中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120758 Previous Articles   Next Articles

• Special issues •

Structure Controlled Growth of Single-Walled Carbon Nanotubes

Li Pan, Zhang Jin*   

  1. Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
PDF ( 1701 ) Cited
Export

EndNote

Ris

BibTeX

Single-walled carbon nanotubes (SWNTs) have been regarded as one of the promising candidates for further applications in nanoelectronic devices,including field-effect transistor, transparent film and chemical sensor. However, as device performance urges many challenging requirements on the material synthesis, researchers have been aggressively seeking the potential strategies for preparing samples of SWNTs with well-defined structures (geometry, location, diameter, length, wall number, metallic/semiconducting and chirality) on surfaces. Herein, this review highlights in situ approaches towards selective growth of mono-disperse SWNT samples——including temperature mediated method, catalyst structure engineering, gas ambient tuning, external field assisted chemical vapor deposition (CVD) method, surface atomic arrangement induction method, nonmetal catalyzing and sp2 carbon nano-structure templated growth to get SWNTs samples with controlled diameters, chiralities and electronic properties (metallic or semiconducting) and special morphology. The majority of the growth methods covered here are CVD growth carried on the substrates, for its capacity of growing high-purity,well arranged and aligned samples. Based on the understanding of the growth mechanism of those strategies, we try to propose the general guideline on that how can we develop the optimal solution for controlled growth of SWNTs. It is expected that SWNTs samples with controlled structures will see ubiquitous applications in future nano-electronic devices.   Contents
1 Introduction
2 Temperature-mediated growth of carbon nanotubes
3 Metal catalyst structure engineering method
4 Gas ambient tuning method
5 External field assisted CVD method
5.1 Plasmon enhanced CVD method
5.2 Electric field-assisted CVD method
5.3 UV-assisted CVD method
6 Substrate induction method
7 Nonmetal catalyzing method
8 sp2 carbon nano-structure templated growth method
9 Conclusions and outlook

CLC Number: 

