English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1337-1347 DOI: 10.7536/PC210701 前一篇   后一篇

• 综述与评论 •

Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用

朱月香, 赵伟悦, 李朝忠, 廖世军*()   

  1. 华南理工大学化学与化工学院,广东省燃料电池重点实验室 广州 510641
  • 收稿日期:2021-07-02 修回日期:2021-09-20 出版日期:2021-12-02 发布日期:2021-12-02
  • 通讯作者: 廖世军
  • 基金资助:
    国家重点研发计划项目(2017YFB0102900); 国家重点研发计划项目(2016YFB0101201); 国家自然科学基金(51971094); 国家自然科学基金(21476088); 国家自然科学基金(21776104); 广东省自然科学基金(2015A030312007)

Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell

Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao()   

  1. The Key Laboratory of Fuel Cells Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510641, China
  • Received:2021-07-02 Revised:2021-09-20 Online:2021-12-02 Published:2021-12-02
  • Contact: Shijun Liao
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(51971094); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015A030312007)

质子交换膜燃料电池是一种能够将燃料的化学能直接高效地和环境友好地转化为电能的绿色能源技术。质子交换膜燃料电池具有能量转化效率高、启动快速、零排放或者低排放等优点,被认为是后石油时代最为重要的能源替代技术之一。然而目前使用的电催化剂存在铂用量高和稳定性不足等问题。开发高性能低Pt催化剂对于降低质子交换膜燃料电池成本、促进质子交换膜燃料电池的大规模商业化应用具有十分重要的意义。Pt基金属间化合物是一类具有严格元素化学计量比和规整原子排列结构的合金化合物,其氧还原反应催化活性明显优于相应的Pt基无序合金及纯Pt催化剂,被认为是最具应用前景的低Pt催化剂之一。本文着重从催化机理、制备技术、组成调控、颗粒度调控、形貌调控和晶体结构等几个方面介绍了Pt基金属间化合物催化剂近来的研究进展,以及这类催化剂在质子交换膜燃料电池阴极氧还原反应中的应用研究情况,指出了这类催化剂目前尚存在的不足及挑战,并展望了未来的研究发展思路及方向。

Proton exchange membrane fuel cell is a green energy technology that can directly, efficiently and environmentally-friendly convert the chemical energy of fuel into electrical energy. Proton exchange membrane fuel cell has high energy conversion efficiency, fast startup, zero or low emissions. It is considered to be one of the most important energy alternative technologies in the post-oil era. Unfortunately, the current electrocatalysts suffer from high platinum loading and insufficient stability. The development of high-performance low-platinum catalysts is of great significance for reducing the cost of proton exchange membrane fuel cells and promoting the large-scale commercial application of proton exchange membrane fuel cells. Pt-based intermetallic compound is a kind of materials with determined stoichiometric ratio and regular atomic arrangement structure. It has been recognized as one of the most promising low-platinum catalysts, due to its much better catalytic activity and stability than corresponding disordered alloy materials and conventional Pt catalysts towards oxygen reduction reaction. In this paper, we have introduced the research progress of Pt-based intermetallic compounds catalysts from the aspects of catalytic mechanism, preparation technology, composition tuning, particle size tuning, morphology tuning and crystal structure in recent years, and the investigations on the application of intermetallic compounds in the oxygen reduction reaction of proton exchange membrane fuel cells. Moreover, the problems and challenges need to be overcome and addressed for the catalysts are pointed out, and a perspective for the research and development ideas and directions in the future is made.

