中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1601-1614 DOI: 10.7536/PC160533 Previous Articles   Next Articles

• Review and comments •

Research Advances of Boron Clusters, Borane and Metal-Doped Boron Compounds

Shen Yanfang, Xu Chang, Huang Min, Wang Haiyan, Cheng Longjiu*   

  1. College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273008, 21573001).
PDF ( 940 ) Cited
Export

EndNote

Ris

BibTeX

Boron atom has received much attention from scientists owing to its unique characters, such as short covalent radius, electron deficiency, large coordination number, sp2 hybridization of valence electrons and three-center bonds. Due to the research of the electronic structure, stability, aromaticity and bonding nature, boron clusters have become a sparkling rising star on the horizon of chemistry. Meanwhile, boron compounds have a vast applications in optics, energy and industrial gas storage because of their rich features. This paper systematicly reviewes the recent research progresses of pure-boron clusters, borane and metal-doped boron clusters. The pure-boron clusters and borane are generalized from neutral, anionic and cationic three types. The metal-doped boron clusters mainly include metal-doped all-boron clusters and borane, transition-metal sandwich-type complexes as well as metal-centered boron molecular wheels.

Contents
1 Introduction
2 Pure-boron clusters
2.1 Neutral boron clusters
2.2 Anionic boron clusters
2.3 Cationic boron clusters
3 Borane clusters
3.1 Anionic borane clusters
3.2 Neutral borane clusters
3.3 Cationic borane clusters
4 Metal-doped boron clusters
4.1 Metal-doped all-boron clusters
4.2 Metal-doped borane compounds
4.3 Transition-metal sandwich-type complexes
4.4 Metal-centered boron molecular wheels
5 Conclusion

CLC Number: 

