English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 2012-2024 DOI: 10.7536/PC180446 前一篇   

• 综述 •

钛、镍、铁配合物在硅氢加成反应中的应用

杨晓玲, 白赢*, 厉嘉云, 代自男, 彭家建*   

  1. 杭州师范大学有机硅化学及材料技术教育部重点实验室 杭州 311121
  • 收稿日期:2018-04-28 修回日期:2018-08-21 出版日期:2018-12-15 发布日期:2018-11-21
  • 通讯作者: 白赢, 彭家建 E-mail:baiying0912@163.com;jjpeng@hznu.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(No.LY18B020012)和浙江省公益项目(No.2017C31105)资助

Application of the Tianium, Nickel and Iron Complexes in the Hydrosilylation

Xiaoling Yang, Ying Bai*, Jiayun Li, Zinan Dai, Jiajian Peng*   

  1. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
  • Received:2018-04-28 Revised:2018-08-21 Online:2018-12-15 Published:2018-11-21
  • Supported by:
    The work was supported by the Natural Science Foundation of Zhejiang Province(No.LY18B020012) and the Zhejiang Provincial Technologies R&D Program of China(No.2017C31105).
Ti、Ni、Fe配合物作为催化剂广泛应用于有机催化反应中,表现出良好的催化性能,是有机金属催化化学的研究热点之一。本文介绍了近年来非贵金属钛、镍、铁配合物作为催化剂在烯炔烃、含羰基化合物及其他不饱和双键、三键化合物硅氢加成反应中的应用研究成果和进展,分析了这三类催化剂在使用过程中存在的不足,并对其作为催化剂的应用前景进行了展望。
Tianium, nickel and iron complexes as catalysts have been widely applied in numerous catalytic organic reactions, in which these complexes show excellent catalytic performance and have been recognized as very important research field. We summarize the recent progress in the synthesis of titanium, nickel and iron complexes and their application in the catalytic hydrosilylation of alkenes, alkynes, carbonyl compounds and other unsaturated double bond, triple bond compounds. Furthermore, the deficiencies of the catalysts have been discussed. At last, the future development and prospects of these complexes as catalysts are also proposed.
Contents
1 Introduction
2 Application of the tianium complexes in the hydrosilylation
3 Application of the nickel complexes in the hydrosilylation
4 Application of the iron complexes in the hydrosilylation
5 Conclusion

中图分类号: 