Contents

1 Introduction

2 Catalytic mechanism

3 Preparation technology and its research progress

3.1 High temperature thermal annealing

3.2 Wet chemical method

3.3 Chemical vapor deposition

4 Research progress of composition regulation

4.1 Binary Pt-based intermetallic compounds

4.2 Ternary Pt-based intermetallic compounds

5 Research progress of particle size regulation

5.1 Coating method

5.2 KCl matrix method

5.3 Space confinement method

6 Research progress of morphology regulation

6.1 Core shell structure

6.2 One-dimensional nanowires

6.3 Two-dimensional nanoplates

6.4 Three-dimensional nanoframes

7 Research progress of crystal structure

8 Conclusion and outlook

()
图1 PtM无序合金和PtM金属间化合物结构示意图
Fig. 1 Structure diagram of PtM disordered alloy and PtM intermetallic compounds
图2 ORR活性与Pt-O吸附能(ΔEO)的关系[9]
Fig. 2 Relationship between ORR activity and adsorption energy of Pt-O(ΔEO)[9]
图3 DFT计算结果显示了次表面排序对ORR活性的影响。(a)随机无序合金Pt3Co(D-Pt3Co)和有序fcc金属间化合物Pt3Co(O-Pt3Co)的优化体结构。(b)结构模型显示在D-Pt3Co和O-Pt3Co 层的(111)表面上的单层Pt 皮肤。红色球体表示具有最佳ΔEO(比Pt高 200~300 meV)的高活性位点。(c)三倍氧结合位点(由三个Pt原子组成),六个亚表面配位原子分为角原子或边缘原子。(d)线性回归和DFT计算的ΔEO值之间的比较。蓝色三角形和红色菱形分别代表D-Pt3Co和O-Pt3Co表面的ΔEO值。R2值在图中给出。(e)在D-Pt3Co和O-Pt3Co表面上具有最佳ΔEO的高活性位点群[23]
Fig. 3 DFT calculation results showing the impact of subsurface ordering on the ORR activity. (a) Optimized bulk structures of randomly disordered alloy Pt3Co(D-Pt3Co) and ordered fcc intermetallic Pt3Co(O-Pt3Co). (b) Structural models showing Pt-skin monolayers on top of (111) surfaces of D-Pt3Co and O-Pt3Co layers. Red spheres denote highly active sites possessing optimal ΔEO (200~300 meV higher than Pt). (c) Three-fold oxygen binding site (consisting of three Pt atoms) with six subsurface coordinating atoms categorized into either corner or edge atoms. (d) Comparison between ΔEO values from the linear regression and DFT calculations. Blue triangles and red diamonds represent ΔEO values of the D-Pt3Co and O-Pt3Co surfaces, respectively. The R2 value is given in the plot. (e) Population of highly active sites possessing optimal ΔEO on the D-Pt3Co and O-Pt3Co surfaces[23]
图4 KCl基体法示意图[50]
Fig. 4 Schematic diagram of KCl matrix method[50]
图5 L11型PtCu金属间化合物结构图
Fig. 5 Structure diagram of L11 PtCu intermetallic compounds
[1]
Yi B L. Battery Ind., 2003, 8(1): 16
( 衣宝廉. 电池工业, 2003, 8(1): 16.)
[2]
Zhai X, Ding Y. Acta Physico-Chimica Sinica, 2017, 33: 1366.

doi: 10.3866/PKU.WHXB201704173     URL    
[3]
Wan C Z, Duan X F, Huang Y. Adv. Energy Mater., 2020, 10(14): 1903815.

doi: 10.1002/aenm.201903815     URL    
[4]
Lu C B, Zhang J C, Chen Z Y, Jiang K Y, Li M Q, Zhang F, Tong G S, Zou X X, Su Y Z, Zhuang X D. Nanoscale, 2019, 11(21): 10257.

doi: 10.1039/C9NR01639B     URL    
[5]
Jauhar A M, Ma Z, Xiao M L, Jiang G P, Sy S, Li S, Yu A P, Chen Z W. J. Power Sources, 2020, 473: 228607.

doi: 10.1016/j.jpowsour.2020.228607     URL    
[6]
Mao L C, Fu K, Jin J H, Yang S L, Li G. Int. J. Hydrog. Energy, 2019, 44(33): 18083.

doi: 10.1016/j.ijhydene.2019.05.058     URL    
[7]
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, JÓnsson H. J. Phys. Chem. B, 2004, 108(46): 17886.

doi: 10.1021/jp047349j     URL    
[8]
Stamenkovic V, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M, Rossmeisl J, Greeley J, Nørskov J K. Angew. Chem.Int.ed., 2006, 118(18): 2963.
[9]
Stephens I E L, Bondarenko A S, Grønbjerg U, Rossmeisl J, Chorkendorff I. Energy Environ. Sci., 2012, 5(5): 6744.

doi: 10.1039/c2ee03590a     URL    
[10]
Toyoda E, Jinnouchi R, Hatanaka T, Morimoto Y, Mitsuhara K, Visikovskiy A, Kido Y. J. Phys. Chem. C, 2011, 115(43): 21236.

doi: 10.1021/jp206360e     URL    
[11]
Stephens I E L, Bondarenko A S, Perez-Alonso F J, Calle-Vallejo F, Bech L, Johansson T P, Jepsen A K, Frydendal R, Knudsen B P, Rossmeisl J, Chorkendorff I. J. Am. Chem. Soc., 2011, 133(14): 5485.

