English
新闻公告
More
化学进展 2018, Vol. 30 Issue (4): 410-419 DOI: 10.7536/PC170923 前一篇   后一篇

• 综述 •

三元镍钴锰正极材料的制备及改性

邵奕嘉1, 黄斌1, 刘全兵2*, 廖世军1*   

  1. 1. 华南理工大学化学与化工学院 广州 510641;
    2. 广东工业大学轻工化工学院 广州 510006
  • 收稿日期:2017-09-20 修回日期:2017-12-07 出版日期:2018-04-15 发布日期:2018-02-11
  • 通讯作者: 刘全兵, 廖世军 E-mail:liuqb@gdut.edu.cn;chsjliao@scut.edu.cn
  • 基金资助:
    国家重点研发计划项目(No.2016YFB0101201)、国家自然科学基金项目(No.21476088,U1301245,21606050)、广东省自然科学基金项目(No.2014A010105041,2015A030312007)、广东省科学技术厅(No.2015B010106012)、广东省教育委员会(No.2013CXZDA003)和广州市科技创新委员会(No.2016201604030012)资助

Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials

Yijia Shao1, Bin Huang1, Quanbing Liu2*, Shijun Liao1*   

  1. 1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China;
    2. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2017-09-20 Revised:2017-12-07 Online:2018-04-15 Published:2018-02-11
  • Supported by:
    The work was supported by the State's Key Project of Research and Development Plan of China (No.2016YFB0101201), the Natural Science Foundation of China (No.21476088, U1301245, 21606050), the Natural Science Foundation of the Guangdong Province (No.2014A010105041, 2015A030312007), the Guangdong Provincial Department of Science and Technology(No.2015B010106012), the Educational Commission of Guangdong Province (No.2013CXZDA003), and the Guangzhou Science Technology Innovation Committee(No.2016201604030012).
三元镍钴锰正极材料是一类非常重要的正极材料,具有性能优于钴酸锂而成本远远低于钴酸锂、能量密度远远高于磷酸铁锂等重要优点,正在逐渐成为汽车动力电池的主流正极材料。但是,三元镍钴锰正极材料也存在循环稳定性不足、大电流密度放电性能不佳等问题。围绕解决这些问题并进一步提升三元镍钴锰正极材料的性能,近年来国内外在材料制备技术以及改性技术方面开展了大量的研究工作,取得了若干令人瞩目的研究成果。本文从材料制备方法、包覆修饰和掺杂改性三个方面,介绍了三元镍钴锰正极材料制备技术及改性技术的研究进展,在此基础上,对三元镍钴锰正极材料的未来发展方向作出展望。
Ternary nickel cobalt manganese cathode materials are one of the most important cathode materials of lithium ion batteries. Ni-Co-Mn ternary materials have much higher power density than LiFePO4 and lower cost than LiCoO2, so it is becoming the dominant cathode material for power battery. However, there are still some shortcomings of Ni-Co-Mn ternary materials, such as poor stability and rate performance. In recent years, great efforts have been made to improve the materials through exploring new synthesis method and modifying the materials via doping and coating techniques, and some progress has been achieved. In this paper, the latest progress on the synthesis, doping and coating of Ni-Co-Mn ternary materials are introduced. Furthermore, a perspective for the development tendency of Ni-Co-Mn ternary materials is also made.
Contents
1 Introduction
2 Research progress of preparation
2.1 Solid state method
2.2 Coprecipitation method
2.3 Sol-gel method
2.4 Template method
2.5 Hydrothermal method
3 Research progress of coating and doping
3.1 Coating
3.2 Doping
4 Conclusion

中图分类号: 

