English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 947-957 DOI: 10.7536/PC171103 前一篇   后一篇

• 综述 •

自支撑型过渡金属磷化物电催化析氢反应研究

吕宪伟1,2, 胡忠攀2, 赵挥2, 刘玉萍1*, 袁忠勇1,2*   

  1. 1. 南开大学化学学院 先进能源材料化学教育部重点实验室 天津 300071;
    2. 南开大学材料科学与工程学院 国家新材料研究院 天津 300350
  • 收稿日期:2017-11-03 修回日期:2018-03-10 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 刘玉萍, 袁忠勇 E-mail:liuypnk@nankai.edu.cn;zyyuan@nankai.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21421001,21573115)和天津市自然科学基金项目(No.17JCYBJC17100)资助

Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction

Xianwei Lv1,2, Zhongpan Hu2, Hui Zhao2, Yuping Liu1*, Zhongyong Yuan1,2*   

  1. 1. Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China;
    2. National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
  • Received:2017-11-03 Revised:2018-03-10 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21421001, 21573115) and the Natural Science Foundation of Tianjin(No. 17JCYBJC17100).
氢能作为一种零碳排放的清洁能源,主要通过电解水的途径获得。电解水析氢过程所使用的贵金属Pt基催化剂非常稀缺和昂贵,因此开发具有高活性和稳定性的非贵金属催化剂仍然是一个巨大的挑战。自支撑型过渡金属磷化物析氢性能优异,加之有效结合了自支撑基底的诸多优势,有望成为可替代贵金属Pt基催化剂的优良析氢材料。本文详细介绍了自支撑型过渡金属磷化物的研究进展,着重论述了此类型电催化剂的析氢优势及作用机理:(1)自支撑基底3D集成框架导电性较强,可提供大量的电子转移通道,从而加速催化反应进程;(2)自支撑型过渡金属磷化物较大的比表面积将会暴露出更多的活性位点,进而促进催化反应的发生;(3)自支撑型过渡金属磷化物可以直接作为阴极进行析氢反应,避免传统涂覆法中催化剂容易从玻碳电极脱落的弊端。最后,总结了此类型电催化剂用于电解水反应所面临的问题和挑战,并进行了合理的展望。
Hydrogen energy, a zero-carbon emission energy, is mainly produced by water electrolysis. Currently, precious metal Pt is the state-of-the-art electrocatalyst for hydrogen evolution reaction(HER). However, the high cost and scarcity of Pt limit its wide application. Thus developing non-noble-metal electrocatalysts with high activity and excellent durability in hydrogen evolution reaction is still a great challenge. Self-supporting transition metal phosphides have excellent catalytic activity and stability, which are expected to be an alternative to precious metal Pt-based catalyst for HER. In this paper, the research progress of self-supporting transition metal phosphides is presented in detail. The advantages and mechanism of these electrocatalysts are discussed emphatically:(1) The self-supporting substrate's 3D integrated frame with strong conductivity provides lots of channels for transferring electron, thereby accelerating the catalytic reaction process.(2) Comparing self-supporting catalysts with others, its greater specific surface and more active sites are critical for catalytic reaction.(3) Self-supporting transition metal phosphides can be directly used as cathode for HER, and avoid the trouble that catalysts easily fall off from the glass carbon electrode in traditional coating method. Finally, the prospective and challenges for future development of self-supporting transition metal phosphides for water electrolysis are summarized.
Contents
1 Introduction
2 Self-supporting transition metal phosphide electrocatalysts
2.1 Self-supporting cobalt phosphide catalysts
2.2 Self-supporting nickel phosphide catalysts
2.3 Self-supporting molybdenum phosphide catalysts
2.4 Self-supporting copper phosphide and iron phosphide catalysts
2.5 Self-supporting tungsten phosphide catalysts
2.6 Self-supporting bimetallic phosphide catalysts
3 Conclusion and outlook

中图分类号: 

