中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 744-753 DOI: 10.7536/PC151101 Previous Articles   Next Articles

• Review and comments •

Enantioselective Environmental Behavior and Effect of Chiral PPCPs

Yin Lina1,2, Wang Bin1*, Ma Ruixue1, Yuan Honglin2, Yu Gang1   

  1. 1. Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China;
    2. School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21577075, 21207076) and the Tsinghua University Initiative Scientific Research Program(No.20131089193).
PDF ( 941 ) Cited
Export

EndNote

Ris

BibTeX

Pharmaceuticals and personal care products (PPCPs) as emerging organic contaminants are mostly chiral compounds. They are usually consumed as racemic compounds or single enantiomers. Biological degradation process can lead to stereoselective enrichment of enantiomer of chiral PPCPs. Due to the difficulties in chiral separation and quantification of enantiomers in the complex environmental matrices, their environmental behavior study has been limited. Enantioselective biodegradation and ecotoxicity of chiral PPCPs tend to make their potential environmental behavior and risk more complicated. Recently, enantiomeric selectivity of chiral PPCPs in environment has gradually caused attention of environmental researchers in developed countries, such as Europe, North America and Japan. Effort has been devoted in studying enantiomeric selectivity of environmental behavior and effect about chiral PPCPs. However, in China, there are very few related studies. It is necessary to carry out more related studies. Consequently, this paper reviews chiral signature of PPCPs, analytical methods, environment behavior and effect selectivity of chiral PPCPs, as well as their potential application in pollution source apportionment. Limitation of current research on environmental behavior and effect of chiral PPCPs is also discussed. The prospect of environmental study on chiral PPCPs in the future is also proposed.

Contents
1 Introduction
2 Manufacture and use of chiral pharmaceuticals
3 Chiral signature of PPCPs
4 Analytical methods of chiral PPCPs
5 Occurrence and environment behavior of chiral PPCPs
6 Toxicological effects of chiral PPCPs
7 Application in source analysis
8 Conclusion and outlook

CLC Number: 

