中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (2/3): 251-266 DOI: 10.7536/PC140914 Previous Articles   Next Articles

• Review •

Progress of Different Sensing Materials Modified QCM Gas Sensors

Wang Zhenqiang1,2, Yang Mingqing2, He Junhui*2, Yang Qiaowen1   

  1. 1. School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
    2. Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21271177), the National Basic Research Program of China (973 Program)(No. 2010CB934103) and the Foundation of Director of Technical Institute of Physics and Chemistry, CAS.

PDF ( 973 ) Cited
Export

EndNote

Ris

BibTeX

Quartz crystal microbalance (QCM) is a mass-sensitive device, and has been attracting intensive attention in the field of gas sensor because of its many advantages such as high sensitivity, low cost, easy installation and inherent ability to monitor analytes in real time. Sensing material is a key issue for the range of application of QCM sensors. This paper reviews the current research status of sensing materials for specific gases, including polymers, supermolecules, ionic liquids, molecular liquids and nanomaterials. The current status and sensing mechanisms of QCM sensors using nanomaterials as sensing layer are introduced in detail. On the basis of the research status, a prospect is given of sensing materials. As a low-cost, easy operation, high-accuracy gas detection device, QCM would be more widely applied in the future.

Contents
1 Introduction
2 Polymers functionalized QCM sensors
2.1 Humidity detection
2.2 Agent stimulant detection
2.3 VOCs detection
3 Supermolecules functionalized QCM sensors
3.1 Inorganic gas pollutants detection
3.2 VOCs detection
4 Ionic liquids and molecular liquids functionalized QCM sensors
4.1 VOCs detection
4.2 Non-volatility compounds detection
5 Nanomaterials functionalized QCM sensors
5.1 Humidity detection
5.2 Inorganic gas pollutants detection
5.3 VOCs detection
5.4 HCN and agent stimulant detection
6 Conclusion and outlook

CLC Number: 