()
[1] Turner J A. Science, 2004, 305:972.
[2] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Chem. Rev., 2010, 110:6446.
[3] Shi H, Liang H, Ming F, Wang Z. Angew. Chem. Int. Ed., 2016, 129:588.
[4] Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2015, 54:4646.
[5] Zou X X, Zhang Y. Chem. Soc. Rev., 2015, 44:5148.
[6] Trasatti. Encyclopedia of Electrochemical Power Sources. Amsterdam:Elsevier, 2009. 41.
[7] Merki D, Hu X. EnergyEnviron. Sci., 2011, 4:3878.
[8] Chen M, Qi J, Zhang W, Cao R. Chem. Commun., 2017, 53:5507.
[9] Wang S, Zhang L, Li X, Li C, Zhang R, Zhang Y, Zhu H. Nano Res., 2017, 10:415.
[10] Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z. Adv. Funct. Mater., 2016, 26:3314.
[11] Liu T, Yan X, Xi P, Chen J, Qin D, Shan, D, Lu X. INT. J. Hydrogen Energy, 2017, 42:14124.
[12] Ledendecker M, Krick Calderón S, Papp C, Steinrück H P, Antonietti M, Shalom M. Angew. Chem. Int. Ed., 2015, 127:12538.
[13] Du H, Liu Q, Cheng N, Asiri A M, Sun X, Li C M. J. Mater. Chem. A, 2014, 2:14812.
[14] Jin Z, Li P, Xiao D. Green Chem., 2016, 18:1459.
[15] Wang J, Yang W, Liu J. J. Mater. Chem. A, 2016, 4:4686.
[16] Li Q, Xing Z, Asiri A M, Jiang P, Sun X. Int. J. Hydrogen Energy, 2014,39:16806.
[17] Yu X, Zhang S, Li C, Zhu C, Chen Y, Gao P, Zhang X. Nanoscale, 2016, 8:10902.
[18] Wu Z, Wang J, Zhu J, Guo J, Xiao W, Xuan C, Wang D. Electrochimica Acta, 2017, 232:254.
[19] Wang D, Shen Y, Zhang X, Wu Z. J. Mater. Sci., 2017, 52:3337.
[20] Ojha K, Sharma M, Kolev H, Ganguli A K. Catal. Sci. Technol., 2017, 7:668.
[21] Zhu W, Tang C, Liu D, Wang J, Asiri A M, Sun X. J. Mater. Chem. A, 2016, 4:7169.
[22] Han A, Zhang H, Yuan R, Ji H, Du P. ACS Appl. Mater. Interfaces, 2017, 9:2240.
[23] Liu R, Gu S, Du H, Li C M. J. Mater. Chem. A, 2014, 2:17263.
[24] Yang X, Lu A Y, Zhu Y, Min S, Hedhili M N, Han Y, Li L J. Nanoscale, 2015, 7:10974.
[25] McEnaney J M, Crompton J C, Callejas J F, Popczun E J, Read C G, Lewis N S, Schaak R E. Chem. Commun., 2014, 50:11026.
[26] Björketun M E, Bondarenko A S, Abrams B L, Chorkendorff I, Rossmeisl J. Phys. Chem. Chem. Phys., 2010, 12:10536.
[27] Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U. J. Electrochem. Soc., 2005, 152:J23.
[28] Greeley J, Nørskov J K, Kibler L A, El-Aziz A M, Kolb D M. ChemPhysChem, 2006, 7:1032.
[29] Kang D, Kim T W, Kubota S R, Cardiel A C, Cha H G, Choi K S. Chem. Rev., 2015, 115:12839.
[30] Parsons R. Trans. Faraday Soc., 1958, 54:1053.
[31] Zhao H, Yuan Z Y. Catal. Sci. Technol., 2017, 7:330.
[32] Liu Q, Asiri A M, Sun X. Electrochem. Commun., 2014, 49:21.
[33] Liu Y, Ren L, Zhang Z, Qi X, Li H, Zhong J. Sci. Rep., 2016, 6:22516.
[34] Luo Q, Peng M, Sun X, Asiri A M. Catal. Sci. Technol., 2016, 6:1157.