doi: 10.1021/ja111690g     pmid: 21417329
[12]
Sun K, Li J, Wang F, He W X, Fei M F, Lu Z D, Zhang H G, Liu J G, Zou Z G. Chem. Commun., 2019, 55(40): 5693.

doi: 10.1039/C9CC02510C     URL    
[13]
Mo R C, Zhang X R, Chen Z Y, Huang S L, Li Y J, Liang L Z, Tian Z Q, Shen P K. Int. J. Hydrog. Energy, 2021, 46(29): 15991.

doi: 10.1016/j.ijhydene.2021.02.119     URL    
[14]
Liu T, Wang K, Yuan Q, Shen Z, Wang Y, Zhang Q, Wang X. Nanoscale, 2017, 9: 2963.

doi: 10.1039/C7NR00193B     URL    
[15]
Choi J, Lee Y H, Kim J, Lee H. J. Power Sources, 2016, 307: 883.

doi: 10.1016/j.jpowsour.2016.01.063     URL    
[16]
He C Y, Zhang S K, Tao J Z, Shen P K. J. Catal., 2018, 362: 85.

doi: 10.1016/j.jcat.2018.03.025     URL    
[17]
Chen G R, Yang X T, Xie Z X, Zhao F L, Zhou Z Y, Yuan Q. J. Colloid Interface Sci., 2020, 562: 244.

doi: 10.1016/j.jcis.2019.12.020     URL    
[18]
Zou L L, Fan J, Zhou Y, Wang C M, Li J, Zou Z Q, Yang H. Nano Res., 2015, 8(8): 2777.

doi: 10.1007/s12274-015-0784-0     URL    
[19]
Hodnik N, Jeyabharathi C, Meier J C, Kostka A, Phani K L, Rečnik A, Bele M, Hočevar S, Gaberšček M, Mayrhofer K J J. Phys. Chem. Chem. Phys., 2014, 16(27): 13610.

doi: 10.1039/c4cp00585f     pmid: 24777064
[20]
Zou L L, Li J, Yuan T, Zhou Y, Li X M, Yang H. Nanoscale, 2014, 6(18): 10686.

doi: 10.1039/C4NR02799J     URL    
[21]
Wang D L, Xin H L, Hovden R, Wang H S, Yu Y C, Muller D A, DiSalvo F J, Abruña H D. Nat. Mater., 2013, 12(1): 81.

doi: 10.1038/nmat3458     URL    
[22]
Kim J, Hong Y J, Lee K, Kim J Y. Adv. Energy Mater., 2020, 10(41): 2002049.

doi: 10.1002/aenm.202002049     URL    
[23]
Kim H Y, Kim J M, Ha Y, Woo J, Byun A, Shin T J, Park K H, Jeong H Y, Kim H, Kim J Y, Joo S H. ACS Catal., 2019, 9(12): 11242.

doi: 10.1021/acscatal.9b03155     URL    
[24]
Stephens I E L, Bondarenko A S, Grønbjerg U, Rossmeisl J, Chorkendorff I. Energy Environ. Sci., 2012, 5(5): 6744.

doi: 10.1039/c2ee03590a     URL    
[25]
Wang S H, Xu W, Zhu Y F, Luo Q Y, Zhang C, Tang S L, Du Y W. ACS Appl. Mater. Interfaces, 2021, 13(1): 827.

doi: 10.1021/acsami.0c21348     URL    
[26]
Wang Z X, Yao X Z, Kang Y Q, Miao L Q, Xia D S, Gan L. Adv. Funct. Mater., 2019, 29(35): 1902987.

doi: 10.1002/adfm.201902987     URL    
[27]
Chen L X, Zhu J, Wang J, Xiao W P, Lei W, Zhao T H, Huang T, Zhu Y, Wang D L. Electrochimica Acta, 2018, 283: 1253.

doi: 10.1016/j.electacta.2018.07.016     URL    
[28]
Chen Q L, Zhang J W, Jia Y Y, Jiang Z Y, Xie Z X, Zheng L S. Nanoscale, 2014, 6(12): 7019.

doi: 10.1039/C4NR00313F     URL    
[29]
Yan Y C, Du J S, Gilroy K D, Yang D R, Xia Y N, Zhang H. Adv. Mater., 2017, 29(14): 1605997.