[1] Fatta-Kassinos D. Environ. Sci. Pollut. R, 2010, 17 (2): 519.
[2] Liu J L, Wong M H. Environ. Int., 2013, 59: 208.
[3] Wong C S. Anal. Bioanal. Chem., 2006, 386 (3): 544.
[4] 付长华(Fu C H), 江鸿(Jiang H), 杨大龙(Yang D L). 第六届中国药师大会(Sixth Conference of Chinese Pharmacist), 江苏(JiangSu Province), 2014.
[5] Kasprzyk-Hordern B. Chem. Soc. Rev., 2010, 39 (11): 4466.
[6] Ribeiro A R, Maia A S, Cass Q B, Tiritan M E. J. Chromatogr. B, 2014, 968: 8.
[7] Harner T, Wiberg K, Norstrom R. Environ. Sci. Technol., 2000, 34 (1): 218.
[8] Buser H R, Poiger T, Muller M D. Environ. Sci. Technol., 1999, 33 (15): 2529.
[9] Fono L, Sedlak D L. Abstracts of Papers of the American Chemical Society, 2005, 230: 1534.
[10] Ribeiro A R, Castro P M, Tiritan M E. Environ. Chem. Lett., 2012, 10 (3): 239.
[11] Nikolai L N, McClure E L, MacLeod S L, Wong C S. J. Chromatogr. A, 2006, 1131 (1): 103.
[12] Buser H R, Poiger T, Müller M D. Environ. Sci. Technol., 1999, 33 (15): 2529.
[13] Matamoros V, Hijosa M, Bayona J M. Chemosphere, 2009, 75 (2): 200.
[14] MacLeod S L, Wong C S. Water Res., 2010, 44 (2): 533.
[15] López-Serna R, Kasprzyk-Hordern B, Petrovi? M, Barceló D. Anal. Bioanal. Chem., 2013, 405 (18): 5859.
[16] MacLeod S L, Sudhir P, Wong C S. J. Chromatogr. A, 2007, 1170 (1/2): 23.
[17] Ribeiro A R, Santos L H, Maia A S, Delerue-Matos C, Castro P M, Tiritan M E. J. Chromatogr. A, 2014, 1363: 226.
[18] Morante-Zarcero S, Sierra I. Chirality, 2012, 24 (10): 860.
[19] Svan A, Hedeland M, Arvidsson T, Jasper J T, Sedlak D L, Pettersson C E. J. Chromatogr. A, 2015, 1409: 251.
[20] Wistuba D, Schurig V. J. Chromatogr. A, 2000, 875 (1): 255.
[21] Ribeiro A, Gonçalves V F, Maia A, Ribeiro C, Castro P L, Tiritan M. Environ. Chem. Lett., 2015, 13 (2): 203.
[22] Matamoros V, Uggetti E, García J, Bayona J M. J. Hazard. Mater., 2016, 301: 197.
[23] Bagnall J, Malia L, Lubben A, Kasprzyk-Hordern B. Water Res., 2013, 47 (15): 5708.
[24] Hashim N H, Khan S J. J. Chromatogr. A, 2011, 1218 (29): 4746.
[25] Baker D R, Kasprzyk-Hordern B. Sci. Total Environ., 2013, 454/455: 442.
[26] Wang L, McDonald J A, Khan S J. J. Chromatogr. A, 2013, 1303: 66.
[27] Li Z, Gomez E, Fenet H, Chiron S. Chemosphere, 2013, 90 (6): 1933.
[28] Gasser G, Pankratov I, Elhanany S, Werner P, Gun J, Gelman F, Lev O. Chemosphere, 2012, 88 (1): 98.
[29] Suzuki T, Kosugi Y, Hosaka M, Nishimura T, Nakae D. Environ. Toxicol. Chem., 2014, 33 (12): 2671.
[30] Hashim N H, Nghiem L D, Stuetz R M, Khan S J. Water Res., 2011, 45 (18): 6249.
[31] Jammer S, Voloshenko A, Gelman F, Lev O. Environ. Sci. Technol., 2014, 48 (6): 3310.
[32] Evans S E, Davies P, Lubben A, Kasprzyk-Hordern B. Anal. Chim. Acta, 2015, 882: 112.
[33] Song H, Zeng X, Yu Z, Zhang D, Cao S, Shao W, Sheng G, Fu J. Environ. Sci. Pollut. R, 2015, 22 (3): 1679.
[34] Berset J D, Kupper T, Etter R, Tarradellas J. Chemosphere, 2004, 57 (8): 987.
[35] Fono L J, Sedlak D L. Environ. Sci. Technol., 2005, 39 (23): 9244.
[36] Morante-Zarcero S, Sierra I. J. Pharmaceut. Biomed., 2012, 62: 33.
[37] Barreiro J C, Vanzolini K L, Madureira T V, Tiritan M E, Cass Q B. Talanta, 2010, 82 (1): 384.
[38] Ribeiro A R, Afonso C M, Castro P M L, Tiritan M E. Ecotoxicol. Environ. Saf., 2013, 87: 108.
[39] Ribeiro A R, Afonso C M, Castro P M, Tiritan M E. Environ. Chem. Lett., 2013, 11 (1): 83.
[40] Barclay V K H, Tyrefors N L, Johansson I M, Pettersson C E. J. Chromatogr. A, 2011, 1218 (33): 5587.
[41] Barclay V K H, Tyrefors N L, Johansson I M, Pettersson C E. J. Chromatogr. A, 2012, 1227: 105.
[42] Stanley J K, Ramirez A J, Mottaleb M, Chambliss C K, Brooks B W. Environ. Toxicol. Chem., 2006, 25 (7): 1780.