[35] Popczun E J, Read C G, Roske C W, Lewis N S, Schaak R E. Angew. Chem. Int. Ed., 2014, 126:5531.
[36] Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Adv. Funct. Mater., 2015, 25:7337.
[37] Ren J T, Yuan G G, Weng C C, Yuan Z Y. Electrochim. Acta, 2018, 261:454.
[38] Jiang N, You B, Sheng M, Sun Y. Angew. Chem. Int. Ed., 2015, 127:6349.
[39] Yan X Y, Devaramani S, Chen J, Shan D L, Qin D D, Ma Q, Lu X Q. New J. Chem., 2017, 41:2436.
[40] Li W, Gao X, Wang X, Xiong D, Huang P P, Song W G, Liu L. J. Power Sources, 2016, 330:156.
[41] Bai N, Li Q, Mao D, Li D, Dong H. ACS Appl. Mater. Interfaces, 2016, 8:29400.
[42] Guo P, Wu Y X, Lau W M, Liu H, Liu L M. Int. J. Hydrogen Energy, 2017, 42:26995.
[43] Yuan C Z, Zhong S L, Jiang Y F, Yang Z K, Zhao Z W, Zhao S J, Xu A W. J. Mater. Chem. A, 2017, 5:10561.
[44] Yang L, Qi H, Zhang C, Sun X. Nanotechnology, 2016, 27:23LT01.
[45] Huang J, Li Y, Xia Y, Zhu J, Yi Q, Wang H, Zou G. Nano Res., 2017, 10:1010.
[46] Gu S, Du H, Asiri A M, Sun X, Li C M. Phys. Chem. Chem. Phys., 2014, 16:16909.
[47] Niu Z, Jiang J, Ai L. Electrochem. Commun., 2015, 56:56.
[48] Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri A M, Sun X. Angew. Chem. Int. Ed., 2014, 126:6828.
[49] Liu P, Rodriguez J A, Asakura T, Gomes J, Nakamura K. J. Phys. Chem. B, 2005, 109:4575.
[50] Wang X, Li W, Xiong D, Petrovykh D Y, Liu L. Adv. Funct. Mater., 2016, 26:4067.
[51] Ren J, Hu Z, Chen C, Liu Y, Yuan Z. J. Energy Chem., 2017, 26:1196.
[52] Wang X, Kolen'ko Y V, Bao X Q, Kovnir K, Liu L. Angew. Chem. Int. Ed., 2015, 54:8188.
[53] Cai Z X, Song X H, Wang Y R,Chen X. ChemElectroChem, 2015, 2:1665.
[54] Wu R, Dong Y, Jiang P, Wang G, Chen Y,Wu X. Prog. Nat. Sci., 2016, 26:303.
[55] Jiang P, Liu Q, Sun X. Nanoscale, 2014, 6:13440.
[56] Liu Q, Gu S, Li C M. J. Power Sources, 2015, 299:342.
[57] Xiao J, Lv Q, Zhang Y, Zhang Z, Wang S. RSC Adv., 2016, 6:107859.
[58] Lin S H, Kuo J L. Phys. Chem. Chem. Phys., 2015, 17:29305.
[59] Pu Z, Wang M, Kou Z, Amiinu I S, Mu S. Chem. Commun., 2016, 52:12753.
[60] Lin H, Shi Z, He S, Yu X, Wang S, Gao Q, Tang Y. Chem. Sci., 2016, 7:3399.
[61] Lu C, Tranca D, Zhang J, Rodr Díguez-Hernández F, Su Y, Zhuang X, Feng X. ACS Nano, 2017, 11:3933.
[62] Zou L, Qiao Y, Gu S, Huang Y, Zhong C, Long Z E. J. Alloy Compd., 2017, 712:103.
[63] Kokko M, Bayerköhler F, Erben J, Zengerle R, Kurz P, Kerzenmacher S. Appl. Energy, 2017, 190:1221.
[64] Zhang L F, Ou G, Gu L, Peng Z J, Wang L N, Wu H. RSC Adv., 2016, 6:107158.
[65] Huang Z, Luo W, Ma L, Yu M, Ren X, He M, Amine K. Angew. Chem. Int. Ed., 2015, 127:15396.
[66] Liu N, Yang L, Wang S, Zhong Z, He S, Yang X, Tang Y. J. Power Sources, 2015, 275:588.
[67] Deng S, Zhong Y, Zeng Y, Wang Y, YaoZ, Yang F, Tu J. Adv. Mater., 2017, 29:1700748.