()
[1] Tondreau A M, Atienza C C H, Weller K J, Nye S A, Lewis K M, Delis J G P, Chirik P J. Science, 2012, 335(6068):567.
[2] Daisuke N, Atsushi T, Yusuke S, Hideo N. J. Am. Chem. Soc., 2016, 138(8):2480.
[3] Du X, Huang Z. ACS Catal., 2017, 7(2):1227.
[4] Zhang M, Zhang A. Appl. Organometal. Chem., 2010, 24(11):751.
[5] Nakajima Y, Shimada S. RSC Adv., 2015, 5:20603.
[6] Pop R, Cui J L, Adriaenssens L, Comte V, Gendre P L. Synlett, 2011, (5):679.
[7] Garcia J, Meyer D J M, Guillaneux D, Moreau J J E, Man M W C. J. Organomet. Chem., 2009, 694(15):2427.
[8] Eguchi K, Aoyagi K, Nakajima Y, Ando W, Sato K, Shimada S. Chem. Lett., 2017, 46(8):1262.
[9] Gruber-Woelfler H, Lichtenegger G J, Neubauer C, Polo E, Khinast J G. Dalton Trans., 2012, 41(41):12711.
[10] Henriques D S G, Zimmer K, Klare S, Meyer A, Rojo-Wiechel E, Bauer M, Sure R, Grimme S, Schiemann O, Flowers R A, Gansäuer A. Angew. Chem. Int. Ed., 2016, 55(27):7671.
[11] Petit C, Reguillon A F, Albela B, Bonneviot L, Mignani G, Lemaire M. Organometallics, 2009, 28(22):6379.
[12] Laval S, Dayoub W, Reguillon A F, Demonchaux P, Mignani G, Lemaire M. Tetrahedron Letters, 2010, 51(16):2092.
[13] Takuya K. Bull. Chem. Soc. Jpn., 2014, 87(10):1058.
[14] Nakajima Y, Sato K, Shimada S. Chem. Rec., 2016, 16(8):2379.
[15] Buslov I, Becouse J, Mazz, S, Montandon-Clerc M, Hu X. Angew. Chem. Int. Ed., 2015, 54(48):14523.
[16] Buslov I, Keller S C, Hu X. Org. Lett., 2016, 18(8):1928.
[17] Buslov I, Song F, Hu X. Angew. Chem. Int. Ed., 2016, 55(40):12295.
[18] Pappas I, Treacy S, Chirik P J. ACS Catal., 2016, 6:4105.
[19] Porter T M, Hall G B, Groy T L, Trovitch R J. Dalton Trans., 2013, 42(48):14689.
[20] Srinivas V, Nakajima Y, Ando W, Sato K, Shimada S. Catal. Sci. Technol., 2015, 5(4):2081.
[21] Srinivas V, Nakajima Y, Ando W, Sato K, Shimada S. J. Organomet. Chem., 2016, 809(1):57.
[22] Mathew J, Nakajima Y, Choe Y K, Urabe Y, Ando W, Sato K, Shimada S. Chem. Commun., 2016, 52(40):6723.
[23] Takachi M, Chatani N. Org. Lett., 2010, 12(22):5132.
[24] Rock C L, Groy T L, Trovitch R J. Dalton Trans., 2018, 47(26):8807.
[25] Junquera L B, Puerta M C, Valerga P. Organometallics, 2012, 31(6):2175.
[26] Miller Z D, Li W, Belderrain T R, Montgomery J. J. Am. Chem. Soc., 2013, 135(41):15282.
[27] Iglesias M J, Blandez J F, Fructos M R, Prieto A, Alvarez E, Belderrain T R, Nicasio M C. Organometallics, 2012, 31(17):6312.
[28] Miller Z D, Dorel R, Montgomery J. Angew. Chem. Int. Ed., 2015, 54(31):9088.
[29] Wei Y F, Petronilho A, Mueller-Bunz H, Albrecht M. Organometallics, 2014, 33(20):5834.
[30] Wei Y F, Liu S X, Mueller-Bunz H, Albrecht M. ACS Catal., 2016, 6(12):8192.
[31] Wenz J, Wadepohl H, Gade L H. Chem. Commun., 2017, 53(31):4308.
[32] Rocquin M, Ritleng V, Barroso S, Martins A M, Chetcuti M J. J. Organomet. Chem., 2016, 808(1):57.
[33] Bheeter L P, Henrion M, Brelot L, Darcel C, Chetcuti M, Sortais J B, Ritleng V. Adv. Synth. Catal., 2012, 354(14/15):2619.
[34] Bheeter L P, Henrion M, Chetcuti M J, Darcel C, Ritleng V, Sortais J B. Catal. Sci. Technol., 2013, 3(12):3111.
[35] Xu Z, Lu X H, Xia Q H, Lou Z W, Ye C P, Liu Z M. Catal. Commun., 2008, 9(8):1793.
[36] Zheng J X, Darcel C, Sortais J B. Catal. Sci. Technol., 2013, 3(1):81.
[37] Tafazolian H, Yoxtheimer R, Thakuri R S, Schmidt J A R. Dalton Trans., 2017, 46(16):5431.
[38] MacMillan S N, Harman W H, Peters J C. Chem. Sci., 2014, 5(2):590.
[39] Wu F F, Zhou J N, Fang Q, Hu Y H, Li S, Zhang X C, Chan A S C, Wu J. Chem. Asian. J., 2012, 7(11):2527.
[40] Sun S, Quan Z, Wang X. RSC Adv., 2015, 5(103):84574.
[41] Vijaykumar G, Mandal S K. Dalton Trans., 2016, 45(17):7421.
[42] Crossley S W M, Obraddors C, Martinez R M. Chem. Rev., 2016, 116(15):8912.
[43] Hayasaka K, Kamata K, Nakazawa H. Bull. Chem. Soc. Jpn., 2016, 89(3):394.
[44] Toya Y, Hayasaka K, Nakazawa H. Organometallics, 2017, 36(9):1727.
[45] Sunada Y, Noda D, Soejima H, Tsutsumi H, Nagashima H. Organometallics, 2015, 34(12):2896.
[46] Cheng B, Liu W, Lu Z. J. Am. Chem. Soc., 2018, 140(15):5014.
[47] Lin H J, O'Kane C, Zeller M, Chen C H, Assil T A, Lee W T. Dalton Trans., 2018, 47(10):3243.
[48] Supej M J, Volkov A, Darko L, West R A, Darmon J M, Schulz C E, Wheeler K A, Hoyt H M. Polyhedron, 2016, 114:403.
[49] Yu X, Zhu F, Bu D, Lei H. RSC Adv., 2017, 7:15321.
[50] Wang Y, Ren S, Zhang W, Xue B, Qi X, Sun H, Li X, Fuhr O, Fenske D. Catal. Commun., 2018, 115(1):1.
[51] Zheng T, Li J, Zhang S, Xue B, Sun H, Li X, Fuhr O, Fenske D. Organometallics, 2016, 35(20):3538.
[52] Ren S, Xie S, Zheng T, Wang Y, Xu S, Xue B, Li X, Sun H, Fuhr O, Fenske D. Dalton Trans., 2018, 47(12):4352.
[53] Xue B, Sun H, Niu Q, Li X, Fuhr O, Fenske D. Catal. Commun., 2017, 94(1):23.
[54] Johnson C, Albrecht M. Organometallics, 2017, 36(15):2902.
[55] Raya-Barón Á, Ortuño M A, Oña-Burgos P, RodrÍguez-Diéguez A, Langer R, Carmer C J, Kuzu I, Fernández I. Organometallics, 2016, 35(24):4083.
[56] Raya-Barón Á, Galdeano-Ruano C P, Oña-Burgos P, RodrÍguez-Diéguez A, Langer R, López-Ruiz R, Romero-González R, Kuzu I, Fernández I. Dalton Trans., 2018, 47(21):7272.
[57] Ito M, Itazaki M, Nakazawa H. ChemCatChem, 2016, 8(21):3323.
[58] Jung T C, Argouarch G, Weghe P. Catal. Commun., 2016, 78(1):52.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.