghchini M, Yeng Y X, Jovanovic N, Bermel P, Kolodziejski L A, Solja D? i? M, Celanovic I, Joannopoulos J D. Journal of Vacuum Science & Technology B, 2011, 29(6):061402.
[43] 赵年顺(Zhao N S). 科技视界(Science & Technology Vision), 2015, 33:142.
[44] Zlatanovic S, Mirkarimi L W, Sigalas M M, Bynum M A, Chow E, Robotti K M, Burr G W, Esener S, Grot A. Sensors and Actuators B:Chemical, 2009, 141(1):13.
[45] Zhang J T, Wang L L, Chao X, Asher S A. Langmuir, 2011, 27(24):15230.
[46] Zhang J T, Smith N, Asher S A. Anal. Chem., 2012, 84(15):6416.
[47] Men D D, Zhou F, Hang L F, Li X Y, Duan G T, Cai W P, Li Y. J. Mater. Chem. C, 2016, (4):2117.
[48] Chen C, Dong Z Q, Chen Y, Hu X B, Zhu X R, Zhu Z G, Qian S H, Shih W H. IOP Conference Series:Materials Science and Engineering, 2017, 167:012073.
[49] Dalstein O, Ceratti D R, Boissière C, Grosso D, Cattoni A, Faustini M. Adv. Funct. Mater., 2016, 26(1):81.
[50] O'Faolain L, Yuan X, McIntyre D, Thoms S, Chong H, de La Rue R M, Krauss T F. Electronics Letters, 2006, 42(25):1454.
[51] Soldano L B, Pennings E C M. Journal of Lightwave Technology, 1995, 13(4):615.
[52] Krauss T F. J. Phys. D:Appl. Phys., 2007, 40(9):2666.
[53] Tada T, Poborchii V V, Kanayama T. Microelectronic Engineering, 2002, 63(1):259.
[54] Grillet C, Smith C, Freeman D, Madden S, Luther-Davies B, Magi E C, Moss D J, Eggleton B J. Optics Express, 2006, 14(3):1070.
[55] Suzuki K, Hamachi Y, Baba T. Optics Express, 2009, 17(25):22393.
[56] Moniem T A. Journal of Modern Optics, 2015, 62(19):1643.
[57] Moniem T A, El-Din E S. Optics Communications, 2017, 402:36.
[58] Youssefi B, Moravvej-Farshi M K, Granpayeh N. Optics Communications, 2012, 285(13):3228.
[59] Rashki Z, Mahdavi C S J. Optics Communications, 2016, 395:231.
[60] Russell P S J, Knight J C, Birks T A, Mangan S J, Wadsworth W J. Proc. OFC, 2000, 3:98.
[61] Knight J C, Birks T A, Russell P S J, Atkin D M. Opt. Lett., 1996, 21(19):1547.
[62] Cregan R F, Mangan B J, Knightt J C, Birks T A, Russell P S J, Roberts P J, Allan D C. Science, 1999, 285(3):1537.
[63] Zhang Y F, Chan C C, Sun J. Sensors and Actuators A:Physical, 2010, 157(2):276.
[64] Nemec H, Kuel P, Duvillaret L, Pashkin A, Dressel M, Sebastian M T. Optics Letters, 2005, 30(5):549.
[65] Dysdale T D, Blaikie R J, Cumming D R S. Appl. Phys. Lett., 2003, 83(26):5362.
[66] Li Z J, Zhang Y, Li B J. Optics Express, 2006, 14(9):3887.
[67] Tiwari R N, Kumar P, Singh G. Optics Letters, 2008,18:787.
[68] Withayachumnankul W, Fumeaux C. Nature Photonics, 2014, 8:586.
[69] Kim J I, Jeon S G, Kim G J, Kim J, Lee H H, Park S H. J. Infrared Milli Terahz. Waves, 2012, 33(2):206.
[70] Kitagawa J, Kodama M, Koya S, Nishifuji Y, Armand D, Kadoya Y. Optics Express, 2012, 20(16):17271.
[71] 潘武(Pan W), 尹霞(Yi X), 承皓(Cheng H), 李选(Li X).光器件(Optical Device), 2017, 3:23.
[72] 陈琦(Chen Q), 何晓阳(He X Y), 张健(Zhang J). 太赫兹科学与电子信息学报(Journal of Terahertz Science and Electronic Information Technology), 2015, 13(4):525.
[73] Biener J, Stadermann M, Suss M, Worsley M A, Biener M M, Rose K A, Baumann T F. Energy Environ Sci., 2011, 4(3):656.
[74] Dunn B, Zink J I. Acc. Chem. Res., 2007, 40(9):747.
[75] Leventis N. Acc. Chem. Res., 2007, 40(9):874.
[76] Shen J H, Zhu Y H, Jiang H, Li C Z. Nano Today, 2016,11(4):483.
[77] Meng K, Gao S S, Wu L L, Wang G, Liu X, Chen G, Liu Z, Chen G. Nano Letters, 2016, 16(7):4166.
[78] Yeng Y X, Ghebrebrhan M, Bermel P, Chan W R, Joannopoulos J D, Solja D?i? M, Celanovic I. Proc. Natl. Acad. Sci., 2012, 109(7):2280.
[79] Rinnerbauer V, Ndao S, Yeng Y X, Senkevich J J, Jensen K F, Joannopoulos J D, Solja D?i? M, Celanovic I, Geil R D. J. Vac. Sci. Technol. B, 2013, 31(1):011802.
[80] Chou J B, Yeng Y X, Lee Y E, Lenert A, Rinnerbauer V, Celanovic I, Solja D?i? M, Fang N X, Wang E N, Kim S G. Adv. Mater., 2014, 26(47):8041.
[81] Umh H N, Yu S J, Kim Y H, Lee S Y, Yi J H. ACS Appl. Mater. Interf., 2016, 8(24):15802.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[3] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[4] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[5] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[6] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[7] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[8] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[9] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[10] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[11] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[12] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[13] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[14] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[15] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
Viewed
Full text


Abstract

Two-Dimensional Photonic Crystals