[68] Lai F, Yong D, Ning X, Pan B, Miao Y E, Liu T. Small, 2017, 13:1602866.
[69] Zhuang M, Ding Y, Ou X,Luo Z.Nanoscale, 2017, 9:4652.
[70] Dai C, Zhou Z, Tian C, Li Y, Yang C, Gao X, Tian X. J.Phys. Chem. C, 2017, 121:1974.
[71] Vrubel H, Hu X.Angew. Chem. Int. Ed., 2012, 124:12875.
[72] Song Y J, Yuan Z Y. Electrochim.Acta, 2017, 246:536.
[73] Deng C, Xie J, Xue Y, He M, Wei X, Yan Y M. RSC Adv., 2016, 6:68568.
[74] Deng C, Ding F, Li X, Guo Y, Ni W, Yan H, Yan Y M. J. Mater. Chem. A, 2016, 4:59.
[75] Pu Z, Wei S, Chen Z, Mu S. Appl. Catal. B, 2016, 196:193.
[76] Tian J, Liu Q, Cheng N, Asiri A M, Sun X. Angew. Chem. Int. Ed., 2014, 53:9577.
[77] Shi Y, Zhang B. Chem. Soc. Rev., 2016, 45:1529.
[78] Safizadeh F, Ghali E, Houlachi G. Int. J. Hydrogen Energy, 2015, 40:256.
[79] Read C G, Callejas J F, Holder C F,Schaak R E. ACS Appl. Mater. Interfaces, 2016, 8:12798.
[80] Hou C C, Chen Q Q, Wang C J, Liang F, Lin Z, Fu W F, Chen Y. ACS Appl. Mater. Interfaces, 2016, 8:23037.
[81] Liang Y, Liu Q, Asiri A M, Sun X, Luo Y. ACS Catal., 2014, 4:4065.
[82] Pu Z, Amiinu I S, Mu S. Energy Technol., 2016, 4:1030.
[83] Pi M, Wu T, Zhang D, Chen S, Wang S. Nanoscale, 2016, 8:19779.
[84] Jiang P, Liu Q, Liang Y, Tian J, Asiri A M, Sun X. Angew. Chem. Int. Ed., 2014, 53:12855.
[85] Zhang R, Tang C, Kong R, Du G, Asiri A M, Chen L, Sun X. Nanoscale, 2017, 9:4793.
[86] Lado J L, Wang X, Paz E, Carbó-Argibay E, Guldris N, Rodríguez-Abreu C, Kolen'ko Y V. ACS Catal., 2015, 5:6503.
[87] Ma Z, Li R, Wang M, Meng H, Zhang F, Bao X Q, Wang X. Electrochim. Acta, 2016, 219:194.
[88] Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschlögl U, Alshareef H N. Nano Lett., 2016, 16:7718.
[89] Tang C, Zhang R, Lu W, He L, Jiang X, Asiri A M, Sun X. Adv. Mater., 2017, 29:1602441.
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[3] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[4] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[5] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[6] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[7] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[8] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[9] 姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展, 2019, 31(4): 516-535.
[10] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[11] 杨晓玲, 白赢*, 厉嘉云, 代自男, 彭家建*. 钛、镍、铁配合物在硅氢加成反应中的应用[J]. 化学进展, 2018, 30(12): 2012-2024.
[12] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[13] 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭. 催化氧化技术在可挥发性有机物处理的研究[J]. 化学进展, 2016, 28(12): 1847-1859.
[14] 刘理华 李广慈 刘迪 柳云骐 刘晨光. 过渡金属磷化物的制备和催化性能研究*[J]. 化学进展, 2010, 22(09): 1701-1708.
[15] 陈卉,马会茹,官建国. 水溶性导电聚苯胺的制备*[J]. 化学进展, 2007, 19(11): 1770-1775.