[1] Zhang H, Wang J, Tian Z X, Liu Y. Phys. Chem. Chem. Phys., 2015, 17:13821.
[2] Lv J, Wang Y C, Zhu L, Ma Y M. Nanoscale, 2014, 6:11692.
[3] Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S. J. Phys. Chem. A, 2014, 118:8098.
[4] Osorio E, Olson J K, Tiznado W, Boldyrev A I. Chem.-Eur. J., 2012, 18:9677.
[5] Tse J S. Nature, 2009, 457:800.
[6] Akman N, Tas M, Özdo D?an C, Boustani I. Phys. Rev. B, 2011, 84.
[7] Slough W J, Kandalam A K, Pandey R. J. Chem. Phys., 2010, 132:104304.
[8] Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I. Acc. Chem. Res., 2014, 47:1349.
[9] Tai T B, Nguyen M T. Phys. Chem. Chem. Phys., 2015, 17:13672.
[10] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S. Coord. Chem. Rev., 2006, 250:2811.
[11] Cheng L J. J. Chem. Phys., 2012, 136:104301.
[12] Zhao J J, Huang X M, Shi R L, Liu H S, Su Y, King R B. Nanoscale, 2015, 7:15086.
[13] Tai T B, Duong L V, Pham H T, Mai D T, Nguyen M T. Chem. Commun., 2014, 50:1558.
[14] Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S. J. Am. Chem. Soc., 2014, 136:12257.
[15] Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2014, 16:18282.
[16] Tai T B, Nguyen M T. Chem. Commun., 2015, 51:7677.
[17] Lu Q L, Luo Q Q, Li Y D, Huang S G. Phys. Chem. Chem. Phys., 2015, 17:20897.
[18] Lu H G, Li S D. J. Chem. Phys., 2013, 139:224307.
[19] Hayami W, Otani S. J. Phys. Chem. A, 2011, 115:8204.
[20] Kawai R, Weare J H. J. Chem. Phys., 1991, 95:1151.
[21] Zhai H J, Kiran B, Li J, Wang L S. Nat. Mater., 2003, 2:827.
[22] Kiran B, Kumar G G, Nguyen M T, Kandalam A K, Jena P. Inorg. Chem., 2009, 48:9965.
[23] Kah C B, Yu M, Tandy P, Jayanthi C S, Wu S Y. Nanotechnology, 2015, 26:405701.
[24] Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S. PNAS, 2005, 102:961.
[25] An W, Bulusu S, Gao Y, Zeng X C. J. Chem. Phys., 2006, 124:154310.
[26] Johansson M P. J. Phys. Chem. C, 2009, 113:524.
[27] Wang Y J, Zhao Y F, Li W L, Jian T, Chen Q, You X R, Ou T, Zhao X Y, Zhai H J, Li S D, Li J, Wang L S. J. Chem. Phys., 2016, 144:064307.
[28] Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S. Nature Chem., 2014, 6:727.
[29] He R X, Zeng X C. Chem. Commun., 2015, 51:3185.
[30] Tai T B, Nguyen M T. Nanoscale, 2015, 7:3316.
[31] Gonzalez Szwacki N, Sadrzadeh A, Yakobson B I. Phys. Rev. Lett., 2007, 98:166804.
[32] Muya J T, De Proft F, Geerlings P, Nguyen M T, Ceulemans A. J. Phys. Chem. A, 2011, 115:9069.
[33] Zhao J J, Wang L, Li F Y, Chen Z F. J. Phys. Chem. A, 2010, 114:9969.
[34] Wang X Q. Phys. Rev. B, 2010, 82:153409.
[35] De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S. Phys. Rev. Lett., 2011, 106:225502.
[36] Li F Y, Jin P, Jiang D E, Wang L, Zhang S B, Zhao J J, Chen Z F. J. Chem. Phys., 2012, 136:074302.
[37] Li D Z, Bai H, Ou T, Chen Q, Zhai H J, Li S D. J. Chem. Phys., 2015, 142:014302.
[38] Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S. Nat. Commun., 2015, 6:8654.
[39] Romanescu C, Sergeeva A P, Li W L, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2011, 133:8646.
[40] Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S. Angew. Chem. Int. Ed., 2003, 42:6004.
[41] Alexandrova A N, Zhai H J, Wang L S, Boldyrev A I. Inorg. Chem., 2004, 43:3552.
[42] Fowler P W, Gray B R. Inorg. Chem., 2007, 46:2892.
[43] Pan L L, Li J, Wang L S. J. Chem. Phys., 2008, 129:024302.
[44] Sergeeva A P, Zubarev D Y, Zhai H J, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2008, 130:7244.
[45] Huang W, Sergeeva A P, Zhai H J, Averkiev B B, Wang L S, Boldyrev A I. Nature Chem., 2010, 2:202.
[46] Sergeeva A P, Averkiev B B, Zhai H J, Boldyrev A I, Wang L S. J. Chem. Phys., 2011, 134:224304.
[47] Jiménez-Halla J O C, Islas R, Heine T, Merino G. Angew. Chem. Int. Ed., 2010, 49:5668.
[48] Tai T B, Ceulemans A, Nguyen M T. Chem.-Eur. J., 2012, 18:4510.