doi: 10.1002/adma.201605997     URL    
[30]
Bu L Z, Zhang N, Guo S J, Zhang X, Li J, Yao J L, Wu T, Lu G, Ma J Y, Su D, Huang X Q. Science, 2016, 354(6318): 1410.

doi: 10.1126/science.aah6133     URL    
[31]
Luo S P, Chen W, Cheng Y, Song X, Wu Q L, Li L X, Wu X T, Wu T H, Li M R, Yang Q, Deng K R, Quan Z W. Adv. Mater., 2019, 31(40): 1903683.

doi: 10.1002/adma.201903683     URL    
[32]
Rong H P, Mao J J, Xin P Y, He D S, Chen Y J, Wang D S, Niu Z Q, Wu Y E, Li Y D. Adv. Mater., 2016, 28(13): 2540.

doi: 10.1002/adma.201504831     URL    
[33]
Saedy S, Palagin D, Safonova O, van Bokhoven J A, Khodadadi A A, Mortazavi Y. J. Mater. Chem. A, 2017, 5(46): 24396.

doi: 10.1039/C7TA06737B     URL    
[34]
Jung C, Lee C, Bang K, Lim J, Lee H, Ryu H J, Cho E, Lee H M. ACS Appl. Mater. Interfaces, 2017, 9(37): 31806.

doi: 10.1021/acsami.7b07648     URL    
[35]
Mizutani U. MRS Bull., 2012, 37(2): 169.
[36]
Zou X, Chen S G, Wang Q M, Gao X Y, Li J, Li J, Li L, Ding W, Wei Z D. Nanoscale, 2019, 11(42): 20115.

doi: 10.1039/C9NR06698E     URL    
[37]
Zhu J, Yang Y, Chen L X, Xiao W P, Liu H F, Abruña H D, Wang D L. Chem. Mater., 2018, 30(17): 5987.

doi: 10.1021/acs.chemmater.8b02172     URL    
[38]
Liang J, Li N, Zhao Z, Ma L, Wang X, Li S, Liu X, Wang T, Du Y, Lu G. Angew. Chem. Int.ed., 2019, 131: 15617.
[39]
Liu M Y, Hu A P, Ma Y N, Wang G L, Zou L L, Chen X H, Yang H. J. Electroanal. Chem., 2020, 871: 114267.

doi: 10.1016/j.jelechem.2020.114267     URL    
[40]
Zhao X R, Xi C, Zhang R, Song L, Wang C Y, Spendelow J S, Frenkel A I, Yang J, Xin H L, Sasaki K. ACS Catal., 2020, 10(18): 10637.

doi: 10.1021/acscatal.0c03036     URL    
[41]
Bai L C, Wang X, Chen Q, Ye Y F, Zheng H Q, Guo J H, Yin Y D, Gao C B. Angew. Chem. Int. Ed., 2016, 55(50): 15656.

doi: 10.1002/anie.201609663     URL    
[42]
Yang F, Deng D H, Pan X L, Fu Q, Bao X H. Natl. Sci. Rev., 2015, 2(2): 183.

doi: 10.1093/nsr/nwv024     URL    
[43]
Tritsaris G A, Greeley J, Rossmeisl J, Nørskov J K. Catal. Lett., 2011, 141(7): 909.

doi: 10.1007/s10562-011-0637-8     URL    
[44]
Kleis J, Greeley J, Romero N A, Morozov V A, Falsig H, Larsen A H, Lu J, Mortensen J J, Dułak M, Thygesen K S, Nørskov J K, Jacobsen K W. Catal. Lett., 2011, 141(8): 1067.

doi: 10.1007/s10562-011-0632-0     URL    
[45]
Gamler J T L, Ashberry H M, Skrabalak S E, Koczkur K M. Adv. Mater., 2018, 30(40): 1801563.

doi: 10.1002/adma.201801563     URL    
[46]
Wang Yao, Kang Xia, Gan. Catalysts, 2019, 9(7): 569.

doi: 10.3390/catal9070569     URL    
[47]
Kim H Y, Kwon T, Ha Y, Jun M, Baik H, Jeong H Y, Kim H, Lee K, Joo S H. Nano Lett., 2020, 20(10): 7413.

doi: 10.1021/acs.nanolett.0c02812     URL    
[48]
Kim J, Lee Y, Sun S H. J. Am. Chem. Soc., 2010, 132(14): 4996.