[1] Iijima S, Ichihashi T. Nature, 1993, 363: 603-605
[2] Iijima S. Nature, 1991, 354: 56-58
[3] Jones D E H. Nature, 1996, 381: 384-384
[4] Dresselhaus M S, Dresselhaus G, Saito R, Jorio A. Phys. Rep., 2005, 409: 47-99
[5] Saito R, Fujita M, Dresselhaus G, Dresselhaus M S. Appl. Phys. Lett., 1992, 60: 2204-2206
[6] Ding L, Zhang Z, Liang S, Pei T, Wang S, Li Y, Zhou W, Liu J, Peng L M. Nat. Commun., 2012, 3: 677-683
[7] Wu Z, Chen Z, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F. Science, 2004, 305: 1273-1276
[8] Service R F. Science, 1995, 270: 1119-1119
[9] Avouris P, Freitag M, Perebeinos V. Nat. Photonics, 2008, 2: 341-350
[10] Wong H S P, Akinwande D. Carbon Nanotube and Graphene Device Physics. New York: Cambridge Univ. Pr., 2010
[11] Ajayan P M, Tour J M. Nature, 2007, 447: 1066-1068
[12] Yang L, Wang S, Zeng Q, Zhang Z, Pei T, Li Y, Peng L M. Nat. Photonics, 2011, 5: 672-676
[13] Harris P J F. Carbon Nanotube Science: Synthesis, Properties and Applications. Cambridge: Cambridge University Press & Science Press, 2009
[14] Odom T W, Huang J L, Kim P, Lieber C M. Nature, 1998, 391: 62-64
[15] Chen Z, Appenzeller J, Knoch J, Lin Y, Avouris P. Nano Lett., 2005, 5: 1497-1502
[16] Kim W, Javey A, Tu R, Cao J, Wang Q, Dai H J. Appl. Phys. Lett., 2005, 87: art. no. 173101
[17] Wagner R S, Ellis W C. Appl. Phys. Lett., 1964, 4: 89-90
[18] Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J C. Phys. Rev. Lett., 2001, 87: art. no. 275504
[19] Yuan D, Ding L, Chu H, Feng Y, McNicholas T P, Liu J. Nano Lett., 2008, 8: 2576-2579
[20] Homma Y, Liu H P, Takagi D, Kobayashi Y. Nano Res., 2009, 2: 793-799
[21] Takagi D, Homma Y, Hibino H, Suzuki S, Kobayashi Y. Nano Lett., 2006, 6: 2642-2645
[22] Liu H, Takagi D, Chiashi S, Chokan T, Homma Y. J. Nanosci. Nanotechnol., 2010, 10: 4068-4073
[23] Liu B L, Ren W C, Gao L, Li S, Pei S, Liu C, Jiang C, Cheng H M. J. Am. Chem. Soc., 2009, 131: 2082-2083
[24] Huang S, Cai Q, Chen J, Qian Y, Zhang L. J. Am. Chem. Soc., 2009, 131: 2094-2095
[25] Liu B L, Ren W C, Liu C, Sun C H, Gao L B, Li S S, Jiang C B, Cheng H M. ACS Nano, 2009, 3: 3421-3430
[26] Takagi D, Kobayashi Y, Hommam Y. J. Am. Chem. Soc., 2009, 131: 6922-6923
[27] Okamoto H, Massalski T. J. Phase Equilib., 1984, 5: 378-379
[28] Page A J, Ohta Y, Irle S, Morokuma K. Accounts Chem. Res., 2010, 43: 1375-1385
[29] Bandow S, Asaka S, Saito Y, Rao A M, Grigorian L, Richter E, Eklund P C. Phys. Rev. Lett., 1998, 80: 3799-3782
[30] Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu Y T, Liu Z. Nat. Mater., 2007, 6: 283-286
[31] Kanzow H, Ding A. Phys. Rev. B, 1999, 60: 11180-11186
[32] Rao R, Liptak D, Cherukuri T, Yakobson B I, Maruyama B. Nat. Mater., 2012, 11: 213-216
[33] Hamblin S E, Finch C K, Hurdle A C, Broyles J E, Deaton P R, Boswell R, Nuckolls J, Wan J Y. Crit. Care Med., 2008, 36: A108-A108
[34] Yazyev O V, Pasquarello A. Phys. Rev. Lett., 2008, 100: art. no. 156102
[35] Ding F, Larsson P, Larsson J A, Ahuja R, Duan H M, Rosen A, Bolton K. Nano Lett., 2008, 8: 463-468
[36] Li Y M, Kim W, Zhang Y G, Rolandi M, Wang D W, Dai H J. J. Phys. Chem. B, 2001, 105: 11424-11431
[37] Durrer L, Greenwald J, Helbling T, Muoth M, Riek R, Hierold C. Nanotechnology, 2009, 20: art. no. 355601