[1] Kida T, Fujiyama S, Suematsu K, Yuasa M, Shimanoe K. J. Phys. Chem. C, 2013, 117(34): 17574.
[2] Chen Y J, Gao X M, Di X P, Ouyang Q Y, Gao P, Qi L H, Li C Y, Zhu C L. ACS Appl. Mater. Interfaces, 2013, 5(8): 3267.
[3] Wang H, Rogach A L. Chem. Mater., 2014, 26(1): 123.
[4] Su J, Zou X X, Zou Y C, Li G D, Wang P P, Chen J S. Inorg. Chem., 2013, 52(10): 5924.
[5] Moon H G, Shim Y S, Su D, Park H H, Yoon S J, Jang H W. J. Phys. Chem. C, 2011, 115(20): 9993.
[6] Balázsi C, Sedlácková K, Llobet E, Ionescu R. Sens. Actuators B: Chem., 2008, 133(1): 151.
[7] Blaszczyk-Lezak I, Aparicio F J, Borras A, Barranco A, Alvarez-Herrero A, Fernandez-Rodriguez M, González-Elipe A R. J. Phys. Chem. C, 2009, 113(1): 431.
[8] Aparicio F J, Blaszczyk-Lezak I, Sánchez-Valencia J R, Alcaire M, González J C, Serra C, González-Elipe A R, Barranco A. J. Phys. Chem. C, 2012, 116(15): 8731.
[9] Chitara B, Late D J, Krupanidhi S B, Rao C N R. Solid State Commun., 2010, 150(41/42): 2053.
[10] Gong J, Li Y, Hu Z, Zhou Z, Deng Y. J. Phys. Chem. C, 2010, 114(21): 9970.
[11] Tarwal N L, Rajgure A V, Patil J Y, Khandekar M S, Suryavanshi S S, Patil P S, Gang M G, Kim J H, Jang J H. J. Mater. Sci., 2013, 48(20): 7274.
[12] Shan H, Liu C, Liu L, Zhang J, Li H, Liu Z, Zhang X, Bo X, Chi X. ACS Appl. Mater. Interfaces, 2013, 5(13): 6376.
[13] Carey W P, Beebe K R, Kowalski B R. Anal. Chem., 1987, 59(11): 1529.
[14] Curie P, Curie J. Bulletin. Soc. Min. de France, 1880, 3: 90.
[15] Lippmann G. Ann. Chem. Phys., 1881, 24: 145.
[16] Sauerbrey G. Zeitschrift fiir Physik, 1959, 155: 206.
[17] Sakai Y, Sadaoka Y, Matsuguchi M. Sens. Actuators B:Chem., 1996, 35: 85.
[18] Yoo H Y, Bruckenstein S. Anal. Chim. Acta, 2013, 785: 98.
[19] Zuo B L, Li W, Zhang T, Zhang H X, Liu G S. Afr. J. Chem., 2007, 60: 118.
[20] Zhang Z, Fan J, Yu J, Zheng S, Chen W, Li H, Wang Z, Zhang W. ACS Appl. Mater. Interfaces, 2012, 4(2): 944.
[21] Du X, Wang Z, Huang J, Tao S, Tang X, Jiang Y. J. Mater. Sci., 2009, 44(21): 5872.
[22] Das R, Biswas S, Bandyopadhyay R, Pramanik P. Sens. Actuators B: Chem., 2013, 185: 293.
[23] Si P, Mortensen J, Komolov A, Denborg J, Moller P J. Anal. Chim. Acta, 2007, 597(2): 223.
[24] Fan X, Du B. Sens. Actuators B: Chem., 2011, 160(1): 724.
[25] Fan X, Du B. Sens. Actuators B: Chem., 2012, 166/167: 753.
[26] Mumyakmaz B, Özmen A, Ebeo D? lu M A, Ta?alt?n C, Gürol I. Sens. Actuators B: Chem., 2010, 147(1): 277.
[27] Andreeva N, Ishizaki T, Baroch P, Saito N. Sens. Actuators B: Chem., 2012, 164(1): 15.
[28] Bachar N, Liberman L, Muallem F, Feng X, Mullen K, Haick H. ACS Appl. Mater. Interfaces, 2013, 5(22): 11641.
[29] Palaniappan A, Moochhala S, Tay F E H, Su X, Phua N C L. Sens. Actuators B: Chem., 2008, 129(1): 184.
[30] Chen W Q, Zeng H M, Zheng R S, Zhang S W, He J. Chin. J. Cancer Res., 2012, 24(1): 1.
[31] Chen W, Zheng R, Zhang S, Zou X, Zhao P, He J. Thoracic Cancer, 2013, 4(2): 102.
[32] Bray F, Ren J S, Masuyer E, Ferlay J. Int. J. Cancer, 2013, 132(5): 1133.
[33] Jemal A, Siegel R, Xu J, Ward E. CA Cancer J. Clin., 2010, 60: 277.
[34] Jemal A, Bray F, Center M M, Ferlay J, Ward E, Forman D. CA Cancer J. Clin., 2011, 61(2): 69.
[35] Broet P, Moreau T. J. Clin. Bioinforma., 2012, 2(14): 2.
[36] Sone S, Takashima S, Li F, Yang Z, Honda T, Maruyama Y, Hasegawa M, Yamanda T, Kubo K, Hanamura K, Asakura K. Lancet, 1998, 351(9111): 1242.
[37] Foy M, Yip R, Chen X, Kimmel M, Gorlova O Y, Henschke C I. Cancer, 2011, 117(12): 2703.
[38] De Ruysscher D, Sharifi H, Defraene G, Kerns S L, Christiaens M, de Ruyck K, Peeters S, Vansteenkiste J, Jeraj R, van Den Heuvel F, van Elmpt W. Acta Oncologica, 2013, 52(7): 1405.
[39] Sanz-Santos J, Andreo F, Sánchez D, Castellá E, Llatjós M, Bechini J, Guasch I, de Castro P L, Roca J, Parra I, Monsó E. Archivos de Bronconeumología, 2010, 46(12): 640.
[40] Lam B, Lam S Y, Wong M P, Ooi C G, Fong D Y, Lam D C, Lai A Y, Tam C M. Pang C B, Ip M S, Lam W K. Lung Cancer, 2009, 64(3): 289.
[41] Sato M, Sakurada A, Sagawa M, Minowa M. Lung Cancer, 2001, 32: 247.
[42] Phillips M, Gleeson K, Hughes J M B, Greenberg J, Cataneo R N, Baker L, McVay W P. Lancet, 1999, 353(9168): 1930.
[43] Song G, Qin T, Liu H, Xu G B, Pan Y Y, Xiong F X, Gu K S, Sun G P, Chen Z D. Lung Cancer, 2010, 67(2): 227.