doi: 10.1021/ja1009629     URL    
[49]
Chung D Y, Jun S W, Yoon G, Kwon S G, Shin D Y, Seo P, Yoo J M, Shin H, Chung Y-H, Kim H. Journal of the American Chemical Society, 2015, 137: 15478.
[50]
Chen H, Wang D L, Yu Y C, Newton K A, Muller D A, Abruña H, DiSalvo F J. J. Am. Chem. Soc., 2012, 134(44): 18453.

doi: 10.1021/ja308674b     pmid: 23057514
[51]
Cui Z M, Chen H, Zhou W D, Zhao M T, DiSalvo F J. Chem. Mater., 2015, 27(21): 7538.

doi: 10.1021/acs.chemmater.5b03912     URL    
[52]
Zhao W Y, Ye Y K, Jiang W J, Li J, Tang H B, Hu J S, Du L, Cui Z M, Liao S J. J. Mater. Chem. A, 2020, 8(31): 15822.

doi: 10.1039/D0TA01437K     URL    
[53]
Wang C, Daimon H, Onodera T, Koda T, Sun S H. Angew. Chem., 2008, 120(19): 3644.

doi: 10.1002/ange.200800073     URL    
[54]
Gong M X, Deng Z P, Xiao D D, Han L L, Zhao T H, Lu Y, Shen T, Liu X P, Lin R Q, Huang T, Zhou G W, Xin H L, Wang D L. ACS Catal., 2019, 9(5): 4488.

doi: 10.1021/acscatal.9b00603     URL    
[55]
Li M, Zhao Z, Cheng T, Fortunelli A, Chen C-Y, Yu R, Zhang Q, Gu L, Merinov B V, Lin Z. Science, 2016, 354: 1414.

doi: 10.1126/science.aaf9050     URL    
[56]
Tian X L, Zhao X, Su Y Q, Wang L J, Wang H M, Dang D, Chi B, Liu H F, Hensen E J M, Lou X W D, Xia B Y. Science, 2019, 366(6467): 850.

doi: 10.1126/science.aaw7493     URL    
[57]
Kwon T, Jun M, Kim H Y, Oh A, Park J, Baik H, Joo S H, Lee K. Adv. Funct. Mater., 2018, 28(13): 1706440.

doi: 10.1002/adfm.201706440     URL    
[58]
Cheng N, Zhang L, Mi S Y, Jiang H, Hu Y J, Jiang H B, Li C Z. ACS Appl. Mater. Interfaces, 2018, 10(44): 38015.

doi: 10.1021/acsami.8b11764     URL    
[59]
Qin Y N, Luo M C, Sun Y J, Li C J, Huang B L, Yang Y, Li Y J, Wang L, Guo S J. ACS Catal., 2018, 8(6): 5581.

doi: 10.1021/acscatal.7b04406     URL    
[60]
Zhang D T, Wu F X, Peng M H, Wang X Y, Xia D G, Guo G S. J. Am. Chem. Soc., 2015, 137(19): 6263.

doi: 10.1021/jacs.5b01088     URL    
[61]
Guan J Y, Yang S X, Liu T T, Yu Y H, Niu J, Zhang Z P, Wang F. Angew. Chem. Int.Ed., 2021, 133(40): 22070.
[62]
Gong M X, Xiao D D, Deng Z P, Zhang R, Xia W W, Zhao T H, Liu X P, Shen T, Hu Y Z, Lu Y, Zhao X, Xin H L, Wang D L. Appl. Catal. B Environ., 2021, 282: 119617.

doi: 10.1016/j.apcatb.2020.119617     URL    
[63]
Li X, Liu Y M, Bi W, Bi J L, Guo R Y, Li R, Wang C Q, Zhan Q, Wang W C, Yang S C, Shi F L, Wu J B, Jin M S. J. Mater. Chem. A, 2020, 8(32): 16477.

doi: 10.1039/D0TA05410K     URL    
[64]
Gan L, Cui C H, Rudi S, Strasser P. Top. Catal., 2014, 57(1/4): 236.

doi: 10.1007/s11244-013-0178-z     URL    
[65]
Xiong Y, Xiao L, Yang Y, DiSalvo F J, Abruña H D. Chem. Mater., 2018, 30(5): 1532.

doi: 10.1021/acs.chemmater.7b04201     URL    
[66]
Li L Y, Liu H Q, Qin C, Liang Z X, Scida A, Yue S Y, Tong X, Adzic R R, Wong S S. ACS Appl. Nano Mater., 2018, 1(3): 1104.