[43] Nikolai L N, McClure E L, MacLeod S L, Wong C S. J. Chromatogr. A, 2006, 1131 (1/2): 103.
[44] Kunkel U, Radke M. Water Res., 2012, 46 (17): 5551.
[45] Khan S J, Wang L L, Hashim N H, McDonald J A. Chirality, 2014, 26 (11): 739.
[46] Huang Q, Zhang K, Wang Z, Wang C, Peng X. Anal. Bioanal. Chem., 2012, 403 (6): 1751.
[47] Stanley J K, Ramirez A J, Chambliss C K, Brooks B W. Chemosphere, 2007, 69 (1): 9.
[48] De Andres F, Castaneda G, Rios A. Chirality, 2009, 21 (8): 751.
[49] Dai G, Wang B, Huang J, Dong R, Deng S, Yu G. Chemosphere, 2015, 119: 1033.
[50] Daneshvar A, Aboulfadl K, Viglino L, Broséus R, Sauvé S, Madoux-Humery A S, Weyhenmeyer G A, Prévost M. Chemosphere, 2012, 88 (1): 131.
[51] Kawashima H, Murakami M. Atmos. Environ., 2014, 89: 140.
[52] Aboul-Enein H Y, Ali I. Toxicological & Environmental Chemistry, 2004, 86 (1): 1.
[53] Li A, Jang J K, Scheff P A. Environ. Sci.Technol., 2003, 37 (13): 2958.
[54] 廖勇(Liao Y), 赵扬(Zhao Y), 潘灿平(Pan C P). 农药科学与管理(Pesticide Science and Administration), 2008, 29 (1): 47.
[55] Bidleman T F, Jantunen L M, Harner T, Wiberg K, Wideman J L, Brice K, Su K, Falconer R L, Aigner E J, Leone A D, Ridal J J, Kerman B, Finizio A, Alegria H, Parkhurst W J, Szeto S Y. Environ. Pollut., 1998, 102 (1): 43.
[56] Bidleman T F, Jantunen L M, Kurt-Karakus P B, Wong F. Atmospheric Pollution Research, 2012, 3 (4): 371.
[57] Upadhyay N, Sun Q, Allen J O, Westerhoff P, Herckes P. Water Res., 2011, 45 (3): 1071.
[1] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[2] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[3] Minghao Zhou, Shuang Jiang, Tianyong Zhang, Yonghong Shi, Xue Jin, Pengfei Duan. Construction and Optoelectrical Properties of Chiral Perovskite Nanomaterials [J]. Progress in Chemistry, 2020, 32(4): 361-370.
[4] Chenghao Zhu, Junliang Zhang. Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes [J]. Progress in Chemistry, 2020, 32(11): 1745-1752.
[5] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[6] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[7] Juan Ren, Shen Bian, Yiyun Wang, Xianglei Kong. Magic-Number Cluster of Serine Octamer: Structure and Chiral Characteristics [J]. Progress in Chemistry, 2018, 30(4): 383-397.
[8] Rui Ding, Feng Zhao. Intimate Coupling of Photocatalysis and Biodegradation to Synchronously Degrade Pollutants [J]. Progress in Chemistry, 2017, 29(9): 1154-1158.
[9] Lianjun Bao, Ying Guo, Liangying Liu, Eddy Y. Zeng*. Organic Contaminants in the Pearl River Delta, South China:Environmental Behavior and Human Exposure [J]. Progress in Chemistry, 2017, 29(9): 943-961.
[10] Wang Kerang. Chiral Supramolecular Assemblies Based on Aromatic Molecules-Carbohydrate Conjugates and Their Applications [J]. Progress in Chemistry, 2015, 27(6): 775-784.
[11] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[12] Shi Yali, Cai Yaqi. Study of Per- and Polyfluoroalkyl Substances Related Environmental Problems [J]. Progress in Chemistry, 2014, 26(04): 665-681.
[13] Duan Xiaoli, Fu Yan, Zhang Jinli, Li Wei. Chiral Assembled Materials and Their Application in Enantiomeric Resolution [J]. Progress in Chemistry, 2013, 25(08): 1272-1282.
[14] Liu Shuo, Ying Anguo, Ni Yuxiang, Yang Jianguo, Xu Songlin. Application of Task-Specific Ionic Liquids to Michael Additions [J]. Progress in Chemistry, 2013, 25(08): 1313-1324.
[15] Wang Jiali, Tang Jian, Zhang Peng, Wang Jue, Li Yangde, Qin Ling. Indication of Electrochemical Measurements of Magnesium Alloys in vitro for Their Degradation Behavior in vivo [J]. Progress in Chemistry, 2012, 24(04): 598-605.