[49] Tai T B, Havenith R W, Teunissen J L, Dok A R, Hallaert S D, Nguyen M T, Ceulemans A. Inorg. Chem., 2013, 52:10595.
[50] Piazza Z A, Li W L, Romanescu C, Sergeeva A P, Wang L S, Boldyrev A I. J. Chem. Phys., 2012, 136:104310.
[51] Sergeeva A P, Piazza Z A, Romanescu C, Li W L, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2012, 134:18065.
[52] Popov I A, Piazza Z A, Li W L, Wang L S, Boldyrev A I. J. Chem. Phys., 2013, 139:144307.
[53] Chen Q, Li W L, Zhao Y F, Zhang S Y, Hu H S, Bai H, Li H R, Tian W J, Lu H G, Zhai H J, Li S D, Li J, Wang L S. ACS Nano, 2015, 9:754.
[54] Oger E, Crawford N R, Kelting R, Weis P, Kappes M M, Ahlrichs R. Angew. Chem., Int. Ed., 2007, 46:8503.
[55] Aihara J. J. Phys. Chem. A, 2001, 105:5486.
[56] Fowler J E, Ugalde J M. J. Phys. Chem. A, 2000, 104:397.
[57] Martinez-Guajardo G, Sergeeva A P, Boldyrev A I, Heine T, Ugalde J M, Merino G. Chem. Commun., 2011, 47:6242.
[58] Yuan Y, Cheng L J. J. Chem. Phys., 2012, 137:044308.
[59] Chen Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D. Angew. Chem., 2015, 127:8278.
[60] Bai H, Li S D. J. Cluster Sci., 2011, 22:525.
[61] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Phys. Conf. Ser., 2009, 176:012030.
[62] Ricca A, Bauschlicher J C W. J. Chem. Phys., 1997, 106:2317.
[63] Boroznina E V, Borkhoeva N N, Boroznin S V. J. Phys. Conf. Ser., 2015, 586:012007.
[64] Olson J K. Dissertation of Utah State University, 2010.
[65] Dash B P, Satapathy R, Maguire J A, Hosmane N S. New J. Chem., 2011, 35:1955.
[66] Liao R B, Zhu Y, Li Q H, Sa R J. Struct. Chem., 2015, 26:353.
[67] Pitochelli A R, Hawthorne F M. J. Am. Chem. Soc., 1960, 82:3228.
[68] Szwacki N G, Tymczak C. Nanoscale Res. Lett., 2012, 7:1.
[69] Schleyer P V R, Najafian K, Mebel A M. Inorg. Chem., 1998, 37:6765.
[70] McKee M L, Wang Z X, Schleyer P V R. J. Am. Chem. Soc., 2000, 122:4781.
[71] Liao R B, Tian Z M, Cui Y M, Sa R J. Struct. Chem., 2012, 23:1797.
[72] Avdeeva V V, Vologzhanina A V, Goeva L V, Malinina E A, Kuznetsov N T. Z. Anorg. Allg. Chem., 2014, 640:2149.
[73] Udovic T J, Matsuo M, Unemoto A, Verdal N, Stavila V, Skripov A V, Rush J J, Takamura H, Orimo S. Chem. Commun., 2014, 50:3750.
[74] Olson J K, Boldyrev A I. J. Phys. Chem. A, 2013, 117:1614.
[75] Li W L, Romanescu C, Jian T, Wang L S. J. Am. Chem. Soc., 2012, 134:13228.
[76] Böyükata M, Özdo D? an C, Güvenç Z B. Phys. Scr., 2008, 77:025602.
[77] Chen Q, Li S D. J. Cluster Sci., 2011, 22:513.
[78] Li D Z, Lu H G, Li S D. J. Mol. Model., 2012, 18:3161.
[79] Li D Z, Chen Q, Wu Y B, Lu H G, Li S D. Phys. Chem. Chem. Phys., 2012, 14:14769.
[80] Bai H, Chen Q, Zhao Y F, Wu Y B, Lu H G, Li J, Li S D. J. Mol. Model., 2013, 19:1195.
[81] Tian W J, Bai H, Lu H G, Wu Y B, Li S D. J. Cluster Sci., 2013, 24:1127.
[82] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Chem. Phys., 2008, 128:124304.
[83] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Chem. Phys., 2010, 133:074305.
[84] Yu H L, Sang R L, Wu Y Y. J. Phys. Chem. A, 2009, 113:3382.
[85] Szwacki N G, Weber V, Tymczak C. Nanoscale Res. Lett., 2009, 4:1085.
[86] Olah G A, Prakash G K S, Rasul G. Proc. Natl. Acad. Sci. U. S. A., 2012, 109:6825.
[87] Lv J, Wang Y C, Zhang L J, Lin H Q, Zhao J J, Ma Y M. Nanoscale, 2015, 7:10482.
[88] Li Q S, Jin Q. J. Phys. Chem. A, 2004, 108:855.
[89] Galeev T R, Romanescu C, Li W L, Wang L S, Boldyrev A I. J. Chem. Phys., 2011, 135:104301.
[90] Alexandrova A N, Nechay M R, Lydon B R, Buchan D P, Yeh A J, Tai M H, Kostrikin I P, Gabrielyan L. Chem. Phys. Lett., 2013, 588:37.
[91] Wu Y Y, Zhao F Q, Ju X H. Comput. Theor. Chem., 2014, 1027:151.
[92] Xu C, Cheng L J, Yang J L. J. Chem. Phys., 2014, 141:124301.
[93] Cheng S B, Berkdemir C, Castleman A W. Phys. Chem. Chem. Phys., 2014, 16:533.
[94] Bai H, Chen Q, Zhai H J, Li S D. Angew. Chem. Int. Ed. Engl., 2015, 54:941.