doi: 10.1021/acsanm.7b00289     URL    
[67]
Bu L Z, Guo S J, Zhang X, Shen X, Su D, Lu G, Zhu X, Yao J L, Guo J, Huang X Q. Nat. Commun., 2016, 7: 11850.

doi: 10.1038/ncomms11850     URL    
[68]
Lopes P P, Strmcnik D, Tripkovic D, Connell J G, Stamenkovic V, Markovic N M. ACS Catal., 2016, 6(4): 2536.

doi: 10.1021/acscatal.5b02920     URL    
[69]
Feng Y G, Shao Q, Lv F, Bu L Z, Guo J, Guo S J, Huang X Q. Adv. Sci., 2020, 7(1): 1800178.

doi: 10.1002/advs.201800178     URL    
[70]
Liu M L, Zhao Z P, Duan X F, Huang Y. Adv. Mater., 2019, 31(6): 1802234.

doi: 10.1002/adma.201802234     URL    
[71]
Li Y W, Hart J L, Taheri M L, Snyder J D. ACS Catal., 2017, 7(11): 7995.

doi: 10.1021/acscatal.7b02398     URL    
[72]
Chen L X, Zhu J, Xuan C J, Xiao W P, Xia K D, Xia W W, Lai C L, Xin H L, Wang D L. J. Mater. Chem. A, 2018, 6(14): 5848.

doi: 10.1039/C7TA11051K     URL    
[73]
Li J R, Xi Z, Pan Y T, Spendelow J S, Duchesne P N, Su D, Li Q, Yu C, Yin Z Y, Shen B, Kim Y S, Zhang P, Sun S H. J. Am. Chem. Soc., 2018, 140(8): 2926.

doi: 10.1021/jacs.7b12829     URL    
[74]
Zhao X R, Cheng H, Song L, Han L L, Zhang R, Kwon G, Ma L, Ehrlich S N, Frenkel A I, Yang J, Sasaki K, Xin H L. ACS Catal., 2021, 11(1): 184.

doi: 10.1021/acscatal.0c04021     URL    
[75]
Wang X X, Hwang S, Pan Y T, Chen K T, He Y H, Karakalos S, Zhang H G, Spendelow J S, Su D, Wu G. Nano Lett., 2018, 18(7): 4163.

doi: 10.1021/acs.nanolett.8b00978     URL    
[1] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[2] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[3] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[4] 许颖, 高婷婷, 王启晓, 屈阳, 刘宏飞, 辛渊蓉. 高分子类型MONOLITH材料的制备技术及其作为亲和色谱固定相用于分离生物大分子的应用[J]. 化学进展, 2018, 30(8): 1112-1120.
[5] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[6] 苗鹤, 薛业建, 周旭峰, 刘兆平. 石墨烯基氧还原催化剂在金属空气电池中的应用[J]. 化学进展, 2015, 27(7): 935-944.
[7] 刘锋, 王诚, 张剑波, 兰爱东, 李建秋, 欧阳明高. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771.
[8] 陈旭, 何大平, 木士春. 掺氮石墨烯研究[J]. 化学进展, 2013, 25(08): 1292-1301.
[9] 钟轶良, 莫再勇, 杨莉君, 廖世军*. 改性石墨烯用作燃料电池阴极催化剂[J]. 化学进展, 2013, 25(05): 717-725.
[10] 李鹏, 孙彦平* . 非水系二次锂-氧电池正极[J]. 化学进展, 2012, 24(12): 2457-2471.
[11] 张栋, 张存中*, 穆道斌, 吴伯荣, 吴锋 . 锂空气电池研究述评[J]. 化学进展, 2012, 24(12): 2472-2482.
[12] 汪嘉澍, 潘国顺, 郭丹. 质子交换膜燃料电池膜电极组催化层结构[J]. 化学进展, 2012, (10): 1906-1914.
[13] 原鲜霞 夏小芸 曾鑫 张慧娟 马紫峰. 低温燃料电池氧电极催化剂*[J]. 化学进展, 2010, 22(01): 19-31.
[14] 刘镇,吴庆银,宋小莉,马赛. 基于杂多酸的固体高质子导体*[J]. 化学进展, 2009, 21(05): 982-989.
[15] 李小兵,廖世军. 燃料电池用填孔型质子交换膜*[J]. 化学进展, 2008, 20(05): 767-770.