()
[1] 陈鹏(Chen P),肖冠(Xiao G),廖世军(Liao S J). 化工进展(Chemical Industry and Engineering Progress), 2016, 35:166.
[2] Tarascon J M, Armand M. Nature, 2001, 414:359.
[3] Deng D. Energy Sci. Eng., 2015, 3:385.
[4] Schipper F, Erickson E M, Erk C, Shin J Y, Chesneau F F, Aurbac D. J. Electrochem. Soc., 2017, 164(1):A6220.
[5] Mizushima K, Jones P C, Wiseman P J, Goodenough J B. Solid State Ionics, 1981, 3/4:171.
[6] Ohzuku T, Ueda A, Nagayama M. J. Electrochem. Soc., 1993, 140:1862.
[7] Bruce P G, Armstrong A R, Gitzendanner R L. J. Mater. Chem., 1999, 9:193.
[8] Ohzuku T, Makimura Y. Chem. Lett., 2001, 642.
[9] Jiang Q, Xu L, Huo J, Zhang H, Wang S. RSC Adv., 2015, 5:75145.
[10] Zheng Z, Guo X D, Chou S L, Hua W B, Liu H K, Dou S X, Yang X S. Electrochim. Acta, 2016, 191:401.
[11] Lin C H, Zhang Y Z, Chen L, Lei Y, Ou J K, Guo Y, Yuan H Y, Xiao D. J. Power Sources, 2015, 280:263.
[12] Park K J, Lim B B, Choi M H, Jung H G, Sun Y K, Haro M, Vicente N, Bisquert J, Garcia B G. J. Mater. Chem. A, 2015, 3:22183.
[13] Liang L W, Hu G R, Cao Y B, Du K, Peng Z D. J. Alloys Compd., 2015, 635:92.
[14] Yang Z H, Lu J B, Bian D C, Zhang W X, Yang X N, Xia J F, Chen G D, Gu H Y, Ma G. J. Power Sources, 2014, 272:144.
[15] Ma G, Li S, Zhang W, Yang Z, Liu S, Fan X, Chen F, Tian Y, Zhang W, Yang S, Li M. Angew. Chem. Int. Ed. Engl., 2016, 55:3667.
[16] Huang Z D, Liu X M, Oh S W, Zhang B A, Ma P C, Kim J K. J. Mater. Chem., 2011, 21:10777.
[17] Huang Z D, Liu X M, Zhang B A, Oh S W, Ma P C, Kim J K. Scripta Mater., 2011, 64:122.
[18] Li J L, Wang X F, Zhao J W, Chen J, Jia T K, Cao C B. J. Power Sources, 2016, 307:731.
[19] Chen Z, Wang J, Chao D, Baikie T, Bai L, Chen S, Zhao Y, Sum T C, Lin J, Shen Z. Sci. Rep., 2016, 6:25771.
[20] Xiong W, Jiang Y, Yang Z, Li D G, Huang Y H. J. Alloys Compd., 2014, 589:615.
[21] Li J L, Cao C B, Xu X Y, Zhu Y Q, Yao R M. J. Mater. Chem. A, 2013, 1:11848.
[22] Wu Y, Cao C, Zhu Y, Li J, Wang L. J. Mater. Chem. A, 2015, 3:15523.
[23] Yang C F, Huang J J, Huang L G, Wang G J. J. Power Sources, 2013, 226:219.
[24] Huang Y, Hou X, Ma S, Zou X, Wu Y, Hu S, Shao Z, Liu X. Ionics, 2015, 21:3151.
[25] Zhang J, Zhong Y, Shi X, Zheng Z, Hua W, Chen Y, Liu W, Zhong B. Chin. J. Chem., 2015, 33:1303.
[26] Peng L L, Zhu Y, Khakoo U, Chen D H, Yu G H. Nano Energy, 2015, 17:36.
[27] Fu F, Xu G L, Wang Q, Deng Y P, Li X, Li J T, Huang L, Sun S G. J. Mater. Chem. A, 2013, 1:3860.
[28] Ryu W H, Lim S J, Kim W K, Kwon H. J. Power Sources, 2014, 257:186.
[29] Xie Y, Gao D, Zhang L L, Chen J J, Cheng S, Xiang H F. Ceram. Int., 2016, 42:14587.
[30] Tan S Y, Wang L, Bian L, Xu J B, Ren W, Hu P F, Chang A M. J. Power Sources, 2015, 277:139.