[95] Chen Q, Gao T, Tian W J, Bai H, Zhang S Y, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2015, 17:19690.
[96] Fa W, Chen S, Pande S, Zeng X C. J. Phys. Chem. A, 2015, 119:11208.
[97] Jin P, Hou Q H, Tang C C, Chen Z F. Theor. Chem. Acc., 2015, 134.
[98] Chen Q, Li H R, Miao C Q, Wang Y J, Lu H G, Mu Y W, Ren G M, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2016, 18:11610.
[99] Tam N M, Pham H T, Duong L V, Pham-Ho M P, Nguyen M T. Phys. Chem. Chem. Phys., 2015, 17:3000.
[100] Zhai H J, Wang L S, Zubarev D Y, Boldyrev A I. J. Phys. Chem. A, 2006, 110:1689.
[101] Zhai H J, Miao C Q, Li S D, Wang L S. J. Phys. Chem. A, 2010, 114:12155.
[102] Chen Q, Bai H, Zhai H J, Li S D, Wang L S. J. Chem. Phys., 2013, 139:044308.
[103] Chen Q, Zhai H J, Li S D, Wang L S. J. Chem. Phys., 2013, 138:084306.
[104] Zhao Y, Lusk M T, Dillon A C, Heben M J, Zhang S B. Nano Lett., 2008, 8:157.
[105] Li F, Zhao J J, Chen Z F. Nanotechnology, 2010, 21:134006.
[106] Jia J F, Ma L J, Wang J F, Wu H S. J. Mol. Model., 2013, 19:3255.
[107] Jia J F, Li X R, Li Y A, Ma L J, Wu H S. Comput. Theor. Chem., 2014, 1027:128.
[108] 王转玉(Wang Z Y), 康伟利(Kang W L), 贾建峰(Jia J F), 武海顺(Wu H S). 物理学报(Acta Phys. Sin.), 2014, 63:233102.
[109] Xie S Y, Li X B, Tian W Q, Chen N K, Zhang X L, Wang Y L, Zhang S B, Sun H B. Phys. Rev. B, 2014, 90.
[110] Zheng Q, Wagner F R, Ormeci A, Prots Y, Burkhardt U, Schmidt M, Schnelle W, Grin Y, Leithe-Jasper A. Chem.-Eur. J., 2015, 21:16532.
[111] Wu C, Wang H, Zhang J J, Gou G Y, Pan B C, Li J. ACS Appl. Mater. Interfaces, 2016, 8:2526.
[112] Ruan W, Xie A D, Wu D L, Luo W L, Yu X G. Chin. Phys. B, 2014, 23:033101.
[113] 阮文(Ruan W), 余晓光(Yu X G), 谢安东(Xie A D), 伍冬兰(Wu D L), 罗文浪(Luo W L). 物理学报(Acta Phys. Sin.), 2014, 63:243101.
[114] Liao R B, Chai L L, Zhu Y. Int. J. Quantum Chem., 2015, 115:216.
[115] Muhammad S, Xu H L, Liao Y, Kan Y H, Su Z M. J. Am. Chem. Soc., 2009, 131:11833.
[116] Böyükata M, Güvenç Z B. Int. J. Hydrogen Energy, 2011, 36:8392.
[117] Li L F, Xu C, Cheng L J. Comput. Theor. Chem., 2013, 1021:144.
[118] Li L F, Xu C, Jin B K, Cheng L J. J. Chem. Phys., 2013, 139:174310.
[119] Hou J H, Duan Q, Qin J M, Shen X D, Zhao J X, Liang Q C, Jiang D Y, Gao S. RSC Adv., 2015, 5:38873.
[120] Li S D, Guo J C, Miao C Q, Ren G M. Angew. Chem. Int. Ed., 2005, 44:2158.
[121] Fokwa B P, Hermus M. Angew. Chem. Int. Ed., 2012, 51:1702.
[122] Mbarki M, St Touzani R, Fokwa B P. Angew. Chem. Int. Ed., 2014, 53:13174.
[123] Yuan Y, Cheng L J. J. Chem. Phys., 2013, 138:024301.
[124] Li L F, Xu C, Jin B K, Cheng L J. Dalton Trans., 2014, 43:11739.
[125] Mondal B, Mondal B, Pal K, Varghese B, Ghosh S. Chem. Commun., 2015, 51:3828.
[126] Islas R, Heine T, Ito K, Schleye P v R, Merino G. J. Am. Chem. Soc., 2007, 129:14767.
[127] Averkiev B B, Boldyrev A I. Russ. J. Gen. Chem., 2008, 78:769.
[128] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S. Angew. Chem. Int. Ed., 2011, 50:9334.
[129] Li W L, Ivanov A S, Federic J, Romanescu C, Cernusak I, Boldyrev A I, Wang L S. J. Chem. Phys., 2013, 139:104312.
[130] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S. J. Chem. Phys., 2013, 138:134315.[FL)] [ST] [WT] [LM]
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[6] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[7] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[8] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[9] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[10] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[11] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[12] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[13] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[14] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[15] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.