[38] Jeong G H, Yamazaki A, Suzuki S, Yoshimura H, Kobayashi Y, HommaY. Carbon, 2007, 45: 978-983
[39] Jennifer Q, Lu D A R, Emanuel O, Wang H, Mitchell A W, Manners I, Cheng Q, Fu Q, Liu J. Langmuir, 2006, 22: 5174-5179
[40] Li X L, Tu X M, Zaric S, Welsher K, Seo W S, Zhao W, Dai H J. J. Am. Chem. Soc., 2007, 129: 15770-15771
[41] He M, Chernov A I, Fedotov P V, Obraztsova E D, Sainio J, Rikkinen E, Jiang H, Zhu Z, Tian Y, Kauppinen E I, Niemela M, Krauset A O I. J. Am. Chem. Soc., 2010, 132: 13994-13996
[42] Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P D, Somorjai G A. Nat. Mater., 2009, 8: 126-131
[43] Bachilo S M, Balzano L, Herrera J E, Pompeo F, Resasco D E, Weisman R B. J. Am. Chem. Soc., 2003, 125: 11186-11187
[44] Cao A, Veser G. Nat. Mater., 2010, 9: 75-81
[45] Kanzow H, Lenski C, Ding A. Phys. Rev. B, 2001, 63: art. no. 125402
[46] Gomez-Gualdron D A, Balbuena P B. J. Phys. Chem. C, 2009, 113: 698-709
[47] Reich S, Li L, Robertson J. Chem. Phys. Lett., 2006, 421: 469-472
[48] Chiang W H, Sankaran R M. Nat. Mater., 2009, 8: 882-886
[49] Harutyunyan A R, Chen G G, Paronyan T M, Pigos E M, Kuznetsov O A, Hewaparakrama K, Kim S M, Zakharov D, Stach E A, Sumanasekera G U. Science, 2009, 326: 116-120
[50] Yamada T, Maigne A, Yudasaka M, Mizuno K, Futaba D N, Yumura M, Iijima S, Hata K. Nano Lett., 2008, 8: 4288-4292
[51] Wen Q, Zhang R F, Qian W Z, Wang Y R, Tan P H, Nie J Q, Wei F. Chem. Mater., 2010, 22: 1294-1296
[52] Zheng L X, Connell M J, Doorn S K, Liao X Z, Zhao Y H, Akhadov E A, Hoffbauer M A, Roop B J, Jia Q X, Dye R C, Peterson D E, Huang S M, Liu J, Zhu Y T. Nat. Mater., 2004, 3: 673-676
[53] Lu C G, Liu J. J. Phys. Chem., 2006, 110: art. no. 20254
[54] Wang B, Poa C H P, Wei L, Li L J, Yang Y, Chen Y. J. Am. Chem. Soc., 2007, 129: 9014-9019
[55] Strano M S, Dyke C A, Usrey M L, Barone P W, Allen M J, Shan H W, Kittrell C, Hauge R H, Tour J M, Smalley R E. Science, 2003, 301: 1519-1522
[56] Ding L, Tselev A, Wang J Y, Yuan D N, Chu H B, McNicholas T P, Li Y, Liu J. Nano Lett., 2009, 9: 800-805
[57] Wang Y, Liu Y Q, Li X L, Cao L C, Wei D C, Zhang H L, Shi D C, Yu G, Kajiura H, Li Y M. Small, 2007, 3: 1486-1490
[58] Yu B, Liu C, Hou P X, Tian Y, Li S S, Liu B L, Li F, Kauppinen E I, Cheng H M. J. Am. Chem. Soc., 2011, 133: 5232-5235
[59] Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S. Science, 2004, 306: 1362-1364
[60] Li P, Zhang J. J. Mater. Chem., 2011, 21: 11815-11821
[61] Zhu Z, Jiang H, Susi T, Nasibulin A G, Kauppinen E I. J. Am. Chem. Soc., 2011, 133: 1224-1227
[62] Li Y M, Mann D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D W, Yenilmez E, Wang Q, Gibbons J F, Nishi Y, Dai H J. Nano Lett., 2004, 4: 317-321
[63] Li Y M, Peng S, Mann D, Cao J, Tu R, Cho K J, Dai H J. J. Phys. Chem. B, 2005, 109: 6968-6971
[64] Ghorannevis Z, Kato T, Kaneko T, Hatakeyama R. J. Am. Chem. Soc., 2010, 132: 9570-9572
[65] Benedict L X, Louie S G, Cohen M L. Phys. Rev. B, 1995, 52: 8541-8549
[66] Krupke R, Hennrich F, Lohneysen H, Kappes M M. Science, 2003, 301: 344-347
[67] Peng B, Jiang S, Zhang Y, Zhang J. Carbon, 2011, 49: 2555-2560
[68] Hong G, Zhang B, Peng B H, Zhang J, Choi W M, Choi J Y, Kim J M, Liu Z F. J. Am. Chem. Soc., 2009, 131: 14642-14643