[31] Lv D, Wang L, Hu P, Sun Z, Chen Z, Zhang Q, Cheng W, Ren W, Bian L, Xu J, Chang A. Electrochim. Acta, 2017, 247:803.
[32] Hu W, Zhang C, Jiang H, Zheng M, Wu Q H, Dong Q. Electrochim. Acta, 2017, 243:105.
[33] Xu Y, Li X H, Wang Z X, Guo H J, Peng W J, Pan W. Electrochim. Acta, 2016, 219:49.
[34] Luo Z M, Sun Y G, Liu H Y. Chin. Chem. Lett., 2015, 26:1403.
[35] Guo X, Cong L N, Zhao Q, Tai L H, Wu X L, Zhang J P, Wang R S, Xie H M, Sun L Q. J. Alloys Compd., 2015, 651:12.
[36] Tao F, Yan X X, Liu J J, Zhang H L, Chen L. Electrochim. Acta, 2016, 210:548.
[37] Wise A M, Ban C, Weker J N, Misra S, Cavanagh A S, Wu Z, Li Z, Whittingham M S, Xu K, George S M, Toney M F. Chem. Mater., 2015, 27:6146.
[38] Han B, Paulauskas T, Key B, Peebles C, Park J S, Klie R F, Vaughey J T, Dogan F. ACS Appl. Mater. Interfaces, 2017, 9:14769.
[39] Shi Y, Zhang M H, Qian D N, Meng Y S. Electrochim. Acta, 2016, 203:154.
[40] Zhao R, Liang J, Huang J, Zeng R, Zhang J, Chen H, Shi G. J. Alloys Compd., 2017, 724:1109.
[41] Yano A, Ueda A, Shikano M, Sakaebe H, Ogumi Z. J. Electrochem. Soc., 2016, 163:A75.
[42] Kong J Z, Wang S S, Tai G A, Zhu L, Wang L G, Zhai H F, Wu D, Li A D, Li H. J. Alloys Compd., 2016, 657:593.
[43] Hou C P, Ma Y, Dong X Z, Geng W C, Zhang B L, Zhang Q Y. J. Alloys Compd., 2016, 656:849.
[44] Cong L, Zhao Q, Wang Z, Zhang Y, Wu X, Zhang J, Wang R, Xie H, Sun L. Electrochim. Acta, 2016, 201:8.
[45] Wu J F, Liu H G, Ye X H, Xia J P, Lu Y, Lin C W, Yu X W. J. Alloys Compd., 2015, 644:223.
[46] Li G Y, Zhang Z J, Wang R N, Huang Z L, Zuo Z C, Zhou H H. Electrochim. Acta, 2016, 212:399.
[47] Gong C X, Lv W X, Qu L M, Bankole O E, Li G H, Zhang R, Hu M, Lei L X. J. Power Sources, 2014, 247:151.
[48] Yang Z G, Guo X D, Xiang W, Hua W B, Zhang J, He F R, Wang K, Xiao Y, Zhong B H. J. Alloys Compd., 2017, 699:358.
[49] Min K, Seo S W, Song Y Y, Lee H S, Cho E. Phys. Chem. Chem. Phys., 2017, 19:1762.
[50] Hu G R, Zhang M F, Liang L W, Peng Z D, Du K, Cao Y B. Electrochim. Acta, 2016, 190:264.
[51] Hu G, Zhang M, Wu L, Peng Z, Du K, Cao Y. ACS Appl. Mater. Interfaces, 2016, 8:33546.
[52] Zhang Y, Wang Z B, Yu F D, Que L F, Wang M J, Xia Y F, Xue Y, Wu J. J. Power Sources, 2017, 358:1.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[9] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[10] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[11] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[12] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[13] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[14] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[15] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.