[44] Phillips M, Byrnes R, Cataneo R N, Chaturvedi A, Kaplan P D, Libardoni M, Mehta V, Mundada M, Patel U, Ramakrishna N, Schiff P B, Zhang X. J. Breath Res., 2013, 7(3): 036002.
[45] Kim K H, Jahan S A, Kabir E. Trends Anal. Chem., 2012, 33: 1.
[46] Chatterjee S, Castro M, Feller J F. J. Phys. Chem. B, 2013, 1(36): 4563.
[47] Hou C J, Lei J C, Huo D Q, Song K, Li J J, Luo X G, Yang M, Fa H B. Anal. Lett., 2013, 46(13): 2048.
[48] Broza Y Y, Kremer R, Tisch U, Gevorkyan A, Shiban A, Best L A, Haick H. Nanomedicine: NBM, 2013, 9(1): 15.
[49] Barash O, Peled N, Tisch U, Bunn P A, Hirsch F R, Haick H. Nanomedicine: NBM, 2012, 8(5): 580.
[50] Zilberman Y, Tisch U, Pisula W, Feng X, Mullen K, Haick H. Langmuir, 2009, 25(9): 5411.
[51] Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G, Roscioni C, Finazzi-Agrò A, D’Amico A. Biosens. Bioelectron., 2003, 18(10): 1209.
[52] D’Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, di Natale C. Lung Cancer, 2010, 68(2): 170.
[53] Bartolazzi A, Santonico M, Pennazza G, Martinelli E, Paolesse R, D’Amico A, di Natale C. Sens. Actuators B: Chem., 2010, 146(2): 483.
[54] Pennazza G, Santonico M, Martinelli E, Paolesse R, Tamburrelli V, Cristina S, D’Amico A, di Natale C, Bartolazzi A. Sens. Actuators B: Chem., 2011, 154(2): 288.
[55] Latif U, Rohrer A, Lieberzeit P A, Dickert F L. Anal. Bioanal. Chem., 2011, 400(8): 2457.
[56] Ndiaye A, Bonnet P, Pauly A, Dubois M, Brunet J, Varenne C, Guerin K, Lauron B. J. Phys. Chem. C, 2013, 117(39): 20217.
[57] Xu X, Cang H, Li, C, Zhao Z K, Li H. Talanta, 2009, 78(3): 711.
[58] Wyszynski B, Kim D, Nakamoto T. Sens. Actuators B: Chem., 2013, 179: 81.
[59] Rehman A, Hamilton A, Chung A, Baker G A, Wang Z, Zeng X. Anal. Chem., 2011, 83(20): 7823.
[60] Bashouti M Y, de la Zerda A S, Geva D, Haick H. J. Phys. Chem. C, 2014, 118(4): 1903.
[61] Han J W, Kim B, Li J, Meyyappan M. J. Phys. Chem. C, 2013, 2012, 116(41): 22094.
[62] Zhu Y, Li H, Xu J, Yuan H, Wang J, Li X. Cryst. Eng. Comm., 2011, 13(2): 402.
[63] Lazarowich R J, Taborek P, Yoo B Y, Myung N V. J. Appl. Phys., 2007, 101(10): 104909.
[64] Zhou X, Zhang J, Jiang T, Wang X, Zhu Z. Sensor Actuat A: Phys., 2007, 135(1): 209.
[65] Erol A, Okur S, Ya D? murcukardešN, Ar?kan M Ç. Sens. Actuators B: Chem., 2011, 152(1): 115.
[66] Yao Y, Chen X, Li X, Chen X, Li N. Sens. Actuators B: Chem., 2014, 191: 779.
[67] Hu J, Zhu F, Zhang J, Gong H. Sens. Actuators B: Chem., 2003, 93(1/3): 175.
[68] Zhang J, Hu J, Zhu Z Q, Gong H, O’Shea S. J. Colloids Surf. A, 2004, 236(1/3): 23.
[69] Matsuguchi M, Kadowaki Y. Sens. Actuators B: Chem., 2008, 130(2): 842.
[70] Matsuguchi M, Harada N, Omori S. Sens. Actuators B: Chem., 2014, 190: 446.
[71] Kosaki Y, Izawa H, Ishihara S, Kawakami K, Sumita M, Tateyama Y, Ji Q, Krishnan V, Hishita S, Yamauchi Y, Hill J P, Vinu A, Shiratori S. Ariga K. ACS Appl. Mater. Interfaces, 2013, 5(8): 2930.
[72] Zhu Y, Li H, Zheng Q, Xu J, Li X. Langmuir, 2012, 28(20): 7843.
[73] Van Quy N, Hung T M, Thong T Q, Tuan L A, Huy T Q, Hoa N D. Current Appl. Phys., 2013, 13(8): 1581.
[74] Yang M, He J, Hu X, Yan C, Cheng Z. Environ. Sci. Technol., 2011, 45(14): 6088.
[75] Yang M, He J, Hu X, Yan C, Cheng Z. Analyst, 2013, 138(6): 1758.
[76] Ji X, Yao W, Peng J, Ren N, Zhou J, Huang Y. Sens. Actuators B: Chem., 2012, 166/167: 50.
[77] Zhao Y, He J, Yang M, Gao S, Zuo G, Yan C, Cheng Z. Anal. Chim. Acta, 2009, 654(2): 120.
[78] Zhao Y, Chen H, Wang X, He J, Yu Y, He H. Anal. Chim. Acta, 2010, 675(1): 36.
[79] Zhao Y, Du X, Wang X, He J, Yu Y, He H. Sens. Actuators B: Chem., 2010, 151(1): 205.

[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[4] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[5] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[6] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[7] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[8] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[9] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[10] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[11] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[12] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[13] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[14] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[15] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.