[69] Zhang Y Y, Zhang Y, Xian X J, Zhang J, Liu Z F. J. Phys. Chem. C, 2008, 112: 3849-3856
[70] Alvarez N T, Kittrell C, Schmidt H K, Hauge R H, Engel P S, Tour J M. J. Am. Chem. Soc., 2008, 130: 14227-14233
[71] Su M, Li Y, Maynor B, Buldum A, Lu J P, Liu J. J. Phys. Chem., 2000, 104: 6505-6508
[72] Ismach A, Segev L, Wachtel E, Joselevich E. Angew. Chem. Int. Ed., 2004, 116: 6266-6269
[73] Han S, Liu X L, Zhou C W. J. Am. Chem. Soc., 2005, 127: 5294-5295
[74] Feng C Q, Yao Y G, Zhang J, Liu Z F. Nano Res., 2009, 2: 768-773.
[75] Hunley D P, Johnson S L, Stieha J K, Sundararajan A, Meacham A T, Ivanov I N, Strachan D R. ACS Nano, 2011, 5: 6403-6409
[76] Chen Y B, Hu Y, Guo X L, Xu Z W, Xu W G, Li P, Shen Z Y, Ding F, Zhang Y F, Zhang J. submitted.
[77] Ishigami N, Ago H, Imamoto K, Tsuji M, Iakoubovskii K, Minami N. J. Am. Chem. Soc., 2008, 130: 9918-9924
[78] Chen Y, Hu Y, Fang, Y, Li P, Feng C, Zhang J. Carbon, 2011, 50: 3295-3297
[79] Han S, Liu X, Zhou C. J. Am. Chem. Soc., 2005, 127: 5294-5295
[80] Liu X, Ryu K, Badmaev A, Han S, Zhou C. J. Phys. Chem. C, 2008, 112: 15929-15933
[81] Zhang B, Hong G, Peng B H, Zhang J, Choi W, Kim J M, Choi J Y, Liu Z F. J. Phys. Chem. C, 2009, 113: 5341-5344
[82] Geblinger N, Ismach A, Joselevich E. Nat. Nanotechnol., 2008, 3: 195-200
[83] Yao Y, Dai X, Feng C, Zhang J, Liang X, Ding L, Choi W, Choi J Y, Kim J M, Liu Z. Adv. Mater., 2009, 21: 4158-4162
[84] Jeong G H, Yamazaki A, Suzuki S, Yoshimura H, Kobayashi Y, Homma Y. Carbon, 2007, 45: 978-983
[85] Lu J, Yi S S, Kopley T, Qian C, Liu J, Gulari E. J. Phys. Chem., 2006, 110: 6655-6660
[86] Kobayashi K, Kitaura R, Kumai Y, Goto Y, Inagaki S, Shinohara H. Chem. Phys. Lett., 2008, 458: 346-350
[87] Persson A I, Larsson M W, Stenstrm S, Ohlsson B J, Samuelson L, Wallenberg L R. Nat. Mater., 2004, 3: 677-681
[88] Takagi D, Hibino H, Suzuki S, Kobayashi Y, Homma Y. Nano Lett., 2007, 7: 2272-2275
[89] Derycke V, Martel R, Radosavljevic M, Ross F M, Avouris P. Nano Lett., 2002, 2: 1043-1046
[90] Liu B L, Tang D M, Sun C H, Liu C, Ren W C, Li F, Yu W J, Yin L C, Zhang L L, Jiang C B. J. Am. Chem. Soc., 2011, 133: 197-199
[91] Chen Y B, Zhang J. Carbon, 2011, 49: 3316-3324
[92] Liu B L, Ren W C, Liu C, Sun C H, Gao L B, Li S S, Jiang C B, Cheng H M. ACS Nano, 2009, 3: 3421-3430
[93] Reich S, Li L, Robertson J. Phys. Rev. B, 2005, 72: art. no. 165423
[94] Wang Y H, Kim M J, Shan H W, Kittrell C, Fan H, Ericson L M, Hwang W F, Arepalli S, Hauge R H, Smalley R E. Nano Lett., 2005, 5: 997-1002
[95] Yao Y, Feng C, Zhang J, Liu Z. Nano Lett., 2009, 9: 1673-1677
[96] Liu J, Wang C, Tu X, Liu B, Chen L, Zheng M, Zhou C. Nat. Commun. , 2012, 3: art. no. 1199
[97] Yu X, Zhang J, Choi W M, Choi J Y, Kim J M, Gan L, Liu Z. Nano Lett., 2010, 10: 3343-3349
[98] Dahl J, Liu S, Carlson R. Science, 2003, 299: 96-99

[1] Li Yuda, Wang Xunchang, Lv Renliang, Wang Feng. Non-Covalent Separation of Optically Active Single-Walled Carbon Nanotubes [J]. Progress in Chemistry, 2014, 26(08): 1361-1368.
[2] Lin Gaofeng Meng Lingjie Zhang Xiaoke Lu Qinghua. Non-Covalent Separation of Metallic and Semiconducting Single-Walled Carbon Nanotubes [J]. Progress in Chemistry, 2010, 22(0203): 331-337.